
Network Flow
(Graph

Algorithms II)

Flow Networks

Maximum
Flow

Interlude:
Representing
Graphs by Edge
Lists

Flow
Algorithms

Ford-Fulkerson

Edmonds-Karp

Dinics

Faster
Algorithms

Bipartite
Matching

Min Cut

Related
Problems

Example
Problems

Network Flow (Graph Algorithms II)
COMP4128 Programming Challenges

School of Computer Science and Engineering
UNSW Australia



Network Flow
(Graph

Algorithms II)

Flow Networks

Maximum
Flow

Interlude:
Representing
Graphs by Edge
Lists

Flow
Algorithms

Ford-Fulkerson

Edmonds-Karp

Dinics

Faster
Algorithms

Bipartite
Matching

Min Cut

Related
Problems

Example
Problems

Table of Contents 2

1 Flow Networks

2 Maximum Flow
Interlude: Representing Graphs by Edge Lists

3 Flow Algorithms
Ford-Fulkerson
Edmonds-Karp
Dinics
Faster Algorithms

4 Bipartite Matching

5 Min Cut

6 Related Problems

7 Example Problems



Network Flow
(Graph

Algorithms II)

Flow Networks

Maximum
Flow

Interlude:
Representing
Graphs by Edge
Lists

Flow
Algorithms

Ford-Fulkerson

Edmonds-Karp

Dinics

Faster
Algorithms

Bipartite
Matching

Min Cut

Related
Problems

Example
Problems

Flow networks 3

A flow network, or a flow graph, is a directed graph where
each edge has a capacity that flow can be pushed through.

There are (usually) two distinguished vertices, called the
source (s) and the sink (t) that the flow comes from and
the flow goes to.

Intuitively, flow graphs can be likened to networks of
pipes, each with a limit on the volume of water that can
flow through it per unit of time.

The source has an infinite supply of water, the sink can
drain an infinite amount of water. But for every other
node, water in = water out. For every edge, water in ≤
capacity.

Formally defined as a system of inequalities, involving
theoretical terms like skew symmetry and flow
conservation. Not necessary for our purposes.



Network Flow
(Graph

Algorithms II)

Flow Networks

Maximum
Flow

Interlude:
Representing
Graphs by Edge
Lists

Flow
Algorithms

Ford-Fulkerson

Edmonds-Karp

Dinics

Faster
Algorithms

Bipartite
Matching

Min Cut

Related
Problems

Example
Problems

Table of Contents 4

1 Flow Networks

2 Maximum Flow
Interlude: Representing Graphs by Edge Lists

3 Flow Algorithms
Ford-Fulkerson
Edmonds-Karp
Dinics
Faster Algorithms

4 Bipartite Matching

5 Min Cut

6 Related Problems

7 Example Problems



Network Flow
(Graph

Algorithms II)

Flow Networks

Maximum
Flow

Interlude:
Representing
Graphs by Edge
Lists

Flow
Algorithms

Ford-Fulkerson

Edmonds-Karp

Dinics

Faster
Algorithms

Bipartite
Matching

Min Cut

Related
Problems

Example
Problems

Maximum Flow 5

The maximum flow problem is to find, given a flow graph
with its edge capacities, what the maximum flow from the
source to the sink is.

We restrict ourselves to integer capacities. This subclass is
already interesting enough. There are subtle traps with
real capacities. In particular, DONT use Ford-Fulkerson
with real flows.

The integrality theorem states that if all the edges in the
graph have integer capacities, then there exists a
maximum flow where the flow through every edge is an
integer.

This doesn’t mean that you can’t find a maximum flow
where the flow in some edges isn’t integer, only that you
won’t need to.
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Maximum Flow 6
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Minimum cut problem 7

The dual of max flow.

Given a graph with a source, a sink and edge weights, find
the set of edges with the smallest sum of weights that
needs to be removed to disconnect the source from the
sink.

In a directed graph, define a s-t cut to be a partition of
the vertices into two sets, one containing the source s, the
other containing the sink t. The capacity of such a cut is
defined to be the sum of capacities of edges going from
the source partition to the sink partition. The min cut is
the minimum capacity of all s-t cuts.
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Max-flow/min-cut theorem 8

It turns out that these two problems are actually
equivalent!

The max-flow/min-cut theorem states that the value of
the minimum cut, if we set edge weights to be capacities
in a flow graph, is the same as the value of the maximum
flow.

We restrict ourselves to integer weights for same reason as
with flow.



Network Flow
(Graph

Algorithms II)

Flow Networks

Maximum
Flow

Interlude:
Representing
Graphs by Edge
Lists

Flow
Algorithms

Ford-Fulkerson

Edmonds-Karp

Dinics

Faster
Algorithms

Bipartite
Matching

Min Cut

Related
Problems

Example
Problems

Residual graphs 9

To see why this is so, we examine a modification of the
original flow graph called the residual graph.

The residual graph of a flow graph has all the same edges
as the original graph, as well as a new edge going in the
other direction for each original edge, with capacity zero.

Flowing along our original edges is like adding water to a
pipe. Flowing along a residual edge does the opposite, it
removes water from the pipe.
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Residual graphs 10

We define an augmenting path as a path from s to t as a
path that travels only on edges with capacity strictly
greater than current flow.

Clearly, if we can find an augmenting path in our graph,
we can increase the total flow of the graph.

If we keep finding augmenting paths, and decreasing the
capacities of the edges they pass through, we can keep
increasing the flow in our graph.
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Residual graphs 11

Whenever we flow along an edge, we should also do the
opposite on the residual edge. So if we increase flow by 1,
we should either decrease flow by 1 on the residual or,
equivalently, increase capacity by 1. In this way, the sum
of slacks of both edges remains constant.

Intuitively, this is a mechanism allowing us to modify our
already chosen augmenting paths. Since we keep the sum
of slacks of both edges constant, flowing using the residual
edge actually removes flow from the original edge. So in
our augmenting path, it represents replacing the flow in
the original edge with a new source of flow.
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Max-flow/min-cut theorem 12

It can be seen that if we can’t find an augmenting path in
our flow graph, then we have a maximum flow.

Furthermore, this implies that in our residual graph, there
exists no path from s to t, so we have discovered a cut.

This cut must be a minimum cut, because if there were
another smaller cut, it would be impossible to push as
much flow as we have already pushed.
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Graph Representations: Advanced Edge Lists 13

Flow is one of the few times we prefer not to use
adjacency lists. It is a bit of a nuisance to get the residual
edge of an edge with adjacency lists.

We will instead use a single edge list. It’s a bit easier to
refer to specific edges in an edge list.

However, we still need to find all edges adjacent to a
vertex in O(num edges). There is an elegant but not
entirely straightforward solution to this, effectively
involving multiple linked lists interleaved in one array.
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Graph Representations: Advanced Edge Lists 14

Instead of O(V ) lists, we will put all our edges into a
single list. An edge and its residual will always be in
adjacent positions, in indices 2i and 2i +1. So the edge at
index i has its residual at index iˆ1.

In addition, we add V linked list structures over the edge
list, one for each source vertex. Each edge will have a
pointer to the first edge before it in the list that has the
same source. For each vertex v , we store the last edge in
the list with v as the source. Traversing this linked list
allows us to enumerate all edges starting at v in optimal
time.
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Graph Representations: Advanced Edge Lists 15

// the index of the first outgoing edge for each vertex , initialised to -1

int start[V];

fill(start , start + V, -1);

// if e is an outgoing edge from u, succ[e] is another one , or -1

// cap[e] is the capacity/weight of the e

// to[e] is the destination vertex of e

int succ[E], cap[E], to[E];

int edge_counter = 0;

void add_edge(int u, int v, int c) {

// set the properties of the new edge

cap[edge_counter] = c, to[ edge_counter] = v;

// insert this edge at the start of u’s linked list of edges

succ[edge_counter] = start[u];

start[u] = edge_counter;

++ edge_counter;

}

for (/* edge u -> v with capacity c in the original graph */) {

add_edge(u, v, c); // original

add_edge(v, u, 0); // residual edge

}

// edges are in pairs so we can easily go between residuals & originals

int inv(int e) { return e ^ 1; }

// easily iterate through all of u’s outgoing edges (~( -1) == 0)

for (int e = start[u]; ~e; e = succ[e]) /* do something */;
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Ford-Fulkerson algorithm 17

The previously described augmenting paths algorithm for
finding maximum flows is called the Ford-Fulkerson
algorithm.

As a summary, it just keeps finding augmenting paths and
pushing flow through them until there are none left.

It runs in O(Ef ) time, where E is the number of edges in
the graph and f is the maximum flow, since we need to
perform an O(E ) graph search in the worst case to find a
single unit of flow for each of the f units.
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Ford-Fulkerson algorithm 18

// assumes the residual graph is constructed as in the previous section

int seen[V];

int inv(int e) { return e ^ 1; }

bool augment(int u, int t, int f) {

if (u == t) return true; // the path is empty!

if (seen[u]) return false;

seen[u] = true;

for (int e = start[u]; ~e; e = succ[e])

if (cap[e] >= f && augment(to[e], t, f)) { // if we can reach the end ,

cap[e] -= f; // use this edge

cap[inv(e)] += f; // allow " cancelling out"

return true;

}

return false;

}

int max_flow(int s, int t) {

int res = 0;

fill(seen , seen + V, 0);

while (augment(s, t, 1)) {

fill(seen , seen + V, 0);

res += 1;

}

return res;

}
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Edmonds-Karp algorithm 19

The f in the time complexity of Ford-Fulkerson is not
ideal, because f could be exponential in the size of the
input.

It turns out that if you always take the shortest
augmenting path, instead of any augmenting path, and
increase the flow by the minimum capacity edge on your
augmenting path, you need to find at most O(VE )
augmenting paths total.

This gives a total time complexity of O(min(VE 2,Ef )).
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Edmonds-Karp algorithm 20

Proof (Sketch): Let Gf be the residual network after
enacting flow f (so only leave edges that have more
capacity than flow). Let di (v) be the unweighted shortest
distance from source s to v in G i

f (the residual graph after
step i of Edmonds-Karp).
The main claim is that di (v) ≤ di+1(v), i.e: that
Edmonds-Karp only increases distances from the source.
You can roughly convince yourself of this by looking at
what a step of Edmonds-Karp does to the BFS tree of G i

f .
It saturates some edges, removing them from G i+1

f . It

may also introduce some residue edges into G i+1
f .

But removing edges doesn’t help decrease distances
(obvious). And introducing residue edges doesn’t either
since all those residue edges go backwards in the BFS tree
(intuitively believable but you probably want to induct
here if you want a rigorous proof).
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Edmonds-Karp algorithm 21

Imagining the BFS tree also helps prove our actual main
claim: that an edge can only be saturated at most n/2
times.
Say an edge e : u → v is saturated in iteration i , with u
being d distance from the source. Then for e to be
unsaturated, there needs to be some flow through its
residue.
But since distances don’t decrease, for the residue to
appear in the BFS tree, at some point u’s distance needs
to be 1 more than v ’s. But v ’s distance is already d + 1
so for this to happen u’s distance must be d + 2. Hence
the next time e is saturated, d(u) has increased by 2. This
can occur at most n/2 times.
Finally, each round of Edmonds-Karp saturates at least one
edge by design. So there can be at most O(EV ) rounds.
Each is a BFS (O(E )), hence running time is O(E 2V ).
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Edmonds-Karp algorithm 22

int augment(int s, int t) {

// This is a BFS , shortest path means by edge count not capacity

queue <int > q;

// path[v] = which edge we used from to reach v

fill(path , path + V, -1);

for (q.push(s), path[s] = -2; !q.empty (); q.pop()) {

int u = q.front ();

for (int e = start[u]; ~e; e = succ[e]) {

// if we can use e and we haven ’t already visited v, do it

if (cap[e] <= 0) continue;

int v = to[e];

if (path[v] == -1) {

path[v] = e;

q.push(v);

}

}

}

if (path[t] == -1) return 0; // can ’t reach the sink

int res = INF;

// walk over the path backwards to find the minimum edge

for (int e = path[t]; e != -2; e = path[to[inv(e)]])

res = min(res , cap[e]);

// do it again to subtract that from the capacities

for (int e = path[t]; e != -2; e = path[to[inv(e)]]) {

cap[e] -= res;

cap[inv(e)] += res;

}

return res;

}
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Dinic’s Algorithm 23

The most useful one for contests.

Essentially just a more optimized implementation of
Edmonds-Karp.

The basic idea is the exact same, we repeatedly augment
along the shortest augmenting path.

However, we work in phases. In each phase, we augment
until the shortest distance from source to sink has
increased. Hence there are O(V ) phases.

The key is to make the BFS tree part of the earlier proof
more explicit (this is often called the level graph). The
speedup comes from realising that in each phase we’re
working on the same BFS tree. This allows us to find each
augmenting path in O(V ) amortized.

Each phase has O(E ) augmenting paths. Hence, we get
O(V 2E ) overall.
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Dinic’s Algorithm 24

At the start of each phase, construct the BFS tree. Ignore
all edges not in it.

The main claim is: once there is no flow in the BFS tree,
the distance from the source to sink has increased. The
same ideas as the earlier proof sketch work here too.

Now that we are working on the BFS tree, any path we
find is a shortest augmenting path. So we can use a DFS
to find these.
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Dinic’s Algorithm 25

The key is, say we are at node u. If we DFS to child c of
node u and there are no augmenting paths from c to the
sink, then child c is useless and we delete child c from
node u.

So our DFS will always find an augmenting path by trying
the very first child of each node, except O(E ) times when
we mess up. Amortized out, this means we get O(V ) per
augmenting path, with an extra overall cost of O(E ) for
the times we have to delete a child.

Hence each phase is O(EV ), there are at most O(E )
augmenting paths and each is found in O(V ) (the extra
O(E ) is dwarfed since it is O(E ) per phase).

Overall complexity: O(min(V 2E ,Ef )).
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Dinic’s Algorithm 26

As an implementation note, we don’t actually delete
children.

We instead use our edge list (and in particular the
embedded linked list in it) as our children array.

For each node, we store the index of the first child that we
have not ”deleted”.
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Dinic’s Algorithm 27

// assumes the residual graph is constructed as in the previous section

// n = #nodes , s = source , t = sink

int n, s, t;

// stores dist from s.

int lvl[N];

// stores first non -useless child.

int nextchld[N];

// constructs the BFS tree.

// Returns if the sink is still reachable.

bool bfs() {

for (int i = 0; i < n; i++) lvl[i] = -1;

queue <int > q;

q.push(s); lvl[s] = 0;

while (!q.empty ()) {

int u = q.front (); q.pop();

nextchld[u] = start[u]; // reset nextchld

for (int e = start[u]; ~e; e = succ[e]) {

if (cap[e] > 0) {

int nxt = to[e];

if (lvl[nxt] != -1) continue; // already seen

lvl[nxt] = lvl[u] + 1;

q.push(nxt);

}

}

}

return lvl[t] != -1;

}
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Dinic’s Algorithm 28

// Finds an augmenting path with up to cflow flow.

int aug(int u, int cflow) {

if (u == t) return cflow; // base case.

// Note the reference here! We will keep decreasing nextchld[u]

// Till we find a child that we can flow through.

for (int &i = nextchld[u]; i >= 0; i = succ[i]) {

if (cap[i] > 0) {

int nxt = to[i];

// Ignore edges not in the BFS tree.

if (lvl[nxt] != lvl[u] + 1) continue;

int rf = aug(nxt , min(cflow , cap[i]));

// Found a child we can flow through!

if (rf > 0) {

cap[i] -= rf;

cap[i^1] += rf;

return rf;

}

}

}

lvl[u]=-1;

return 0;

}

int mf() {

int tot = 0;

while (bfs())

for (int x = aug(s,INF); x; x = aug(s,INF)) tot+=x;

return tot;

}
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Faster flow algorithms 29

Faster flow algorithms exist, but I’ve never actually used
them. Dinic’s is the best default for programming
competitions.

Augmenting path-based algorithms tend to run much
faster in practice than their worst case time complexity
suggests. In particular, Dinic’s pretty much never behaves
anything close to the worst case.

Kind of annoying for competitions. If the graph has any
structure, probably expect to easily run a O(1012) in sub a
second...

Many flow algorithms. Some of interest: Capacity scaling
O(E 2 logC ) where C is the max capacity of an edge, and
Highest Label Preflow Push O(V 2

√
E ).

Recently, it was shown that this problem can be solved in
total O(VE ) time.
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Bipartite matching 31

A bipartite graph is one where the vertices can be
partitioned into two sets, where no vertices in the same set
have an edge between them.

1

The maximum bipartite matching problem, given a
bipartite graph, is to choose the largest possible set of
edges in that graph such that no one vertex is incident to
more than one chosen edge.

There is a clear flow formulation for this problem.

1http://mathworld.wolfram.com/BipartiteGraph.html

http://mathworld.wolfram.com/BipartiteGraph.html
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Bipartite matching 32

Modify the original bipartite graph by making each edge a
directed edge from the first set to the second set, with
capacity 1.

Attach an edge of capacity 1 from s to every vertex in the
first set, and an edge of capacity 1 from every vertex in
the second set to t.
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2

2https://en.wikipedia.org/wiki/File:

Maximum_bipartite_matching_to_max_flow.svg

https://en.wikipedia.org/wiki/File:Maximum_bipartite_matching_to_max_flow.svg
https://en.wikipedia.org/wiki/File:Maximum_bipartite_matching_to_max_flow.svg
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Bipartite matching 34

The size of the largest matching is the maximum flow in
this graph.

Since the flow of this graph is at most V , Ford-Fulkerson
and Edmonds-Karp run in O(VE ).

Fact: For unit graphs, Dinic’s runs in O(E
√
V ). So

Dinic’s solves maximum bipartite matching in O(E
√
V ).

A unit graph is one where every non-source, non-sink
node, say u, satisfies at least one of the following:

u has a single incoming edge and this edge has capacity
one.
u has a single outgoing edge and this edge has capacity
one.

In other words, no vertex appears in more than one flow
path. E.g: flow graphs arising from bipartite matching.
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Aside: Augmenting paths look very nice in bipartite
graphs. There’s the matched component and unmatched
vertices and augmenting paths just alternate between
following unmatched edges and matched edges.

Also on bipartite graphs we get nice theorems like Hall’s
Marriage Theorem.

For these reasons, we can say a lot more about the
structure of bipartite graphs. Also certain problems on
bipartite graphs are a lot easier than on general graphs.

But won’t get time to see this in this course.
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The dual to max flow is min cut.

This is interesting in its own right! Frequently this shows
up in unexpected places.

Helps solve some optimal assignment problems.
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Extracting the min-cut 38

To get the value of the minimum cut, just run max flow.

To extract the actual edges in the minimum cut, we use
the fact that all of them must be saturated.

We do a graph traversal starting from s and only traverse
edges that have positive remaining capacity and record
which vertices we visit.

The edges which have a visited vertex on one end and an
unvisited vertex on the other will form the minimum cut.
(compare to the definition of a s-t cut)

The residual edges need to be ignored!
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Extracting the min-cut 39

void check_reach(int u) {

if (seen[u]) return;

seen[u] = true;

for (int e = start[u]; ~e; e = succ[e]) {

if (cap[e] > 0) check_reach(to[e]);

}

}

vector <int > min_cut(int s, int t) {

int total_size = max_flow(s, t);

vector <int > ans;

fill(seen , seen + V, 0);

check_reach(s);

// the odd -numbered edges are the residual ones

for (int e = 0; e < edges; e += 2) {

if (! seen[to[e]] && seen[to[inv(e)]]) {

ans.push_back(e);

}

}

return ans;

}
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One of the canonical examples of an assignment problem
solvable by flow.

Problem Statement: There are N projects and M
machines. Each machine has a cost cj . Each project has a
revenue ri . Each project depends on a set of machines but
machines can be shared among projects. Determine a set
of projects and machines that maximizes profit.

Input Format: First line contains 3 integers N,M.
1 ≤ N,M ≤ 1000. Next line contains N integers, the
revenues. After that is a line with M integers, the costs.
All such values are non-negative. Next line contains one
integer, D, the number of dependencies. 0 ≤ D ≤ 1000.
The following D lines each contain a pair
ai , bj , 1 ≤ ai ≤ N, 1 ≤ bj ≤ M. denoting that project ai is
dependent on bj .
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Sample Input:

3 3

100 200 150

200 100 50

4

1 1

1 2

2 2

3 3

Sample Output:

200

Explanation: The optimal choice is to purchase machines
2 and 3 and select projects 2 and 3.
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Here we have a classical optimization problem with
constraints. Let’s make these explicit.

Let P be the projects selected and Q the machines
purchased. We are maximizing∑

i∈P
ri −

∑
j∈Q

cj

Useful trick: Because we want to minimize cost, we want
to rewrite our problem as a minimization. So let Pc be the
set of projects not selected. Then we need to minimize:∑

i∈Pc

ri +
∑
j∈Q

cj
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Our constraints are, for all dependences i , j ,
i ∈ P =⇒ j ∈ Q. In terms of Pc , this can be rephrased
as

i ∈ Pc ∨ j ∈ Q

We can formulate this as a min cut! We will have edges
representing projects and machines, with costs ri and cj
respectively. Cutting an edge represents adding i to Pc or
j to Q.

To formulate our constraints, for each dependence i , j we
want a path from source to sink using the edge
representing project i and the edge representing machine j .



Network Flow
(Graph

Algorithms II)

Flow Networks

Maximum
Flow

Interlude:
Representing
Graphs by Edge
Lists

Flow
Algorithms

Ford-Fulkerson

Edmonds-Karp

Dinics

Faster
Algorithms

Bipartite
Matching

Min Cut

Related
Problems

Example
Problems

Project Selection 44

Formal Construction: We will form a biparitte graph.
One bipartition represents projects, the other machines.

Projects are connected to the source with edges
representing their revenues.

Machines are connected to the sink with edges
representing their costs.

Useful Trick: An edge with capacity infinity connects
project i to machine j if i is dependent on j .

The implementation is just constructing the flow network
then calling your flow code.
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3

3https://en.wikipedia.org/wiki/File:

Max-flow_min-cut_project-selection.svg

https://en.wikipedia.org/wiki/File:Max-flow_min-cut_project-selection.svg
https://en.wikipedia.org/wiki/File:Max-flow_min-cut_project-selection.svg
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// Construction :

// Nodes 0 to N-1 are the project nodes.

// Nodes N to N+M-1 are the machine nodes.

// Node N+M is the source , N+M+1 is the sink.

int main () {

int N, M, D;

scanf("%d %d", &N, &M);

int totalRevenue = 0;

int source = N+M, sink = N+M+1;

for (int i = 0; i < N; i++) {

int c; scanf("%d", &c);

add_edge(source , i, c);

totalRevenue += c;

}

for (int i = 0; i < M; i++) {

int c; scanf("%d", &c);

add_edge(i+N, sink , c);

}

scanf("%d", &D);

for (int i = 0; i < D; i++) {

int a, b; scanf("%d %d", &a, &b);

a--; b--;

add_edge(a, b+N, INF); // INF > all possible outputs.

}

printf("%d\n", totalRevenue - get_max_flow ());

}



Network Flow
(Graph

Algorithms II)

Flow Networks

Maximum
Flow

Interlude:
Representing
Graphs by Edge
Lists

Flow
Algorithms

Ford-Fulkerson

Edmonds-Karp

Dinics

Faster
Algorithms

Bipartite
Matching

Min Cut

Related
Problems

Example
Problems

Project Selection 47

Summary: It’s a classic example but it shows the general
gist of how many min cut problems work.

First we rephrase our optimiztion problem into a
minimization problem. Often we have to negate variables
for this. We want cutting an edge to represent something
with a cost.

Next we try to phrase the constraints as cuts. Here it’s
important to have a good grasp on what the edges are, we
are aiming to form paths from source to sink so that our
constraints translate are equivalent to all paths having a
cut edge.

There are useful constructions that appear repeatedly.
Adding infinite weighted edges is common.

Often we also hope we can reduce the problem to
something similar to the bipartite example here.
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Vertex capacities 49

A graph has vertex capacities if there are also capacity
restrictions on how much flow can go through a vertex.
(this means there’s a limit to total flow incoming/outgoing
from a vertex).

This is solved by splitting each vertex into two vertices, an
“in” vertex and an “out” vertex.

For some vertex u with capacity cu, we add an edge from
inu to outu with capacity cu.

Incoming edges go to inu and outgoing edges leave from
outu with their original capacities.

Useful for flow problems where vertices have restrictions.

Also useful for cut problems where costs are associated
with vertices.
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Original graph:

0

1

2

Node 1 has capacity c:

0

in1

out1

2

c



Network Flow
(Graph

Algorithms II)

Flow Networks

Maximum
Flow

Interlude:
Representing
Graphs by Edge
Lists

Flow
Algorithms

Ford-Fulkerson

Edmonds-Karp

Dinics

Faster
Algorithms

Bipartite
Matching

Min Cut

Related
Problems

Example
Problems

Multiple Sources and Sinks 51

Sometimes a problem will naturally have multiple sources
or sinks.

Just make all the sources into regular nodes and connect
them with infinite edges to a ”supersource”, the actual
source of the flow graph.

Same with sinks.
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Undirected Graphs 53

Sometimes you want to find flow or min cut in an
undirected graph.

Just duplicate each edge, one going forwards, one going
backwards.
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Maximum edge-disjoint paths in a graph 54

A set of paths is edge-disjoint if no two paths use the
same edge.

To find the maximum number of edge-disjoint paths from
s to t, make a flow graph where all edges have capacity 1.

The maximum flow of this graph will give the answer.



Network Flow
(Graph

Algorithms II)

Flow Networks

Maximum
Flow

Interlude:
Representing
Graphs by Edge
Lists

Flow
Algorithms

Ford-Fulkerson

Edmonds-Karp

Dinics

Faster
Algorithms

Bipartite
Matching

Min Cut

Related
Problems

Example
Problems

Minimum vertex cover in a bipartite graph 55

A vertex cover in a graph is a set of vertices which touches
at least one endpoint of every edge.

By Kőnig’s theorem, the size of the maximum matching is
equal to the number of vertices in a minimum vertex cover.

Actually this is just min-cut max-flow. Using our earlier
construction of a flow network for bipartite graphs, the
min cut corresponds to a max vertex cover.
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Bipartite matching 56

Edges directly connected to source and sink represent
vertices. If these are cut, the corresponding vertex is in the
min vertex cover.

If the cut contains the intermediary edges, pick either
endpoint to be in the min vertex cover.
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How to Flow? 58

We just covered the basic theory of flow.

But the truly remarkable part of flow (and especially min
cut) is it appears in problems you don’t expect it to!

To me it is because flow and min cut try to solve a very
general problem, either assignment or optimization under
constraints.

Both in full generality are NP-hard and encompass most
problems we care about. So even being able to solve a
small subclass of these is pretty remarkable.
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How to Flow? 59

There are 2 main parts to flow problems: recognizing they
are flow and constructing the right flow graph.

The former is difficult, but you get some intuition after a
while. Flow problems tend to be unsolvable by anything
except flow.

I feel a decent approach to start with is, if the problem
requires assignments with no obvious greedies then flow is
worth considering. If the problem requires optimization
with constraints with no obvious greedy, consider min cut.

Constructing the right flow graph requires a lot of practice
but there are common reusable constructions.

I will try to show some useful basic examples and things to
keep in mind.
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Example: Magic Hours 60

Problem Statement: Disneyland has N tourists and M
attractions. Each tourist is interested in a set of
attractions and will be happy if they can visit at least one.
Each attraction has a limit on the number of tourists that
can visit.
In addition, certain tourists are entitled to visit during
magic hours. Only some of the rides are open during
magic hours. The normal limits don’t apply but at most K
tourists can visit during magic hours.
What is the maximum number of tourists that can be
made happy?
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Example: Magic Hours 61

Input Format: First line 3 integers, N,M,K .
1 ≤ K ,M,N ≤ 1000.
Next line contains M integers, the limits for each of the
attractions. Next line contains M boolean values. The ith
is 1 iff attraction i is open during magic hours.
The next N lines each describe a tourist. Each line is of
the form b C x1 ... xC where b is 1 if this tourist is
eligible for magic hours, 0 otherwise, C is the number of
attractions the tourist is interested in and {x1, . . . , xC} is
the set of attractions. Attractions are 1 indexed.
There are at most 2000 tourist attraction pairs.
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Sample Input:

3 2 1

1 1

1 0

1 1 1

0 2 1 2

0 1 1

Sample Output: 3

Explanation: Person 2 visits attraction 2 and person 3
visits attraction 1. Person 1 visits attraction 1 during
magic hours.
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Example: Magic Hours 63

Seems like an assignment problem with no obvious greedy
(e.g: try K = 0). So flow seems suitable here.

The task now is to translate the requirements into a flow
graph.

And until you become familiar, this step will likely be a lot
of trial and error.

So I’m just going to iterate through some examples.

I think it is also important to be able to determine if a
flow graph is correct so expect some wrong flow graphs :P
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Example: Magic Hours 64

Let’s start with basics. What happens if there are no
magic hours?

Question is just bipartite matching with constraints on
attractions.
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s

t1

a1

t

1

1

c

where c is capacity of the attraction.
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Example: Magic Hours 66

So far so good. How to handle magic hours?

Try 1: Create a copy of the graph for magic hours. This
graph only contains tourists that are entitled to magic
hours and rides open during magic hours.
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Example: Magic Hours 67

s

t1

a1

t

t1

a1

1

1

c

1

1

∞

Assume t1 and a1 are both applicable to magic hours.
What’s wrong?



Network Flow
(Graph

Algorithms II)

Flow Networks

Maximum
Flow

Interlude:
Representing
Graphs by Edge
Lists

Flow
Algorithms

Ford-Fulkerson

Edmonds-Karp

Dinics

Faster
Algorithms

Bipartite
Matching

Min Cut

Related
Problems

Example
Problems

Example: Magic Hours 68

An obvious problem. We aren’t accounting for K , the limit
on tourists during magic hours.

There’s a standard fix here, add an extra source to the
magic hours side of the graph that has a capacity of K .



Network Flow
(Graph

Algorithms II)

Flow Networks

Maximum
Flow

Interlude:
Representing
Graphs by Edge
Lists

Flow
Algorithms

Ford-Fulkerson

Edmonds-Karp

Dinics

Faster
Algorithms

Bipartite
Matching

Min Cut

Related
Problems

Example
Problems

Example: Magic Hours 69

s

t1

a1

t

m

t1

a1

1

1

c

K

1

1

∞

What’s wrong?
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Example: Magic Hours 70

The same tourist might be double counted, they might
visit an attraction during the day and we would count
them again during magic hours.

This is a common mistake with flow graphs, you try to
add in a new constraint and in the process you invalidate
an old constraint.

So we need a single bottleneck per tourist.

We can try to pass the magic hours source through the
tourists.
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Example: Magic Hours 71

s

t1’

t1

a1

t

m

a1

1

1

1

c

K

1

1

∞

What’s wrong?
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Example: Magic Hours 72

Many things. The magic hours source doesn’t actually do
anything. More concretely, we are allowing the tourists
visiting during magic hours to visit all attractions, not just
the magic hours attractions.

Mixing up different paths is another very common mistake
with flow graphs.

Okay, let’s try putting the magic hours constraint after the
constraint on the tourists.
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Example: Magic Hours 73

s

t1

a1

t

min

mout

a1

1

1

c

1

K

∞

∞

Note we split the magic hours node into 2 nodes since we have
a constraint on the node itself.
What’s wrong?
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Example: Magic Hours 74

Not obvious when there’s only 1 tourist. But with many,
by passing through the node for magic hours, you’re
allowing them to visit ANY of the attractions open during
magic hours, not just the ones they are interested in
seeing. How to fix?

Note we don’t actually care which attraction a tourist
visits during magic hours, just that there is at least one
attraction they are interested in and is open during magic
hours.

So precalculate which tourists can actually visit an
attraction during magic hours.

After that, we don’t care about the attractions connected
to the magic hours node. So we can connect the magic
hours node directly to the sink.
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Example: Magic Hours 75
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Example: Magic Hours 76

// Construction :

// Nodes 0 to N-1 are the tourists.

// Nodes N to N+M-1 are the attractions .

// Node N+M is the magic hour , N+M+1 source , N+M+2 sink.

int main () {

scanf("%d %d %d", &N, &M, &K);

int magicnode = N+M, source = N+M+1, sink = N+M+2;

for (int i = 0; i < M; i++) {

int c; scanf("%d", &c);

add_edge(i+N, sink , c);

}

vector <int > magicOpen(M);

for (int i = 0; i < M; i++) {

scanf("%d", &magicOpen[i]);

}

for (int i = 0; i < N; i++) {

add_edge(source , i, 1);

int b, C;

scanf("%d %d", &b, &C);

for (int j = 0; j < C; j++) {

int x; scanf("%d", &x); x--;

add_edge(i, x+N, 1);

if (b && magicOpen[x]) add_edge(i, magicnode , 1);

}

}

add_edge(magicnode , sink , K);

// run max flow

}



Network Flow
(Graph

Algorithms II)

Flow Networks

Maximum
Flow

Interlude:
Representing
Graphs by Edge
Lists

Flow
Algorithms

Ford-Fulkerson

Edmonds-Karp

Dinics

Faster
Algorithms

Bipartite
Matching

Min Cut

Related
Problems

Example
Problems

Example: Magic Hours 77

Complexity? O(N +M) vertices, O(N +M + A) edges
where A ≤ 2000 is the number of tourist attraction pairs.
So about 2000 vertices and 4000 edges.

Dinic’s is O(E 2V ) which directly evaluated gives about 8
billion. But the graph is so structured I would expect it to
run in a second.
Keep in mind these traps! Whenever you think you have a
flow network it should be because you think each plausible
flow path means something. You should check:

Every possible choice is represented by some flow path.
Every flow path corresponds to some valid choice.

It would be a good idea to double check you understand
why every edge has the capacity it has in this example.

Only real method to learn is probably practice. When I’m
doing flow, I still find myself spending most of my time
iterating through flow graphs.
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Example problem: Irrigation 78

Problem Statement: My garden is a N ×M grid, some
squares containing flowers. As I learnt recently, flowers
need water...
To water them, I can purchase some line sprinklers. Each
line sprinkler can water a single row or column. What is
the minimum number of line sprinklers I need.

Input Format: The first line contains 2 integers, N,M,
1 ≤ N,M ≤ 1000. The following N lines each contain M
bits. A 1 denotes a square with a flower.
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Example problem: Irrigation 79

Sample Input:

3 3

001

111

001

Sample Output: 2
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Example problem: Irrigation 80

What are our constraints here?

We have one for each flower. Each flower says we need to
pick its row or its column (maybe both) In our flow
formulation, it would make sense that each flower is an
edge.

So our nodes represent the rows and columns.

Key Observation: This graph is naturally bipartite. If our
flowers are edges, they can only connect a row node to a
column node.
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Example problem: Irrigation 81

Sample Input again:

r0 r1 r2

c0 c1 c2
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Example problem: Irrigation 82

What are we being asked for?

Minimum set of vertices adjacent to at least one edge.

Min vertex cover!

We could have also solved the flow directly without
realising this. Noting it is a bipartite graph is key however.
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Example problem: Irrigation 83

// Construction :

// Nodes 0 to N-1 are the row vertices.

// Nodes N to N+M-1 are the column vertices.

// Node N+M is the source , N+M+1 is the sink.

int N, M;

int main () {

scanf("%d %d", &N, &M);

int source = N+M, sink = N+M+1;

for (int r = 0; r < N; r++) {

for (int c = 0; c < M; c++) {

char inp; scanf(" %c", &inp);

if (inp == ’1’) {

add_edge(r, c+N, 1);

}

}

}

for (int r = 0; r < N; r++) {

add_edge(source , r, 1);

}

for (int c = 0; c < M; c++) {

add_edge(c+N, sink , 1);

}

printf("%d\n", get_max_flow ());

}
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Example problem: Irrigation 84

Complexity? O(N +M) vertices, O(NM) edges, with
Dinic’s it is O(NM

√
N +M), about 30 mil. More than

fast enough, especially for a flow problem.

How could you get the feeling this might involve flow?

You’re roughly being asked to minimize a value, subject to
some constraints.

If you play with it a bit, you’ll realize a greedy solution is
hard. So the next natural thing to try is flow.

Also the graph is very naturally bipartite.
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Aside: Common Bipartite Graphs 85

It is useful to be able to recognize if a problem involves a
bipartite graph quickly.

A sometimes useful characterization: Bipartite graphs are
graphs with no odd cycles.

Also a graph is bipartite iff it can be 2-colored. This allows
you to check bipartiteness in O(V + E ) with a DFS.

Common examples:

Any time you naturally have two different kinds of nodes.
On grids, 4-adjacency forms a bipartite graph. Why?
For same reason, so does knight jumps...
The rows and columns of a grid.
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Example problem: Jumping Frogs 86

Problem statement Freddy Frog is on the left bank of a
river. N (1 ≤ N ≤ 100) rocks are placed on the plane
between the left bank and the right bank. The distance
between the left and the right bank is D (1 ≤ D ≤ 109)
metres. There are rocks of two sizes. The bigger ones can
withstand any weight but the smaller ones start to drown
as soon as any mass is placed on it. Freddy has to go to
the right bank to collect a gift and return to the left bank
where his home is situated.
He can land on every small rock at most one time, but can
use the bigger ones as many times as he likes. He can
never touch the polluted water as it is extremely
contaminated.
Freddy’s journey will consist of a series of jumps. Can you
find a path that minimizes the longest jump that Freddy
will perform?
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Example problem: Jumping Frogs 87

2 constraints here, we both have a constraint on maximum
distance and constraints on paths.

Want to shave a constraint, it will be annoying to have to
deal with both at the same time. How?

Binary search!

We can binary search for the smallest maximum edge
weight. So from now on we have a decision problem:

Given we can jump up to M distance, is there a path there
and back for Freddy Frog?
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Example problem: Jumping Frogs 88

We need to find a path from our source to our sink, and
then back again, that does not cross any of the “small”
vertices more than once.

Keeping track of the state of the vertices after going to
the sink and then coming back seems difficult.

Observation 1: We can transform it into the equivalent
problem of finding two paths from the source to the sink.



Network Flow
(Graph

Algorithms II)

Flow Networks

Maximum
Flow

Interlude:
Representing
Graphs by Edge
Lists

Flow
Algorithms

Ford-Fulkerson

Edmonds-Karp

Dinics

Faster
Algorithms

Bipartite
Matching

Min Cut

Related
Problems

Example
Problems

Example problem: Jumping Frogs 89

To find two vertex disjoint paths from the source to the
sink, we need to find a flow of at least 2 in a flow graph
with vertex capacities 1. Edges with infinite capacities
connect 2 stones that are within distance M.

But this formulation will only allow us to visit any of the
“big” vertices once.
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Example problem: Jumping Frogs 90

The only thing that enforces that restriction in our graph
is the vertex capacity of 1 in our original construction.

So if we set the vertex capacity for every “big” vertex to
be infinite, then we have a solution.

As always, pick infinite to be larger than any necessary
finite capacity.
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Example problem: Jumping Frogs 91

We need O(logDE ) (where E depends on required
precision) iterations of our binary search to find this
maximum edge weight. We can do a max-flow
computation in O(Ef ) = O(V 2), because we can
terminate the max-flow once f hits 2.

The total runtime is O(V 2 logDE ).

Implementation
double lo = 0, hi = 1e10;

for (int it = 0; it < 70; it++) {

double mid = (lo + hi) / 2;

if (cando(mid)) hi = mid;

else lo = mid;

}

printf("%lf\n", lo);



Network Flow
(Graph

Algorithms II)

Flow Networks

Maximum
Flow

Interlude:
Representing
Graphs by Edge
Lists

Flow
Algorithms

Ford-Fulkerson

Edmonds-Karp

Dinics

Faster
Algorithms

Bipartite
Matching

Min Cut

Related
Problems

Example
Problems

Example problem: Jumping Frogs 92

// Each stone is represented by 2 vertices , (0 ,1), (2, 3), ...

// Source is 2N, fake sink is 2N+1. real sink is 2N+2.

// Edge of cap 2 from fake to real sink to limit max flow to 2.

double sqdist(double x1 , double y1 , double x2 , double y2) {

return (x1 -x2)*(x1 -x2) + (y1 -y2)*(y1 -y2);

}

bool cando(double maxdist) {

if (D < maxdist) return true;

int source = 2*N;

int fakesink = 2*N+1;

int realsink = 2*N+2;

for (int i = 0; i < N; i++) {

int cap = isbig[i] ? INF : 1;

add_edge (2*i, 2*i+1, cap);

}

for (int i = 0; i < N; i++) {

for (int j = 0; j < N; j++) {

if (sqdist(x[i], y[i], x[j], y[j]) < maxdist*maxdist)

add_edge (2*i+1, 2*j, INF);

}

}

for (int i = 0; i < N; i++) {

if (x[i] < maxdist) add_edge(source , 2*i, INF);

if (x[i] + maxdist > D) add_edge (2*i+1, fakesink , INF);

}

add_edge(fakesink , realsink , 2);

return get_max_flow () == 2;

}
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Example: Image Segmentation 93

Problem Statement: I have an image made of N pixels.
Each can be either in the background or foreground. For
the ith pixel, you get fi points if it is in the foreground, bi
points if it is in the background.
Furthermore, there are M pairs of pixels that you would
prefer to have the same assignment. For the kth pair, you
pay a penalty of pk if pixel ak has a different assignment
to pixel bk .
Maximize points - penalties.

Input Format: First line, 2 integers N M.
1 ≤ N,M ≤ 1000. Next line contains N integers, the
values fi . Next line contains N integers, the values bi .
Next M lines each contain a triplet, ak bk pk, describing
one of the penalty pairs.
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Example: Image Segmentation 94

Sample Input:

3 2

5 1 3

1 5 2

1 2 1

2 3 5

Sample Output: 11

Explanation: Assign the pixels as (foreground,
background, background). You pay a penalty of 1 because
the first 2 pixels have different assignments.
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Example: Image Segmentation 95

Optimization problem with constraints and no obvious
greedy. Reasonable to try min cut.

We need to change this into a minimization. Write out
what we are maximizing.



Network Flow
(Graph

Algorithms II)

Flow Networks

Maximum
Flow

Interlude:
Representing
Graphs by Edge
Lists

Flow
Algorithms

Ford-Fulkerson

Edmonds-Karp

Dinics

Faster
Algorithms

Bipartite
Matching

Min Cut

Related
Problems

Example
Problems

Example: Image Segmentation 96

Let F be the set of pixels in the foreground and B be
background. Say that ai = 1 iff pixel i is in the foreground.

Let pij be the penalty if pixel i has a different assignment
to pixel j . This is 0 if there is no constraint involving
pixels i and j

Then we are maximizing∑
i∈F

fi +
∑
i∈B

bi −
∑
ai ̸=aj

pij

This is equivalent to minimizing (Sc is the complement of
S): ∑

i∈F c

fi +
∑
i∈Bc

bi +
∑
ai ̸=aj

pij
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Example: Image Segmentation 97

∑
i∈F c

fi +
∑
i∈Bc

bi +
∑
ai ̸=aj

pij

This suggests what some of our edges should be and what
cutting edges should mean.

For each pixel i , we need to have an edge representing
pixel i is in the foreground.

It should have cost fi and cutting it represents that pixel i
is not in the foreground.

Same with an edge representing the background.

Call the first edge foregroundi and the second edge
backgroundi .

We need an edge, say eij representing each penalty cost
too. Cutting this edge represents that pixels i and j have
different assignments.
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Example: Image Segmentation 98

What are our constraints?

For each of the M penalties:

(cut eij) ∨ (i ∈ F ⇐⇒ j ∈ F )

We can unroll this into two constraints involving just or
statements.

(cut eij) ∨ (i ∈ F c) ∨ (j ∈ Bc)

(cut eij) ∨ (i ∈ Bc) ∨ (j ∈ F c)

Since we are defining (i ∈ F c) to be the same as cutting
foregroundi we can rewrite the first condition as:

(cut eij) ∨ (cut foregroundi ) ∨ (cut backgroundj)

This suggests what our paths should be.
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Example: Image Segmentation 99

s

f1 f2

b1 b2

t

f1 f2

p1,2 p1,2

b1 b2

What’s wrong?
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Example: Image Segmentation 100

Not every cut corresponds to a meaningful assignment.

There’s no guarantee we cut either foreground1 or
background1. If we don’t, this means pixel 1 is in both the
foreground and background???

So we can try to fix this by making a path that includes
both foreground1 and background1. Here we apply the
standard trick of introducing an ∞ edge.
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Example: Image Segmentation 101

s

f1 f2

b1 b2

t

f1 f2

∞ ∞p1,2 p1,2

b1 b2

What’s wrong?
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Example: Image Segmentation 102

Now at least one of foreground1 or background1 is cut.
But both can be???

This corresponds to having pixel 1 in neither the
foreground nor background... Less obviously an issue but
one can come up with a breaking case.

There are 2 solutions to this problem, each showcasing a
worthwhile construction.
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Solution 1 103

The first is: to fix this construction, we need to enforce we
cut exactly one of foregroundi or backgroundi . Enforcing
exactly one constraints is hard with min cut in general.

Instead, we will force the constraint, we cut exactly N of
the edges in

{foregroundi}Ni=1 ∪ {backgroundi}Ni=1

Then since the earlier construction forces us to cut at least
one of foregroundi or backgroundi this is equivalent to
cutting exactly one of the 2 for each i .

We enforce this by artificially inflating the flows of the
edges foregroundi and backgroundi so that no optimal
solution would cut more than the bare minimum necessary,
which is N.
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Solution 1 104

s

f1 f2

b1 b2

t

∞+ f1 ∞+ f2

∞2 ∞2p1,2 p1,2

∞+ b1 ∞+ b2

Pick ∞ so that ∞ >
∑

i ,j pi ,j .

Pick ∞2 so that ∞2 > N · ∞+
∑

i fi .
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Solution 1 105

Then, our choices of ∞ guarantee we never cut more than
N edges with an ∞ (it’s better to just cut all the pi ,j
edges instead) and never cut an edge with an ∞2 (it’s
better to just cut all the ∞+ fi edges).

Our min cut will be of the form N · ∞+ A where A is the
actual answer.

Worth noting: we introduced 2 edges for each pi ,j . This
should give you pause but is okay here because no min cut
will cut both.

Exercise: Implement this.
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Solution 2 106

The alternative solution uses a slightly different
construction and thinks of cutting as more a way of
partitioning nodes. (compare to definition of a s-t cut)

It turns out the problem here is actually that we separate
each pixel into 2 nodes.

If we instead don’t, everything just happens to work out.
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s

p1 p2

t

f1 f2p1,2

p1,2
b1 b2
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Solution 2 108

This works because a min cut will partition the graph into
three parts, nodes connected to source, nodes connected
to sink, nodes connected to neither.
If pixel i is connected to the source, then we must have
backgroundi cut. Furthermore, in a min cut foregroundi
won’t be cut. Why?
Vice versa for if pixel i is connected to the sink.
Also, in a min cut, no pixels will be disconnected from
both. Why?
If pixel i is disconnected from both, then we can choose
not to cut foregroundi and get a better cut.
So in a min cut, we will only cut exactly one of
foregroundi or backgroundi for each i .
And we will still cut the right pi ,j . Again, note it was okay
to duplicate each of the pi ,j edges.
Exercise: Implement this.
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Complexity? Both have O(N) vertices and O(N +M)
edges, so Dinic’s runs in worst case O((N +M)2N).

Like Project Selection, Image Segmentation is a useful
subproblem to keep in mind.

It is useful when you need to assign truth values to
variables. The main pitfall is not assigning exactly one
truth value to each variable and either of the solutions
here circumvents this issue.

Adding infinity to edges is also a generally useful gadget
for controlling the number of edges cut. E.g: find the min
cut that also cuts the minimum number of edges.
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