Contest 2 Editorial

COMP4128 21T3

9th October 2021

Al. Rivalry (subtask)

Algorithm

We use brute force.

First, read the string. Then, for every query, walk forward from the given start year s, counting the
number of times that team ¢ won, and output the first year when this count reaches k (or 0 if it does
not reach k by the end of the string).

This algorithm runs in O(ng) time, which is sufficient for n, ¢ < 5,000.

Implementation Notes

Take care to translate correctly between 0-based indexing (the default for the string) and 1-based indexing
(used in the problem).

Reference Solution

// Solution by Raveen
#include <algorithm>
#include <iostream>
#include <string>
using namespace std;

const int N = 100100;

int main (void) {
int n, q;
cin >> n >> q;

string w;
cin >> w;

for (int j = 0; j < gq; j++) {
char t;
int k, s;
cin >> t >> k >> s;

int cnt = 0;
for (int i = s-1; i < n; i++)
if (wlil == t)
if (++cnt == k) {
cout << i+l << ;
break;
}
if (cnt '= k)
cout << ;
}



A2. Rivalry (full)

Algorithm

Let f¢(i) be the number of wins by team ¢ in the first ¢ years. Then the answer to each query is the
smallest ¢ such that f;(¢) =k + fi(s — 1).

Observation: each value f:(i) can be computed as the ith prefix sum of an array with 1s corresponding
to years when team ¢ won and Os when they lost.

We can compute each of O(n) values f;(i) in constant time. It remains to handle each query in one of
two ways.

1. Since f; is a nondecreasing function (i.e. fi(i +1) > fi(i)), we can use binary search to handle
each query in O(logn), for a total of O(n + ¢qlogn).

2. Alternatively, we can precompute a reverse lookup table which stores for each team and each value
of f; the first year in which that value of f; was attained. Then each query can be answered in
constant time, for a total of O(n + q).

Either solution is sufficient for n, ¢ < 100, 000.

Some students constructed two sets to store the winning years for each team, and used set: : lower_bound
to answer each query. This solution is also acceptable.

Implementation Notes

Be very careful when writing your own binary search - common mistakes include off-by-one errors and
infinite loops. We recommend using the lecture code or lower_bound where possible.

Reference Solutions

// Solution by Angus, using reverse lookup table
#include <cstdio>
#define MAXN 100010

// preli][0] is the number of X wins at or before day i, prel[i][1] is the number of Y
wins at or before day o

// lookup[1][0] is the day that the ith win happened for X, lookup[i][1] is the same
thing for Y

int n, q, prel[MAXN][2], lookup[MAXN][2];

int main() {

scanf ( , &n, &q);
for (int i = 1; i <= n; i++) {
char a;
scanf ( , &a);
prelil[0] = prel[i-1]1[0] + (a == )
prelil[1] = preli-1]1[1] + (a == )
if (a == )
lookup[prel[i] [0]][0] = ij;
else
lookup[prel[i][1]1]1[1] = i;
}
for (int i = 0; i < q; i++) {
char a;
int k, s;
scanf ( , &a, &k, &s);
k += prels-1]l[a == 1;
printf( , lookupl[k]l[a == ID
}

}

// Solution by Raveen, using binary search
#include <algorithm>

#include <iostream>

#include <string>

using namespace std;



const int N = 100100;
int al[2][N];

int main (void) {
int n, q;
cin >> n >> q;

string w;
cin >> w;

al01[1] = (w[0] == )

al1]1[1] = (wlo0] == );

for (int i = 1; i < mn; i++) {
al[0][i+1] = al[0][i]l + (w[i] == )
a[1][i+1] = al[1][i] + (w[i] == )

}

for (int j = 0; j < q; j++) {
char t;
int k, s;
cin >> t >> k >> s;

int tid = (t == 7?70 : 1);
int ans = lower_bound(&altid][0] ,&altid][n+1],altid]l[s-11+k) - &altid][0];
cout << (ans <= n 7 ams : 0) << ;



B1. Skyline (subtask)

Algorithm

The most naive brute force solution runs in O(n?): for every start point ¢, for every end point 7, calculate
the width w = r — £ + 1 and check whether h; > w for each £ < i < r. This is clearly too slow for
n < 5000.

An improvement on this idea can be achieved by finding the smallest h; in the range ¢ < i < r by
querying a range tree, and comparing it to w; this reduces the complexity to O(n?logn) but this is still
too slow (since 50002 log 5000 > 300, 000, 000).

Note however that there are only queries, and no updates. We can therefore use a sparse table to query
the minimum over a range in constant time. The time complexity of this solution is O(n?), which is
sufficient for n < 5000. Note that building the sparse table takes O(nlogn) time.

An alternative solution is as follows. From every start point ¢, we walk forwards, maintaining the height
and width of a candidate rectangle. Initially, the height is h, and the width is 1. At each step, we
increase the width by one and update the minimum height seen since building ¢. The size of the square
that can be formed is the minimum of the two dimensions of this candidate rectangle. This solution also
runs in O(n?) time.

Implementation Notes

In the first reference solution, the lowest level of the sparse table is initialised to 100100 by default rather
than 0, to ensure that min queries are handled correctly.

In the second reference solution, the constant factor is improved by noting that the height of the candidate
rectangle never increases, so we can early exit if the height no longer exceeds the width. This optimisation
was not required to obtain a passing solution.

Reference Solutions

// Solution by Raveen, using sparse table
#include <iostream>
using namespace std;

const int MAXN = 100100, LOGN = 18;
// sparseTable[l][i] = min al%...5+2°1)
int n, sparseTable[LOGN][MAXN], log2s[MAXN];

void precomp() {
for (int 1 = 1; 1 < LOGN; 1++) {

int prevp2 = 1 << (1-1);

for (int i = 0; i < MAXN; i++) {
int intEnd = i + prevp2;
if (intEnd < MAXN)

sparseTable[1]1[i] = min(sparseTable[1-1][i],
sparseTable[1-1] [intEnd]) ;

else
sparseTable[1][i] = sparseTable[1-1]1[il;
}
}
for (int i = 2; i < MAXN; i++)
log2s[i]l = log2sl[i/2] + 1;

}

int query (int 1, int r) {

int 12 = log2sl[r-11;

return min(sparseTable[12][1], sparseTable[12][r-(1<<12)1]1);
}

int main() {
for (int i = 0; i < MAXN; i++)
sparseTable [0][i] = MAXN;
cin >> n;
for (int i = 0; i < n; i++)
cin >> sparseTable[0][i];



precomp () ;

int ans = 0;
for (int i = 0; i < n; 1i++)
for (int j = 1i; j < mn; j++)
if (query(i,j+1) >= j+1-1i)
ans = max(ans, j+1-1);
cout << amns << ’\n’;

// Solution by Raveen, using loop with early exit
#include <iostream>
using namespace std;

const int N = 100100;
int h[N];

int main (void) {

int n;
scanf ("%d" ,&n);
for (int i = 0; i < nj; i++)

scanf ("/d" ,&h[i]);

int ans = 1;
for (int i = 0; i < n; i++) {
int sqh = h[i]l, sqw = 1;
for (int j = i+1; j < n; j++) {
sgh = min(sqh,h[j]1);

sqw++;
ans = max(ans,min(sqh,sqw));
if (sqh <= sqw)

break;

}
}

cout << ans << ’\n’;



B2. Skyline (full)

Algorithm

There are several ways to solve the full problem.

Binary Search

If a square of size k exists, then a square of size k—1 also exists. Therefore the answer to the corresponding
decision problem is monotonic, so we can use binary search!

To test whether a square of size k exists, we will test for each start point £ whether the next &k buildings all
have height at least k. Iterating through all k buildings would give an O(n?logn) solution, which is too
slow. However, we can look up the minimum height of buildings [¢, ¢+ k) in O(logn) time using a range
tree, or O(1) time using a sparse table. These solutions run in O(nlog?n) and O(nlogn) respectively,
and both are acceptable for n < 100, 000.

However, there is an even simpler way to test for a square of size k. All we need to do is to traverse the
height array from left to right, maintaining a count of how many consecutive buildings of height > k we
have seen and resetting to zero when we find a building of height < k. If the count ever reaches k, we
have found a square of size k. This solution requires one pass of the array for each of O(logn) stages of
the binary search, so it also runs in O(nlogn), but with a better constant factor.

Merging Ranges

We process the buildings in decreasing height, and keep a running store of the buildings higher than our
current building in a set. In order to speed up computation, we ensure that consecutive blocks of buildings
are combined together to form ranges. For example, instead of storing the set {1,2,3,5,7,8,9,10}, we
instead store the set {(1,3),(5,5),(7,9)}

For each building we process, we search through our set for the range immediately to the left and to the
right, then merge the current building into the ranges if it is adjacent to any of them. Afterwards, the
largest artwork that can be placed into this range is limited by the length of the range, as well as the
minimum height of the range, which is given by the height of the current building.

The total complexity of this algorithm is O(nlogn), which is sufficient when n < 100, 000.

Largest Square Under Histogram

Observe that this problem is a variation on Largest Rectangle Under Histogram from Lecture 2. As
such, we can apply the same solution. For each building, we find the widest rectangle whose height is
contrained by this building - first scan left to right to find the left endpoints of all such rectangles, then
right to left for the right endpoints. Then rather than considering the area of each candidate rectangle,
we take the smaller of its two dimensions, and report the largest square formed in this way.

A small modification allows us to solve the problem in one pass. We process the bars of the histogram
as in the lecture, keeping a map of “important” columns indexed by height. However, we consider each
bar’s candidate rectangle when it is removed from the map. A bar is removed when a shorter bar to its
right is found, at which point the candidate rectangle has width constrained on the left by the second
tallest bar in the map impCols and on the right by the new bar. Again, the corresponding square has
side length equal to the smaller of the two dimensions of this rectangle.

Implementation Notes

For a solution viewing the problem as the largest square under a histogram, we must ensure that all bars
are eventually removed from the map. This is enabled by adding a dummy bar at the end, shorter than
all buildings.

Reference Solutions

// Solution by Raveen, using binary search and range tree
#include <iostream>
using namespace std;



const int MAX_N = 100100;
int n;

int tree[300000];

void update(int a, int v, int i = 1, int start = 0, int end = MAX_N) {
if (end - start == 1) {
treel[i] = v;
return;
}

int mid = (start + end) / 2;
if (a < mid)
update(a, v, i * 2, start, mid);

else
update(a, v, i * 2 + 1, mid, end);
treel[i]l = min(treelix*2],treel[i*2+1]);

}

int query(int a, int b, int i = 1, int start = 0, int end = MAX_N) {
if (start == a && end == b)
return treelil;

int mid = (start + end) / 2;
int answer = MAX_N;
if (a < mid)
answer = min(answer,query(a, min(b, mid), i * 2, start, mid));
if (b > mid)
answer = min(answer,query(max(a, mid), b, i * 2 + 1, mid, end));

return answer;

int binarysearch(void) {
int lo = 1;
int hi = n;
int bestSoFar = -1;
while (lo <= hi) {
int mid = (lo + hi) / 2;
bool ok = false;

for (int i = 0; i + mid <= n; i++)
if (query(i,i+mid) >= mid) {
ok = true;
break;
}
if (ok) {
bestSoFar = mid;
lo = mid + 1;
} else

hi = mid - 1;
}

return bestSoFar;

int main() {
cin >> n;
for (int i = 0; i < mn; i++) {
int x;
cin >> Xx;
update (i, x);
}

cout << binarysearch() << 5

}

// Solution by Raveen, using binary search and sparse table
#include <iostream>
using namespace std;

const int MAXN = 100100, LOGN = 18;
int n, sparseTable[LOGN][MAXN], log2s[MAXN];

void precomp() {
for (int 1 = 1; 1 < LOGN; 1++) {
int prevp2 = 1 << (1-1);



for (int i = 0; i < MAXN; i++) {
int intEnd = i + prevp2;
if (intEnd < MAXN)
sparseTable[1][i] = min(sparseTable[1-1]1[i],
sparseTable[1-1][intEnd]);
else
sparseTable[1][i] = sparseTable[1-1]1[il;
}
}
for (int i = 2; i < MAXN; i++) log2s[i]l = log2s[i/2] + 1;
}

int query (int 1, int r) {
int 12 = log2sl[r-11;
return min(sparseTable[12]1[1], sparseTable[12][r-(1<<12)1);

}
int binarysearch(void) {
int lo = 1;
int hi = n;
int bestSoFar = -1;
while (lo <= hi) {
int mid = (lo + hi) / 2;
bool ok = false;
for (int i = 0; i + mid <= n; i++)
if (query(i,i+mid) >= mid) {
ok = true;
break;
}
if (ok) {
bestSoFar = mid;
lo = mid + 1;
} else
hi = mid - 1;
}
return bestSoFar;

int main() {
for (int i = 0; i < MAXN; i++)
sparseTable[0][i] = MAXN;
cin >> n;

for (int i = 0; i < n; i++)

cin >> sparseTable[0][i];
precomp () ;
cout << binarysearch() << ;

// Solution by Angus, wusing binary search and counter
#include <cstdio>

#include <algorithm>

#define MAXN 100010

using namespace std;

int n, h[MAXN];

bool canDo(int k) {
int longest = 0, curr = 0;
for (int i = 0; i < n; i++) {
if (h[i]l >= k) {
curr++;
if (curr == k)
return true
} else
curr = 0;

B

}

return false;

int main() {
scanf ( , &n);
for (int i = 0; i < n; 1i++)
scanf ( , &h[il);



int s = 0;

int e = n;
while (s !'= e) {
int mid = (s+e+1)/2;
if (canDo(mid))
s = mid;
else
e = mid-1;
}

printf("%d\n", s);

}

// Solution by Kevin
#include <algorithm>
<cstdio>
<iostream>

<set>

<utility>

using namespace std;
typedef pair<int, int> pii;

#include
#include
#include
#include

int main () {

int n;

cin >> n;

pii hlnl; // {height, pos}
for (int i = 0; i < n; i++) {

cin >> h[i].first;

h[i].second = 1ij;
}
// sort in terms of decreasing height,
sort(h, h+n, greater<pii>());

and compute maxz squares

// set stores ranges of currently considered skylines

int ans = 0;
set<pii> s;
for (int i = 0;
int 1 = h[i].second;
int r = h[i].second;
auto it = s.upper_bound ({1, r});

i < n; i++) {

if (!'s.empty()) {
if (it
// merge with range to the left
1 = min(l, prev(it)->first);
s.erase(prev(it));

}

if (it '= s.end() && it->first ==

// merge with range to the right
max(r, it->second);
s.erase(it);

r =

}

// insert and find mazimum square under this

s.insert ({1, r});
ans = max(ans, min(r-1+1,
}

printf("%d\n", ans);

// Solution by Raveen,
#include <iostream>
#include <map>

using namespace std;

using

const int N =
int h[N];

100100;

int main (void) {
int n;
cin >> n;

!= s.begin() && prev(it)->second ==

largest rectangle wunder

1-1) {

r+1) {

range

h[il.first));

histogram



for (int i = 0; i < mn; i++)
cin >> h[il;
h[n] = -1;

map<int ,int> impCols;
impCols[-2] = -1;
int ans = 0;

for (int i = 0; i <= n; i++) {

auto it = prev(impCols.lower_bound(h[il));

while (impCols.rbegin()->first >= h[i]) {
auto last = impCols.rbegin();
ans = max(ans,min(last->first,i-1-next(last)->second));
impCols.erase(last->first);

}

impCols[h[il] = i}

cout << ans << ;

10



C1. Superstore (subtask)

Algorithm
If there is only one checkout lane, then n customers can be arranged in n! many ways.

If there are two checkout lanes, we again line up the n customers, but we split the line at a position
between two customers. Therefore there are n — 1 choices of where to split the line. However, this
double-counts the arrangements (e.g. 1 4 | 3 2 5and 3 2 5 | 1 4), so we have to divide by 2 for a

final answer of
(n—1) xn!

2

Implementation Notes

The modulus used throughout this problem is p = 10 + 7, which is less than 23!. Therefore we can

multiply any two numbers up to this size without overflowing long long, then mod the result. It is
best to write helper functions to handle operations like addition and multiplication (and if necessary
subtraction) modulo p.

In the case k = 2, we have to divide the answer by two. However, dividing modulo p is particularly
complicated. It may be the case that (n — 1) x n! mod p is odd, so dividing by 2 and rounding down
would give a WRONG-ANSWER. There are two correct ways to handle this:

1. Instead of dividing by 2, multiply by the inverse of 2 modulo p. The multiplicative inverse is a
number 0 < ¢ < p such that 2¢ =1 mod p; it is easy to confirm that g = p—;l =5 x 108 4 4.

2. Alternatively, handle the division in the computation of n!/2. This is the approach favoured in the
reference solution, as requires less mathematical knowledge.

Reference Solution

// Solution by Raveen
#include <iostream>
using namespace std;
typedef long long 11;

const int N = 1010;
const 11 MOD = 1000%1000%1000+7;
11 fac[N], halffac[N];

inline 11 modmult (11 a, 11 b) { return (a * b) % MOD; }
int main (void) {

int n, k;
cin >> n >> k;

fac[1] = 1;
for (int i = 2; i <= n; 1i++)
facl[i] = modmult(i,facli-1]1);

halffac[2]
for (int i

= 1;
= 3; i <= n; i++)
halffacl[i] =

modmult (i,halffacl[i-1]);

if (k == 1)
cout << facl[n] << ;
else if (k == 2)

cout << modmult(n-1,halffacl[n]) << ;

11



C2. Superstore (full)

We use dynamic programming. The natural choice of subproblem is f(z, j), the number of ways (modulo
p) to arrange ¢ shoppers in j non-empty lines. How do we arrive at the recurrence?

Let’s consider the placement of the ith shopper.

e They may be at the front of a lane with other shoppers. The other shoppers can be arranged in
f(i —1,4) ways, and then shopper i is placed at the front of any of the j lanes.

e They may be behind another shopper. The other shoppers can be arranged in f(i — 1, j) ways, and
then shopper i is placed immediately behind any of the i — 1 other shoppers.

e They may be in a line of their own. The other shoppers can be arranged in f(i — 1,5 — 1) ways.

Therefore the recurrence is

The base case is f(0,0) = 1, as there is only way to assign zero shoppers to zero lanesE|

Using a bottom-up implementation, each of O(nk) subproblems is solved in constant time, for a total of
O(nk) which is sufficient for n, k& < 1,000.

The answers to this problem are exactly the Lah numbers L(n, k).

Implementation Notes

As mentioned for the subtask, take particular care when working modulo p = 10° + 7, as we need to
avoid overflow. It is prudent to write helper functions for each arithmetic operation you use.

Reference Solution

// Solution by Kevin
#include <iostream>

using namespace std;
typedef long long 11;

#define MAXN 1005
#define MOD 11(1e9+7)

11 dp[MAXN][MAXN1; // dp[i][j] = number of ways to put the first % people into j lanes

inline 11 modadd(11l a, 11 b) { return (a + b) % MOD; }
inline 11 modmult(ll a, 11 b) { return (a * b) % MOD; }

int main () {
int n, k;
cin >> n >> k;

dp[0][0] = 1;

for (int i = 1; i <= n; 1i++)
for (int j = 1; j <= k; j++) {
// number of ways of placing person ¢ at the front of an existing line
dpl[il[j]l = modadd(dpl[il[jl, modmult(dpli-11[j1,j));

// number of ways of placing person © behind someone
dpl[il[j]l = modadd(dpl[il[jl, modmult(dpl[i-11[j]l ,i-1));

// number of ways to put personm i in a new line
dpl[il[j]l = modadd(dpl[il[jl,dpl[i-11[j-11);
}

cout << dpl[n][k] << endl;

You could instead use f(1,1) = 1.

12


https://en.wikipedia.org/wiki/Lah_number

