Contest 1 Editorial

COMP4128 21T3

19th September 2021

A. Balance

Algorithm
We use brute force.

Read the input into a 2D array. We can calculate the maximum and minimum (and hence the imbalance)
of each of the m rows in O(n) time each, and each of the n columns in O(m) time each. Then the greatest
imbalance among the rows is found in O(m) time, and the greatest imbalance among columns in O(n)
time. The answer is determined by comparing these two quantities.

This algorithm runs in O(mn) time, which is sufficient for m,n < 1, 000.

Implementation Notes

A small speedup is achieved by making one pass through the grids to find maxima and minima in each
row and column, as in the reference solution. Looping through a 2D array by columns is a constant
factor slower than looping by rows because the entries of a row are stored contiguously in memory. This
is described in the tips page of the course website, under the heading ‘Nested loops’.

Since each number in the grid has absolute value at most 10%, the difference between any two numbers
is at most 2 x 10°. This is less than 23, so none of the values calculated in our algorithm overflow a
32-bit signed integer. Therefore long long variables are not required; int is sufficient.

Reference Solution

// Solution by Kevin
#include <climits>
#include <iostream>
#include <cstdio>
using namespace std;

const int N = 1005;
int al[NI[N];

int row_mins[N];
int row_maxsl[N];
int col_mins[N];
int col_maxs[N];

int main () {

// scan in grid

int m, n;

cin >> m >> n;

for (int i = 0; i < m; i++) {
for (int j = 0; j < mn; j++) {

cin >> alilljl;

}

}

// initialise arrays

for (int i = 0; i < m; i++) {
row_mins[i] INT_MAX;
row_maxs[il] INT_MIN;

http://www.cse.unsw.edu.au/~cs4128/21t3/tips/

for (int i = 0; i < n; i++) {
col_mins[i] INT_MAX;
col_maxs[i]l] = INT_MIN;

}
// work out mins and mazs of each row and column
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
row_mins[i] = min(row_mins([i]l, alil[j1);
row_maxs[i] = max(row_maxs([il, alil[jl1);
col_mins[j]l = min(col_mins([jl, alil[jl);
col_maxs[jl = max(col_maxs[jl, alill[jl);
}
}

// work out imbalances on the rows and columns

int row_imbalance = INT_MIN;
int col_imbalance = INT_MIN;

for (int i = 0; i < m; i++) {

row_imbalance = max(row_imbalance, row_maxs/[il]
}
for (int i = 0; i < n; i++) {

col_imbalance = max(col_imbalance, col_maxsl[il
}

// get final output
if (row_imbalance == col_imbalance) printf(
else printf()

H

);

row_mins[i]);

col_mins[il]);

B. Matchup

Algorithm
We use the greedy method.
Claim: Martha can pair her weakest player with the weakest player of the opposing team.

Proof: Suppose there is an arrangement in which Martha’s team wins all games, but her weakest player
p1 plays an opponent pj while the weakest opponent p) is assigned to Martha’s player po. Then we can
swap p1 and po to obtain an arrangement in which Martha’s team still wins all games, but the weakest
players face each other.

It is therefore sufficient to test whether Martha’s weakest player can beat the opponent’s weakest player,
whether Martha’s second weakest player can beat the opponent’s second weakest player, and so on. We
can sort both arrays, and make one simultaneous pass of both sorted arrays, reporting “NO” if Martha’s
team loses or draws any game or “YES” otherwise.

Sorting takes O(nlogn) and the rest of the algorithm takes O(n), so the algorithm runs in O(nlogn)
time, which is sufficient for n < 100, 000.

Implementation Notes

The C++ Standard Template Library provides a sort function in the <algorithm> header, which can
be used with the default comparator < or a custom comparator. No particular sorting algorithm is
required by the language standard, but the function is guaranteed to have worst case time complexity
of O(nlogn). sort is not stable; if stable sorting is required, use the stable_sort function (also in
<algorithm>.

Again, all values used in this problem fit in an int variable without overflow.

Some students instead created two self-balancing binary search trees containing the strengths of each
team’s players, and iterated through both simultaneously. A correct implementation of this approach
requires multiset from the <set> header. If one were to use set instead, duplicate entries would only
be inserted once, leading to a WRONG-ANSWER or RUN-ERROR.

Reference Solution

// Solution by Raveen
#include <algorithm>
#include <iostream>
using namespace std;

const int N = 100100;
int alN];
int b[N];

int main (void) {

int n;

cin >> n;

for (int i = 0; i < n; i++)
cin >> alil;

for (int i = 0; i < n; i++)

cin >> bl[il;

sort(a,a+n);
sort(b,b+n) ;

for (int i = 0; i < mn; i++)
if (alil <= bl[il)
cout << H
return O;
}
cout << ;

C. Control

Algorithm

We use brute force.

Each square is either uncontrolled, occupied by a piece, or attacked (i.e. a piece can move directly to
this square). First, read the input into a 2D array to determine the occupied squares and the type of
each piece. Next, we determine the squares attacked by each piece.

e For rooks, we step one square at a time in each of the four allowed directions (up, down, left, right),
marking each square as attacked until we reach an occupied square or go off the edge of the board.

e For bishops, we step one square at a time in each of the four allowed directions (up left, up right,
down left, down right) and mark squares as above.

e For queens, we step one square at a time in each of the eight allowed directions (up, down, left,
right, up left, up right, down left, down right) and mark squares as above.

e For knights, we try all eight squares to which the knight can move, ignoring any which are already
occupied or off the edge of the board.

Finally, we count all squares which are either occupied or attacked.

There are up to O(n?) pieces. For each piece, we step through O(n) squares, each taking constant time.
Therefore the algorithm runs in O(n?) time, which is sufficient for n < 100.

Implementation Notes

It is necessary to read the entire input before determining which squares are attacked, as the scope of a
piece may be blocked by another piece.

It may be convenient to write a helper function which takes a row and column index and determines
whether the referenced square is eligible to be attacked (i.e. not occupied and not off the edge of the
board).

One reference solution uses a pair of constant arrays to facilitate easy lookup of the vertical and horizontal
steps required.

Be very careful when writing two very similar blocks of code. It is tempting to write one block, copy and
paste, and then edit the second block. However this is a very common source of bugs, which can end up
costing you a lot of time during a contest. If you can spare the keyboard time, we generally recommend
typing the second block out in full.

Reference Solutions

// Solution by Angus

#include <cstdio>

using namespace std;

#define MAXN 110

int n, k, occupied[MAXN][MAXN], controlled[MAXN][MAXN], x[MAXN*MAXN], y[MAXN*xMAXN];
char type[MAXN*MAXN];

void mark(int i, int j) {
if (i >= 1 && j >= 1 &% i <= n && j <= n) controlled[i]l[j]l] = true;
}

void process_knight(int i, int j) {

mark(i, j);

mark(i-2, j-1);
mark(i+2, j-1);
mark(i-2, j+1);
mark(i+2, j+1);
mark(i-1, j-2);
mark(i+l, j-2);
mark(i-1, j+2);
mark (i+l, j+2);

void process_rook(int i, int j) {

mark(i, j);

for (int x = i+1; x <= n; x++) {
if (occupied[x][j]) break;
mark(x, j);

}

for (int x = i-1; x >= 1; x--) {
if (occupied[x][jl) break;
mark(x, j);

}

for (int y = j+1; y <= n; y++) {
if (occupied[i]l[yl) break;
mark(i, y);

}

for (int y = j-1; y >= 1; y--) {
if (occupied[il[y]) break;

mark(i, y);
}
}
void process_bishop(int i, int j) {
mark(i, j);
for (int x = i+l, y = j+1; x <= n && y <= n; x++, y++) {

if (occupied[x][yl) break;
mark(x, y);

}

for (int x = i-1, y = j+1; x >= 1 && y <= n; x--, y++) {
if (occupied[x][yl) break;
mark(x, y);

}

for (int x = i+l, y = j-1; x <= n && y >= 1; x++, y--) {
if (occupied[x][y]) break;
mark(x, y);

}

for (int x = i-1, y = j-1; x >= 1 && y >= 1; x--, y--) {
if (occupied[x][y]) break;
mark(x, y);

}

void process_queen(int i, int j) {
process_rook(i, j);
process_bishop(i, j);

}
int main() {
scanf (, &n, &k);
for (int i = 0; i < k; i++) {
scanf (, &typelil, &x[il, &y[il);
occupied[x[i]][y[il] = true;
}
for (int i = 0; i < k; i++) {
if (typeli] ==) process_queen(x[il, y[il);
else if (typeli] ==) process_rook(x[il, y[il);
else if (typeli] ==) process_bishop(x[il, y[il);
else if (typeli] ==) process_knight(x[il, y[il);
}
int ans = 0

for (int i 1; i <= n; i++) {

for (int j = 1; j <= n; j++) {
ans += controlled[il[jl;
}

}

printf(, ans);

// Solution by Raveen
#include <iostream>
#include <vector>
using namespace std;

int n, k;

vector<int> qgx, qy, rx, ry, bx, by, nx, ny;

int nq, nr, nb, nn;

const int N = 110;

int ctrl[N][N]; // O is free, 1 4is occupied, 2 is attacked

// indices 0-3 are rook moves U D L R

// indices 4-7 are bishop moves UL UR DL DR

// indices 8-15 are knight moves

// o 1 2 3 4 &6 6 7 8 9 10 11 12 13 14 15

const int dx[] = { 0, 0,-1, 1,-1, 1,-1, 1,-2,-1, 1, 2, 2, 1,-1,-2};
1 1 1

{
const int dyl[] {-1, 1, 0, 0,-1,-1, 1, , , 2, 2, 1,-1,-2,-2,-1};

bool attackable (int x, int y) {
return x >= 1 &% x <= n && y >= 1 && y <= n && ctrllx]ly] != 1;
}

int main (void) {
cin >> n >> k;
for (int i = 0; i < k; i++) {
char ch;

int x, y;

cin >> ch >> x >> y;

ctrll[x]ly]l = 1;

if (ch == Q") {
gx.push_back(x);
qy . push_back(y);
ng++;

} else if (ch == ’R’) {
rx.push_back(x);
ry.push_back(y);
nr++;

} else if (ch == ’B’) {
bx.push_back(x);
by.push_back(y);
nb++;

} else if (ch == ’N’) {
nx.push_back(x);
ny.push_back(y);
nn++;

}

}

for (int i = 0; i < ng; i++) {
int x = gqx[i]l, y = qyl[il;
for (int j = 0; j < 8; j++) {
int _x = x, _y = y;
while (true) {
_x += dx[jl;
_y += dy[jl;
if (lattackable(_x,_y))

break;
ctril_x]1[_y]l = 2;
}
}
}
for (int i = 0; i < nr; i++) {
int x = rx[il, y = rylil;

for (int j 0; j < 4; j++) {
int _x = x, _y = y;
while (true) {
_x += dx[j1;
_y += dyl[jl;
if (lattackable(_x,_y))

break;
ctrlil_x1[_y]l = 2;
}
}
}
for (int i = 0; i < nb; i++) {

int x = bx[il, y = bylil;

for (int j = 4; j < 8; j++) {
int _x = x, _y = y;
while (true) {
_x += dx[jl;
_y += dyl[jl;
if (lattackable(_x,_y))
break;

ctrlil_x]1[_y]l = 2;

}
}
}
for (int i = 0; i < nn; i++) {
int x = nx[il, y = ay[il;
for (int j = 8; j < 16; j++) {
int _x = x + dx[j];
int _y = y + dy[jl;
if (lattackable(_x,_y))
continue;
ctrl[_x1[_yl = 2;
}
}
int ans = 0

for (int i
for (int j
if (ctrl
ans++;

cout << ams <<

[i]

D. Election

Algorithm

We use brute force.
Read the input, storing each candidate’s preference list as one row in a 2D array.
For each candidate 7, we maintain:
e v;, the number of votes currently belonging to candidate i, and
e ¢;, a boolean which is true if candidate 7 has been eliminated and false otherwise.
For each voter j, we maintain:
e ¢;, the candidate to which voter j is currently assigned, and
e p;, which preference of voter j is candidate c;.
Initially, we assign each voter to their first preference candidate and initialise the above variables accord-
ingly.
In each round, we:
e test whether any candidate has a majority, by checking each value v;;
e if not, find the candidate with the fewest votes, by checking each value v; and breaking ties by i;
e marking that candidate as eliminated;

e for each voter j currently assigned to that candidate, iterate forward from position p; in their
preference list until a non-eliminated candidate is reached, and update c; as well as the vote counts
V;.

As one candidate is eliminated each round, the algorithm is guaranteed to terminate within k& rounds.
In each round:

e checking for a majority takes O(k) time;

e identifying a candidate for elimination takes O(k) time;

e identifying the eliminated candidates’ voters takes O(n) time;

e reassigning each of these voters appears to take O(k) time (as we may have to iterate through the
entire preference list), but in fact it is amortized O(1) because each voter is reassigned O(k) times
across all rounds.

Therefore the algorithm runs in O(nk) time, which is sufficient for n < 10,000 and &k < 100.

The algorithm could be optimised further by keeping an array of each candidate’s voters, rather than
only the count v;. This allows us to skip the O(n) step of identifying which voters are assigned to the
newly eliminated candidate. This improves the constant factor but not the asymptotics. While we only
reassign at most n/k voters in the first round, n/(k — 1) voters in the second round, and so on in the
form of a harmonic series, each reassignment is no longer amortised constant time. This can be seen in
the following test case devised by Kevin.

6 10

10987654321
10987654321
10987654321
98765432110
98765432110
98765432110

In the first eight rounds, candidates 1 to 8 are eliminated. In the penultimate round however, candidate
9 is eliminated, and each of their n/2 voters has to be reassigned in O(k) time. In this way, the worst
case performance of the algorithm is still O(nk).

Implementation Notes

Some students got WRONG-ANSWER due to incorrect handling of the tiebreaker condition for elimination.
Note that there is no need for a tiebreaker condition when checking for a majority, since it is impossible
for two different candidates to have a majority simultaneously.

Some students encountered errors in checking for a winner. Recall that in C/C++, a/b finds the quotient
when a is divided by b, i.e. it rounds down.

Most solutions to this problem (including the reference solutions) used nested array lookups, which could
be mistyped or otherwise buggy. The simplest way to identify and correct such bugs is to make additional
test cases and print out lots of well-formatted debugging output (such as the contents of arrays v, e, ¢
and p in each round), then carefully check that your program is behaving as intended. The sample cases
are given only to confirm your understanding of the problem, so they are often insufficient for debugging
purposes.

Reference Solution

// Solution by Raveen
#include <iostream>
using namespace std;

00100;

const int N = 1
= 110;

const int K
int al[N][K];

int v[K]; // how many woters does this candidate have
bool el[Kl; // has this candidate been eliminated

int c[N]; // which candidate has this woter

int p[N]; // which preference is this wvoter up to

int main (void) {
int n, k;
cin >> n >> k;

int x;
for (int i = 0; i < n; i++)
for (int j = 0; j < k; j++) {
cin >> x;
alil[jl = x-1;
}
for (int i = 0; i < n; i++)

vialil [0]]++;

for (int i

= 0; i < n; i++)
cl[i] =

ali][0];

while (true) {
for (int j = 0; j < k; j++)
if (v[jl*2 > n) {
cout << j+1 << H
return O;

}

int lo = n, lo_id = k;
for (int j = 0; j < k; j++)
if (leljl && vI[jl < 1o) {
lo = v[jl;
lo_id = j;
}

e[lo_id]
vllo_id]

true;
0;

0; i < n; i++)

for (int i ;
= lo_id) {

if (clil
do {
plil++;
} while (elalillp[illl);
clil = alillplill;

}

vic[il]l++;

10

E. Illuminate

Algorithm
We use the greedy method.

If no light has ¢; < L, we are unable to cover the first house and therefore there is no solution. Suppose
instead that such a light exists.

Claim 1: The first light we use should have largest r; among all lights with ¢; < L.

Proof: Suppose a solution can be formed without using such a light. This solution must cover house L,
using some light corresponding to an interval [¢;,r;] where r; < r;. Swapping this light for one covering
[¢;,7;] constructs a solution which has the same number of lights and satisfies the above claim.

Claim 2: Suppose light ¢ with interval [¢;,r;] is as per the previous claim. Then no other light j with
r; < r; should be used.

Proof: A solution containing light ¢ and light j is still valid if we omit light j, and now uses strictly fewer
lights.

Once we select one light satisfying Claim 1, we can discard all other lights with ¢; < L. It remains to
cover [r; + 1, R] by repeating this process.

To ensure that we consider only those lights with ¢; < L, we can sort the lights by start point in O(nlogn)
time. As we scan through the list of lights, each light is handled only once and in constant time, so the
main part of the algorithm runs in O(n). Therefore the algorithm runs in O(nlogn) overall, which is
sufficient for n = 100, 000.

Note that sorting instead by end point doesn’t work; we don’t know when to stop looking for the first
light of the answer and move on to the next, so we may have to scan the whole list for each light
comprising the answer.

Implementation Notes

The C++ STL sort uses the default comparator < unless otherwise specified. When comparing two
pairsa = (a.first, a.second) and b = (b.first, b.second), a < b is true if:

e a.first < b.first or
e a.first = b.first and a.second < b.second.

So if we store the lights in an array of pairs, with first entry ¢; and second entry r;, the default sort will be
ascending by start point with ties broken in ascending order of end point, which is fine in this problem.
However, other sorted orders can also be obtained without needing to write a custom comparator, if one
is willing to use tricks.

e To sort by endpoint, construct the pairs in the other order, i.e. (r,£).

e To sort by descending order, we can sort the array and then use reverse. But what about sorting
by ascending order of ¢; with ties broken in descending order of r;? Here we can construct the
pairs as (¢;, —r;), sort, and then negate the second entry of each pair to restore positive values.
It is easy to make mistakes doing this, so use at your own risk and consider including debugging
output to ensure that the behaviour is as intended.

There are two slightly different approaches to scanning the list. The first reference solution below uses
a for loop, which treats each new light that extends the currently covered range as a temporary part
of the solution and overwrites it if a better choice is encountered later. The second reference solution is
more explicit in this construction, using a while loop in which each iteration corresponds to the selection
of one new light.

Optionally, one can filter out any lights which do not overlap with the range [L, R].

Values up to 10'® can be stored in a long long.

11

Reference Solutions

// Solution by Paula
#include <algorithm>
#include <iostream>
#include <utility>
using namespace std;

const int N = 100100;
pair<long long, long long> lights[N];

int main(void) {

int _n;

long long m, L, R;

cin >> _n >> m >> L >> R;

int n = 0;

for (int i = 0; i < _n; i++) {
long long 1, r;
cin >> 1 >> r;
if (r >= L || 1 <= R)

lights[n++] = make_pair(l,r);
}

sort(lights, lights + n);

int ans = 1;

bool impossible = false;
long long currEnd = L;
long long maxNext = 0;

for (int i = 0; i < n; i++) {
long long cL lights[i].first;
long long cR lights[i].second;

if (cL > currEnd) {
if (cL > maxNext + 1) {
impossible = true;
break;
} else {
ans++;
currEnd = maxNext + 1;
}
}
maxNext = max(maxNext, cR);
if (maxNext >= R)
break;
}
if (impossible || maxNext < R)
cout << "-1\n";
else
cout << amns << ’\n’;

}

// Solution by Raveen
#include <algorithm>
#include <iostream>
#include <utility>
using namespace std;

const int N = 100100;
pair<long long, long long> lights[N];

int main (void) {
int n;
long long m, L, R;
cin > n > m > L >> R;

for (int i = 0; i < n; i++) {
long long 1, r;
cin >> 1 >> r;
lights[i].first = 1;
lights[i].second = r;

12

sort(lights, lights + n);

int upto = O0;

long long covered = L-1;
int ans = 0;
while (covered < R) {
if (upto == n) {
cout << ;
return O0;
}
long long best = covered;

while (upto < n && lights[uptol.first <= covered + 1)
best = max(best,lights[upto++].second);
}
if (best == covered) {
cout << ;
return O;
} else {
covered = best;
ans++;
}
}

cout << amns << H

13

