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Graphs 3

A graph is a collection of vertices and edges connecting
pairs of vertices.

Generally, graphs can be thought of as abstract
representations of objects and connections between those
objects, e.g. intersections and roads, people and
friendships, variables and equations.

Many unexpected problems can be solved with graph
techniques.
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Graphs 4

Many different types of graphs

Directed graphs
Acyclic graphs (i.e: trees, forests, DAGs)
Weighted graphs
Flow graphs
Other labels for the vertices and edges
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Graph Representations 5

Mostly you’ll want to use an adjacency list, occasionally
an adjacency matrix to store your graph.

An adjacency matrix is just a table (usually implemented
as an array) where the jth entry in the ith row represents
the edge from i to j , or lack thereof.

Useful for dense graphs or when you want to know about
specific edges.

An adjacency list is a vector for every vertex containing a
list of adjacent edges.

Much better for traversing sparse graphs.
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Adjacency List 6

#include <iostream >

#include <vector >

int N = 1e6 + 5; // number of vertices in graph

vector <int > edges[N]; // each vertex has a list of connected vertices

void add(int u, int v) {

edges[u]. push_back(v);

// Warning: If the graph has self -loops , you need to check this.

if (v != u) {

edges[v]. push_back(u);

}

}

...

// iterate over edges from u (since C++11)

for (int v : edges[u]) cout << v << ’\n’;

// iterate over edges from u (before C++11)

vector <int >:: iterator it = edges[u]. begin ();

for (; it != edges[u].end(); ++it) {

int v = *it;

cout << v << ’\n’;

}

// or just a regular for loop will work too

for (unsigned int i = 0; i < edges[u]. size (); i++) {

cout << edges[u][i] << ’\n’;

}
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Graph Traversals 8

There are two main ways to traverse a graph, which differ
in the order in which they visit new vertices:

Breadth-first search (BFS) - visit the entire adjacency list
of some vertex, then recursively visit every unvisited vertex
in the adjacency list of those vertices.
Depth-first search (DFS) - visit the first vertex in some
vertex’s adjacency list, and then recursively DFS on that
vertex, then move on;

Both can be implemented in O(|V |+ |E |) time.
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Breadth-First Search 9

Visits vertices starting from u in increasing distance order.

Use this to find shortest path from u to every other vertex.

Not much other reason to use BFS over DFS.
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Breadth-First Search 10

Implementation
vector <int > edges[N];

// dist from start. -1 if unreachable .

int dist[N];

// previous node on a shortest path to the start

// Useful for reconstructing shortest paths

int prev[N];

void bfs(int start) {

fill(dist , dist+N, -1);

dist[start] = 0;

prev[start] = -1;

queue <int > q;

q.push(start);

while (!q.empty ()) {

int c = q.front ();

q.pop();

for (int nxt : edges[c]) {

// Push if we have not seen it already.

if (dist[nxt] == -1) {

dist[nxt] = dist[c] + 1;

prev[nxt] = c;

q.push(nxt);

}

}

}

}
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Depth-First Search 11

Depth-first search is a simple idea that can be extended to
solve a huge amount of problems.

Basic idea: for every vertex, recurse on everything it’s
adjacent to that hasn’t already been visited.
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Depth-First Search 12

Implementation
// global arrays are initialised to zero for you

bool seen[N];

void dfs(int u) {

if (seen[u]) return;

seen[u] = true;

for (int v : edges[u]) dfs(v);

}
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Depth-First Search 13

In its simple form, it can already be used to solve several
problems - undirected cycle detection, connectivity, flood
fill, etc. In short, it should be your default choice for
traversing a graph.

However, its true power comes from the fact DFS has nice
invariants and the tree it creates has nice structure.

Main Invariant: By the time we return from a vertex v in
our DFS, we have visited every vertex v can reach that
does not require passing through an already visited vertex.
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DFS Tree 14

For now, we restrict ourselves to undirected graphs.

In our DFS, if we only consider edges that visit a vertex
for the first time, these edges form a tree. All other edges
are called ”back edges”.

See this DFS Tree Tutorial for an illustration.

Main Structure: Back edges always go directly upwards
to an ancestor in the DFS tree.

A not difficult consequence of the Main Invariant.

This is an abstract but really powerful tool for analyzing a
graph’s structure.

Sometimes it is useful to explicitly construct this tree but
often we just implicitly consider it in our DFS.

https://codeforces.com/blog/entry/68138
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Example problem: Bridge Finding 15

Problem statement Consider G an undirected, simple
(loopless and with no multi-edges), connected graph.
A bridge of G is an edge e whose removal disconnects G .
Output all bridges of G .

Input
First line, 2 integers V ,E , the number of vertices and
number of edges respectively.
Next E lines, each a pair, uivi . Guaranteed ui ̸= vi and no
unordered pair appears twice.
1 ≤ V ,E ,≤ 100, 000.

Output Output all bridges, each on a single line as the
two vertices the bridge connects.
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Example problem: Bridge Finding 16



Graph
Algorithms

Graphs and
Graph Repre-
sentations

Graph
Traversals

Special
Classes of
Graphs

Minimum
Spanning
Trees

Single Source
Shortest Paths

Dijkstra’s
Algorithm

Bellman-Ford
Algorithm

All Pairs
Shortest Paths

Implicit
Graphs

Trees

Example problem: Bridge Finding 17

A graph is a pretty chaotic thing.

Let us introduce some structure by looking at the DFS
tree.
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Example problem: Bridge Finding 18
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Example problem: Bridge Finding 19

Claim 1: Back edges can not be bridges.

Claim 2: A tree edge is a bridge iff there is no back edge
going ”past it”.

More formally, it is enough to know within each subtree of
the DFS tree, what the highest node a back edge in this
subtree can reach.

Not hard to compute this recursively in our DFS.

As a minor technical note: our code will use pre-order
indices instead of computing depth.
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Example problem: Bridge Finding 20

Implementation
void dfs(int u, int from = -1) {

low[u] = preorder[u] = T++;

for (int v : edges[u]) {

// ignore the edge to our parent in the dfs

if (v == from) continue;

// update the lowest value in the preorder sequence that we can

reach

if (preorder[v] != -1) low[u] = min(low[u], preorder[v]);

else {

dfs(v, u);

low[u] = min(low[u], low[v]);

// if we haven ’t visited v before , check to see if we have a

bridge

if (low[v] == preorder[v]) bridges.insert(make_pair(min(u, v),

max(u, v)));

}

}

}
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Example problem: Bridge Finding 21

Complexity? O(V + E ), just one DFS.

Bridges have broader relevance. A 2-edge connected
component is one with no bridges. Compressing these
turns any graph into a tree.

Vertices whose removal disconnects the graph are called
articulation vertices. There is a similar algorithm for
finding them.

But we won’t talk about this more.

Moral: DFS trees are cool, especially on undirected
graphs.
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Example problem: Cycle Detection 22

Problem Statement Given a directed graph, determine if
there is a simple cycle.

Input
First line, 2 integers V ,E , the number of vertices and
number of edges respectively.
Next E lines, each a pair, uivi .
1 ≤ V ,E ,≤ 100, 000.

Output YES if there is a cycle, NO otherwise.
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Example problem: Cycle Detection 23

If the graph is undirected, we can simply run a DFS on the
graph, and return true if any vertex marked seen is visited
again.

However, this doesn’t work for directed graphs, such as
the diamond graph (1→ 2→ 3← 4← 1).

DFS on directed graphs is not as nice as on undirected
graphs, just because u can reach a visited node v does not
mean v can reach u.
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Directed Graph Cycle Detection 24

However, we can see that the only way a cycle can exist is
if the DFS tree has a back-edge that goes up the tree.

If there is a cycle C and u ∈ C is the first vertex our DFS
visits in the cycle then all vertices in the cycle will be in
the subtree of u in the DFS tree. Hence this subtree must
have some backedge to u.

We can rephrase this algorithm as checking if any edge
visits a vertex we are still recursing from. This means we
reach a vertex v that we are still trying to build the
subtree for. So v is an ancestor.

It turns out this is easy to do — just mark each vertex
“active” in a table during its preorder step (when we first
reach u), and unmark it during its postorder step (when
we return from u).
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Directed Graph Cycle Detection 25

Implementation
// the vertices that are still marked active when this returns are the

ones in the cycle we detected

bool has_cycle(int u) {

if (seen[u]) return false;

seen[u] = true;

active[u] = true;

for (int v : edges[u]) {

if (active[v] || has_cycle(v)) return true;

}

active[u] = false;

return false;

}
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Special Classes of Graphs 27

General graphs are quite hard to do many things on.

Certain tasks are much more suited to specific classes of
graphs.

Directed Acyclic Graphs (DAGs) are well suited for DP
since you have a natural order to build up your recurrence.
Trees are well suited for like everything since from any
given node, its subtrees should behave independently.



Graph
Algorithms

Graphs and
Graph Repre-
sentations

Graph
Traversals

Special
Classes of
Graphs

Minimum
Spanning
Trees

Single Source
Shortest Paths

Dijkstra’s
Algorithm

Bellman-Ford
Algorithm

All Pairs
Shortest Paths

Implicit
Graphs

Trees

DAG 28

A DAG is a directed, acyclic graph.

Key Property 1: Every DAG has a maximal vertex, one
with no incoming edges.

Key Property 2: Every DAG can be linearly ordered,
there is some ordering of vertices such that edges only go
from vi → vj where i < j .

Proof of (1): Pick any vertex and keep arbitrarily
following an incoming edge backwards if one exists. This
either terminates or results in a cycle.

Proof of (2): Induction with (1).
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Topological Sort 29

An order satisfying (2) is called a topological order or sort.
It is an ordering of the vertices that has the property that
if some vertex u has a directed edge pointing to another
vertex v , then v comes after u in the ordering.

Clearly, if the graph has a cycle, then there does not exist
a valid topological ordering of the graph.
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Topological Sort 30

How do we compute a topological ordering?

Observation! The key invariant of a DFS tells us that in
acyclic graphs, every vertex v can reach has been seen by
the time we return from v .

For an acyclic graph, this means every vertex after v in the
topsort order is returned from before v is returned from.

We can directly use the reverse of the postorder sequence
of the graph.

The postorder sequence of the graph is an ordering of the
vertices of the graph in the order that each vertex reaches
its postorder procedure. (i.e: in the order vertices return
in).

A vertex is only added after its children have been visited
(and thus added), so the reverse order is a valid
topological ordering.
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Topological Sort 31

Implementation
// if the edges are in ASCENDING order of node number ,

// this produces the lexicographically GREATEST ordering

void dfs(int u, vector <int >& postorder) {

if (seen[u]) return;

seen[u] = true;

for (int v : edges[u]) dfs(v);

postorder.push_back(u);

}

vector <int > topsort () {

vector <int > res;

for (int i = 0; i < n; i++) dfs(i, res);

reverse(res.begin (), res.end()); // #include <algorithm >

return res;

}
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Example problem: Water Falls 32

Problem Statement A certain village is surrounded by N
mountain peaks. There are E trails connecting pairs of
mountain peaks.
Every night rain will fall on a single mountain peak. The
rain will then flow down trails to strictly lower mountain
peaks until it reaches a mountain peak with no trail to any
lower mountain peak.
What is the maximum distance the water can flow?

Input First line, N E , 1 ≤ N,E ≤ 105. Following this, N
integers, hi , the heights of the mountain peaks.
Following this, E lines, each with a triple ui vi di ,
0 ≤ ui , vi < N, ui ̸= vi , 0 ≤ di ≤ 109. This denotes a trail
from mountain peak ui to mountain peak vi of length di .

Output A single number, the maximum distance water
can flow for before becoming stationary.
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Example problem: Water Falls 33

Example Input

4 4

3 1 5 2

0 1 2

1 2 6

0 2 5

3 2 6

Example Output 7

Explanation: The longest path is 2→ 0→ 1.
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Example problem: Water Falls 34

Observation: The trails are directed edges (it is
impossible ui is lower than vi AND vi is lower than ui ).
Furthermore, it describes a DAG!

Focus on one peak at a time. What is the longest path
starting at peak 1? What information do I need to answer
this?

I need to know the longest path starting at each peak that
peak 1 can reach.

But since it is a DAG there is a natural order to process
the peaks! The topsort order!

In this case, it’s even more natural, it’s just increasing
height order.
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Example problem: Water Falls 35

#include <bits/stdc ++.h>

using namespace std;

const int MAXV = 100005;

int V, E, h[MAXV ];

vector <pair <int , long long >> allE[MAXV ];

long long longestPath[MAXV], ans;

// Returns indices in topsort order (or inc. height order).

vector <int > topsort () {}

int main () {

cin >> V >> E;

for (int i = 0; i < V; i++) cin >> h[i];

for (int i = 0; i < E; i++) {

int a, b; long long w; cin >> a >> b >> w;

if (h[b] < h[a]) allE[a]. emplace_back(b, w);

if (h[a] < h[b]) allE[b]. emplace_back(a, w);

}

vector <int > order = topsort ();

reverse(order.begin (), order.end());

for (auto ind : order) {

for (auto edge : allE[ind]) {

longestPath[ind] = max(longestPath[ind],

longestPath[edge.first] + edge.second);

}

ans = max(ans , longestPath[ind]);

}

cout << ans << ’\n’;

}
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Summary 36

More generally, known as ‘Longest Path in a DAG‘.

In some sense, the prototypical example of Dynamic
Programming.

There is a way to reduce general graphs to DAGs called
Strongly Connected Components (SCCs).

Interesting but likely won’t have time to cover it.
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Tree Representation 37

A tree is an undirected, connected graph...

with a unique simple path between any two vertices.

where E = V − 1.

with no cycles.

where the removal of any edge disconnects the graph.
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Tree Representation 38

We usually represent them as if they have a root.

Hence each node naturally has a subtree associated to it.

To represent a tree, we generally like to know what the
parent of each node is, what the children of each node is
and problem-specific additional metadata on its subtree
(e.g: size).
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Tree Representation 39

const int N = 1e6 + 5;

// We need the list of edges to construct our representation

// But we don ’t use it afterwards .

vector <int > edges[N];

int par[N]; // Parent. -1 for the root.

vector <int > children[N]; // Your children in the tree.

int size[N]; // As an example: size of each subtree.

void constructTree(int c, int cPar = -1) {

par[c] = cPar;

size[c] = 1;

for (int nxt : edges[c]) {

if (nxt == par[c]) continue;

constructTree(nxt , c);

children[c]. push_back(nxt);

size[c] += size[nxt];

}

}
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Tree Representation 40

Now that we have our representation, we can do most of
what we want by just recursing using the children array.

In some sense, as close to a line as we can get. And lines
are very nice to work with.

We will see more trees in a bit.
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A spanning tree for some graph G is a subgraph of G that
is a tree, and also connects (spans) all of the vertices of G .

A minimum spanning tree (MST) is a spanning tree with
minimum sum of edge weights.

There are several similar algorithms to solve this problem.
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Minimum Spanning Trees 43

To construct a minimum spanning tree of some graph G ,
we maintain a set of spanning forests, initially composed
of just the vertices of the graph and no edges, and we
keep adding edges until we have a spanning tree.

Clearly, if we add |V | − 1 edges and we avoid constructing
any cycles, we’ll have a spanning tree.
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Minimum Spanning Trees 44

How do we decide which edges to add, so that we end up
with a minimum spanning tree?

We can’t add any edges to our spanning forest that has its
endpoints in the same connected component of our
spanning forest, or we’ll get a cycle.
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We can restrict ourselves to only the edges that cross
components that we haven’t connected yet.

Key Property: There is a greedy exchange property. If e
has minimum weight of edges that connect components
we haven’t connected yet, then there is a spanning tree
containing e.

Proof: By contradiction, consider a MST without e.
Then the addition of e to this MST would introduce a
cycle. But this cycle must contain another edge with
weight at least e’s. Replace this edge with e.
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The distinction between MST algorithms is in the way
that they pick the next components to join together, and
how they handle the joining.

Kruskal’s algorithm maintains multiple components at
once and connects the two components that contain the
next globally minimum edge.

Prim’s algorithm only ever connects one large connected
component to single disconnected vertices in the spanning
forest.
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Kruskal’s Algorithm 47

Kruskal’s algorithm is generally simpler to implement, and
more directly mirrors the mathematical properties of
MSTs.

Kruskal’s algorithm:

For each edge e in increasing order of weight, add e to the
MST if the vertices it connects are not already in the same
connected component.
Maintain connectedness with union-find.
This takes O(|E | log |E |) time to run, with the complexity
dominated by the time needed to sort the edges in
increasing order.
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Implementation
struct edge {

int u, v, w;

};

bool operator < (const edge& a, const edge& b) {

return a.w < b.w;

}

edge edges[N];

int p[N];

int root (int u); // union -find root with path compression

void join (int u, int v); // union -find join with size heuristic

int mst() {

sort(edges , edges+m); // sort by increasing weight

int total_weight = 0;

for (int i = 0; i < m; i++) {

edge& e = edges[i];

// if the endpoints are in different trees , join them

if (root(e.u) != root(e.v)) {

total_weight += e.w;

join(e.u, e.v);

}

}

return total_weight;

}
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Given a weighted directed graph G with two specific
vertices s and t, we want to find the shortest path that
goes between s and t on the graph.

Generally, algorithms which solve the shortest path
problem also solve the single source shortest path problem,
which computes shortest paths from a single source vertex
to every other vertex.

You can represent all the shortest paths from the same
source as a tree.
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It’s very important to distinguish between graphs where all
edges are positive and graphs with negative weight edges!
Why?

Imagine a graph with a cycle whose total weight is
negative.

Even if there are no negative cycles, this may still cause
problems depending on your algorithm choice!

If the graph is acyclic, negative weight edges generally
don’t cause problems, but care should be taken regardless.
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Most single source shortest paths algorithms rely on the
basic idea of building shortest paths iteratively. At any
point, we keep what we think is the shortest path to each
vertex and we update this by ”relaxing” edges.

Relax(u, v): if the currently found shortest path from our
source s to a vertex v could be improved by using the
edge (u, v), update it.

For graphs with non-negative weights, we can get away
with only relaxing vertices for which we know the optimal
distance. But with negative weights, this becomes trickier.
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If we keep track for each v of its most recently relaxed
incoming edge, we can find the actual path from the
source to v . How?

For each v , we know the vertex we would’ve come from if
we followed the shortest path from the source.

We can work backwards from v to the source to find the
shortest path from the source to v .
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If we keep relaxing our edges until we can’t anymore, then
we will have a shortest path.

How do we choose which edges to relax?
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For now, suppose there are no negative edges.

Visit each vertex u in turn, starting from the source s.
Whenever we visit the vertex u, we relax all of the edges
coming out of u.

How do we decide the order in which to visit each vertex?

We can do something similar to breadth-first search.

The next vertex we process is always the unprocessed
vertex with the smallest distance from the source.

This ensures that we only need to process each vertex
once: by the time we process a vertex, we have definitely
found the shortest path to it. Prove this inductively!
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Dijkstra’s Algorithm 56

To decide which vertex we want to visit next, we can
either just loop over all of them, or use a priority queue
keyed on each vertex’s current shortest known distance
from the source.

Since we know that we have a complete shortest path to
every vertex by the time we visit it in Dijkstra’s algorithm,
we know we only visit every vertex once.

Complexity Dijkstra’s Algorithm is O(E logV ) using a
binary heap as a priority queue, or O(V 2) with a loop.
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Dijkstra’s Algorithm 57

The above only holds for graphs without negative edges!

With negative edges, we may need to visit each vertex
more than once, and it turns out this makes the runtime
exponential in the worst case (and it’s even worse with
negative cycles).

In short: don’t use Dijkstra’s if there’s any negative edges!
(But most graphs you see won’t have them).
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Implementation
#include <queue >

typedef pair <int , int > edge; // (distance , vertex)

priority_queue <edge , vector <edge >, greater <edge >> pq;

// put the source s in the queue

pq.push(edge(0, s));

while (!pq.empty ()) {

// choose (d, v) so that d is minimal ,

// i.e. the closest unvisited vertex

edge cur = pq.top();

pq.pop();

int v = cur.second , d = cur.first;

if (seen[v]) continue;

dist[v] = d;

seen[v] = true;

// relax all edges from v

for (int i = 0; i < edges[v]. size (); i++) {

edge next = edges[v][i];

int u = next.second , weight = next.first;

if (! seen[u]) pq.push(edge(d + weight , u));

}

}
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Bellman-Ford Algorithm 59

How do we handle negative edges in a more efficient way?

How do we handle negative cycles?

Key Observation: If a graph has no negative cycle then
all shortest paths from u have length ≤ |V | − 1.
Conversely, a negative cycle implies there is a shortest
path of length |V | better than any path of length |V | − 1.

So we should instead build up shortest paths by number of
edges, not just from u outwards.

Bellman-Ford involves trying to relax every edge of the
graph (a global relaxation) |V | − 1 times and update our
tentative shortest paths each time.

Because every shortest path has at most |V | − 1 edges, if
after all of these global relaxations, relaxations can still be
made, then there exists a negative cycle.
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Bellman-Ford Algorithm 60

The time complexity of Bellman-Ford is O(VE ).

However, if we have some way of knowing that the last
global relaxation did not affect the tentative shortest path
to some vertex v , we know that we don’t need to consider
edges coming out of v in our next global relaxation.

This heuristic doesn’t change the overall time complexity
of the algorithm, but makes it run very fast in practice on
random graphs.

Sometimes called Shortest Path Faster Algorithm (SPFA)
for some reason...
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Implementation
struct edge {

int u, v, w;

edge(int _u , int _v , int _w) : u(_u), v(_v), w(_w) {}

};

vector <int > dist(n);

vector <edge > edges;

// global relaxation : try to relax every edge in the graph

// Returns if any distance was updated.

bool relax () {

bool relaxed = false;

for (auto e = edges.begin (); e != edges.end(); ++e) {

// we don ’t want to relax an edge from an unreachable vertex

if (dist[e->u] != INF && dist[e->v] > dist[e->u] + e->w) {

relaxed = true;

dist[e->v] = dist[e->u] + e->w;

}

}

return relaxed;

}
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Implementation (continued)

// Puts distances from source (n -1) in dist

// Returns true if there is a negative cycle , false otherwise .

// NOTE: You can ’t trust the dist array if this function returns True.

vector <int > find_dists_and_check_neg_cycle () {

fill(dist.begin (), dist.end(), INF);

dist[n-1] = 0;

// |V|-1 global relaxations

for (int i = 0; i < n - 1; i++) relax ();

// If any edge can be relaxed further , there is a negative cycle

for (auto e = edges.begin (); e != edges.end(); ++e) {

if (dist[e->u] != INF &&

dist[e->v] > dist[e->u] + e->w) {

return true;

}

}

// Otherwise , no negative cycle , that condition is actually a iff

return false;

}
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Slight technical note: Due to how we coded relax, after
n− 1 iterations, dist[i] may be the distance of a path of
length > n − 1. But this does not matter, everything still
holds.

If there is a negative cycle, you can’t trust the distances
computed. Call a vertex v ruined if its shortest distance
from u is actually −∞.

For every negative cycle, in every relaxation round at least
one of its vertices will be updated.

Hence, to find all ruined vertices, DFS out of all vertices
who were relaxed in the V -th round.

To find a specific negative cycle, backtrack from any
‘ruined‘ vertex.
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The all pairs shortest path problem involves finding the
shortest path between every pair of vertices in the graph.

Surprisingly, this can be found in O(V 3) time and O(V 2)
memory.
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Let f (u, v , i) be the length of the shortest path between u
and v using only the first i vertices (i.e. the vertices with
the i smallest labels) as intermediate vertices.

The key is to build this up for increasing values of i .

Base Case: Then f (u, u, 0) = 0 for all vertices u, and
f (u, v , 0) = we if there is an edge e from u to v , and
infinity otherwise.
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Say we have already calculated f (u, v , i − 1) for all pairs
u, v and some i . Then

f (u, v , i) = min(f (u, v , i − 1), f (u, i , i − 1)+ f (i , v , i − 1)).

The solution we already had, f (u, v , i − 1), definitely
doesn’t use i as an intermediate vertex.

If i is the only new intermediate vertex we can use, the
only new path that could be better is the shortest path
u → i concatenated with the shortest path i → v .
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f (u, v , i) = min(f (u, v , i − 1), f (u, i , i − 1) + f (i , v , i − 1))

Thus, f (u, v , n) will give the length of the shortest path
from u to v .

Noting that to calculate the table for the next i , we only
need the previous table, we see that we can simply
overwrite the previous table at each iteration, so we only
need O(V 2) space.

But what if f (u, i , i − 1) or f (i , v , i − 1) is overwritten in
the table before we get to use it?

Allowing the use of i as an intermediate vertex on a path
to or from i is not going to improve the path, unless we
have a negative-weight cycle.
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Implementation
// the distance between everything is infinity

for (int u = 0; u < n; ++u) for (int v = 0; v < n; ++v) {

dist[u][v] = 2e9;

}

// update the distances for every directed edge

for (/* each edge u -> v with weight w */) dist[u][v] = w;

// every vertex can reach itself

for (int u = 0; u < n; ++u) dist[u][u] = 0;

for (int i = 0; i < n; i++) {

for (int u = 0; u < n; u++) {

for (int v = 0; v < n; v++) {

// dist[u][v] is the length of the shortest path from u to v

using only 0 to i-1 as intermediate vertices

// now that we’re allowed to also use i, the only new path that

could be shorter is u -> i -> v

dist[u][v] = min(dist[u][v], dist[u][i] + dist[i][v]);

}

}

}
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Floyd-Warshall Algorithm 70

What if there is a negative cycle?

If there is a negative-weight cycle, our invariant is instead
f (u, v , i) ≤ shortest simple path from u → v only using
the first i vertices as intermediaries.

Hence f (u, u, n) will be negative for vertices in negative
cycles. Also you can’t trust the calculated distances, same
as Bellman-Ford.

Note that if there are negative-weight edges, but no
negative cycles, Floyd-Warshall will correctly find all
distances.

Every undirected graph with a negative-weight edge
contains a negative cycle.
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How can we find the actual shortest path?

As well as keeping track of a dist table, any time the
improved path (via i) is used, note that the next thing on
the path from u to v is going to be the next thing on the
path from u to i , which we should already know because
we were keeping track of it!

When initialising the table with the edges in the graph,
don’t forget to set v as next on the path from u to v for
each edge u → v .

Implementing this functionality is left as an exercise.
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Implicit Graphs 73

Although some graph interpretations are obvious (e.g.
cities and highways), it’s often the case that the graph you
must run your algorithm on is non-obvious.

Often this doesn’t admit a clean implementation using
something like an explicit adjacency list.

In many cases like this, it may be a better idea to compute
the adjacencies on the fly.

Also, sometimes modifying the graph you consider is
helpful!
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Example Problem: Two Buttons 74

Problem Statement You have found a strange device
that has a red button, a blue button, and a display
showing a single integer, initially n. Pressing the red
button multiplies the number by two; pressing the blue
button subtracts one from the number. If the number
stops being positive, the device breaks. You want the
display to show the number m. What is the minimum
number of button presses to make this happen?

Input Two space-separated integers n and m
(1 ≤ n,m ≤ 107).

Output A single number, the smallest number of button
presses required to get from n to m.
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Example Problem: Two Buttons 75

In this example, we should think of our button presses as
transitions.

Hence our graph has numbers as its vertices and edges
representing which numbers can reach each other through
button presses.

The graph is unweighted, so we just need to do a simple
BFS to find the answer.
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Example Problem: Two Buttons 76

Implementation
#include <bits/stdc ++.h>

using namespace std;

const int MAXVAL =10000000;

int n, m, v[MAXVAL +5];

queue <int > q;

int main () {

cin >> n >> m;

fill(v, v + 200000001 , 1e9);

q.push(n);

v[n] = 0;

while (q.size ()) {

int i = q.front (); q.pop();

if (i > 0 && v[i] + 1 < v[i -1]) {

v[i-1] = v[i] + 1;

q.push(i - 1);

}

if (i <= MAXVAL && v[i] + 1 < v[i*2]) {

v[i*2] = v[i] + 1;

q.push(i * 2);

}

}

cout << v[m];

}
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Example Problem: Rock Climbing 77

Problem Statement You are a rock climber trying to
climb a wall. On this wall, there are N rock climbing holds
for you to use. Whenever you are on the wall, you must be
holding on to exactly three holds, each of which can be at
most D distance from the other two. To move on the wall,
you can only disengage from one of the holds and move it
to another hold that is within D distance of the two holds
that you are still holding onto. You can move from hold to
hold at a rate of 1m/s. How can you reach the highest
hold in the shortest amount of time, starting from some
position that includes the bottom hold?
Input A set of up to N (1 ≤ N ≤ 50) points on a 2D
plane, and some integer D (1 ≤ D ≤ 1000). Each point’s
coordinates will have absolute value less than 1,000,000.
Output A single number, the least amount of time needed
to move from the bottom to the top.
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Example Problem: Rock Climbing 78

If there was no restriction that required you to always be
using three holds, then this would just be a standard
shortest path problem that is solvable using Dijkstra’s
algorithm.

We would just need to take the points as the vertices and
the distance between points as the edge weights.
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Example Problem: Rock Climbing 79

However, we need to account for the fact that we must be
using three holds clustered together at any time.

But there is a natural interpretation of the hold restriction
in terms of a graph: when we move from some position
that uses holds {a, b, c} to some position where we use
holds {a, b, d}, we can say that we are moving from some
vertex labelled {a, b, c} to some vertex labelled {a, b, d}.
It can be determined whether or not such a move is
allowed, i.e. if there is an edge between these vertices, in
constant time.
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Example Problem: Rock Climbing 80

Now, we have a graph where we have O(N3) vertices and
O(N4) edges.

Running our shortest path algorithm on this graph directly
will give us the answer we want, by definition.

So we can solve this problem in
O(E logV ) = O(N4 logN3) = O(N4 logN) time.
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Example Problem: Rock Climbing 81

Implementation
struct state {

int pid [3];

int dist;

};

bool operator < (const state &a, const state &b) {

return a.dist > b.dist;

}

priority_queue <state > pq;

pq.push(begin);

bool running = true;

while (!pq.empty () && running) {

state cur = pq.top();

pq.pop();

// check if done

for (int j = 0; j < 3; j++) {

if (cur.pid[j] == n) {

running = false;

break;

}

// to be continued
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Example Problem: Rock Climbing 82

Implementation (continued)

// try disengaging our jth hold

for (int j = 0; j < 3; j++) {

// and moving to hold number i

for (int i = 1; i <= n; i++) {

// can ’t reuse existing holds

if (i == cur.pid [0] || i == cur.pid [1] || i == cur.pid [2])

continue;

state tmp = cur;

tmp.dist += dist(cur.pid[j], i);

tmp.pid[j] = i;

sort(tmp.pid , tmp.pid + 3);

// try to move if valid

if (valid(tmp) &&

(! seen[tmp.pid [0]][ tmp.pid [1]][ tmp.pid [2]] ||

seen[tmp.pid [0]][ tmp.pid [1]][ tmp.pid [2]] > tmp.dist)) {

pq.push(tmp);

seen[tmp.pid [0]][ tmp.pid [1]][ tmp.pid [2]] = tmp.dist;

}

}

}

}

}



Graph
Algorithms

Graphs and
Graph Repre-
sentations

Graph
Traversals

Special
Classes of
Graphs

Minimum
Spanning
Trees

Single Source
Shortest Paths

Dijkstra’s
Algorithm

Bellman-Ford
Algorithm

All Pairs
Shortest Paths

Implicit
Graphs

Trees

Example Problem: Intercountry 83

Problem Statement There are N cities, each in one of C
countries. There are two modes of travel.

There are A unidirectional direct flight routes connecting
two cities, ui , vi with weight wi .
There are B unidirectional inter-country flights, connecting
two countries, ai , bi with a weight wi . These flights can be
boarded from any city in the source country and
disembarked from in any city in the destination country.

Find the shortest distance from city 1 to city N.
Input First line, 4 integers N,C ,A,B.
1 ≤ N,C ,A,B ≤ 100, 000. Next line, N integers, ci ,
denoting the country the i-th city is in. Next A lines each
with 3 integers ui , vi ,wi , 1 ≤ ui , vi ≤ N, 1 ≤ wi ≤ 109.
Next B lines each with 3 integers
ai , bi ,wi , 1 ≤ ai , bi ≤ C , 1 ≤ wi ≤ 109.
Output A single integer, shortest distance from city
1→ N. −1 if impossible.
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Example Problem: Intercountry 84

Sample Input:

4 3 2 2

1 2 2 3

1 4 100

2 4 20

1 2 50

1 3 80

Sample Output: 70

Explanation: Fly with an intercountry flight of cost 50 to
city 2. Then take a direct flight with cost 20 to city 4.
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Example Problem: Intercountry 85

How to view this as a graph? Without inter-country
flights, this is routine.

With inter-country flights, we could just generate all edges
between cities in country ai and bi .

But this is too many edges.
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Example Problem: Intercountry 86

Observation: We should only consider inter-country
flights originating from A the first time we reach a city in
A. Similarly, we should only consider inter-country flights
to B once.

This sounds just like how we treat cities in Dijkstra’s.

To encode this, we should treat countries just like cities in
our graph, they should have nodes. Be careful, we need 2
nodes per country, one to encode outgoing flights and one
to encode incoming flights. What are the edges though?
The natural ones.

Cities go to the ”outgoing” node for their country.
The ”incoming” node for a country goes to all cities in
that country.
”Outgoing” country nodes connect by inter-country flights
to ”incoming” country nodes.

O(N + C ) nodes, O(N + A+ B) edges. Okay!
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Example Problem: Intercountry 87

#include <bits/stdc ++.h>

using namespace std;

const int MAXN = 100005;

const int MAXC = 100005;

int N, C, A, B;

// (dest , dist)

// " outgoing" country nodes are at MAXN + (country id)

// " incoming" country nodes are at MAXN + MAXC + (country id)

vector <pair <int , long long >> allE[MAXN +2* MAXC ];

int main () {

cin >> N >> C >> A >> B;

for (int i = 1; i <= N; i++) {

int cC; cin >> cC;

allE[i]. emplace_back(MAXN + cC , 0);

allE[MAXN+MAXC+cC]. emplace_back(i, 0);

}

for (int i = 0; i < A; i++) {

int a, b; long long w;

cin >> a >> b >> w;

allE[a]. emplace_back(b, w);

}

for (int i = 0; i < B; i++) {

int a, b; long long w;

cin >> a >> b >> w;

allE[MAXN+a]. emplace_back(MAXN+MAXC+b);

}

// Run your favorite shortest dist algo!

}
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Example Problem: Escape From Enemy Territory88

Problem Statement You are at some position on a grid
and wish to reach your safe house at some other location
on the grid. However, also on certain cells on the grid are
enemy safe houses, which you do not want to go near.
What is the maximum possible distance you can stay away
from every enemy safe house, and still be able to reach
your own safe house? When there are multiple paths that
keep the same distance from the enemy safe houses, print
the shortest one. Distance in this problem is measured by
Manhattan distance.
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Example Problem: Escape From Enemy Territory89

Input An N ×M grid (1 ≤ N,M,≤ 1000), and the
location of your starting point, your safe house, and all the
enemy safe houses. There are up to 10,000 enemy safe
houses.

Output Two integers, the maximum distance that you can
stay away from every enemy safe house and still be able to
reach your safe house, and the shortest length of such a
path.
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Example Problem: Escape From Enemy Territory90

If there was no restriction stating that you must stay as far
away from the enemy safe houses as possible, this would
be a simple shortest path problem on a grid.

What if we already knew how far we need to stay away
from each enemy safe house?



Graph
Algorithms

Graphs and
Graph Repre-
sentations

Graph
Traversals

Special
Classes of
Graphs

Minimum
Spanning
Trees

Single Source
Shortest Paths

Dijkstra’s
Algorithm

Bellman-Ford
Algorithm

All Pairs
Shortest Paths

Implicit
Graphs

Trees

Example Problem: Escape From Enemy Territory91

Call the distance that we know we need to stay away from
the enemy safe houses X .

We just need to BFS out from every enemy safe house to
a distance of X squares, marking all of those squares as
unusable. Just marking them as seen will suffice.

Then we can find the answer with a simple BFS from the
starting point. It will ignore the squares that are too close
to enemy safe houses because we’ve marked them as seen.
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Example Problem: Escape From Enemy Territory92

How do we view our original optimisation problem in
terms of this decision problem?

Our simpler problem is a decision problem because we
answer whether or not it’s possible to get from the starting
point to the safe house with distance X .
The original problem is an optimisation problem because it
requires a ’best’ answer.

Observe that if we can stay X distance away from the
enemy safe houses, then any smaller distance is also
feasible, and if we cannot stay X distance away, then any
larger distance is also infeasible.



Graph
Algorithms

Graphs and
Graph Repre-
sentations

Graph
Traversals

Special
Classes of
Graphs

Minimum
Spanning
Trees

Single Source
Shortest Paths

Dijkstra’s
Algorithm

Bellman-Ford
Algorithm

All Pairs
Shortest Paths

Implicit
Graphs

Trees

Example Problem: Escape From Enemy Territory93

This monotonicity allows us to binary search for the
largest X such that we can still reach our safe house from
our starting point, which we check using the BFS
procedure outlined earlier.

Complexity Each check takes O(NM) time, and we need
to perform logXMAX = log(N +M) of these checks in our
binary search, so this algorithm takes O(NM log(N +M))
total.
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Example Problem: Escape From Enemy Territory94

Implementation
const int di[4] = { -1, 1, 0, 0 };

const int dj[4] = { 0, 0, -1, 1 };

vector <pair <int ,int >> enemies;

// search from all enemy safe houses to find

// each square ’s minimum distance to an enemy safe house

queue <pair <int , int >> q;

for (auto it = enemies.begin (); it != enemies.end(); ++it) {

q.push (*it);

}

while (!q.empty ()) {

pair <int , int > enemy = q.front (); q.pop();

int i = enemy.first , j = enemy.second;

// try all neighbours

for (int d = 0; d < 4; ++d) {

int ni = i + di[d], nj = j + dj[d];

// if off board , ignore

if (ni < 0 || ni >= N || nj < 0 || nj >= M) continue;

if (dist_to_enemy[ni][nj] != -1) continue;

dist_to_enemy[ni][nj] = dist_to_enemy[i][j] + 1;

q.push(make_pair(ni , nj));

}

}
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Example Problem: Escape From Enemy Territory95

Implementation (continued)

// binary search

int lo = -1, hi = min( dist_to_enemy[i1][j1], dist_to_enemy[i2][j2]),

sol = -1;

while (lo != hi) {

int X = (lo + hi + 1) / 2;

// BFS , since the edges are unit weight

vector <vector <int > > d2(N, vector <int >(M, -1));

d2[i1][j1] = 0;

q.push(make_pair(i1 , j1));

while (!q.empty ()) {

int i = q.front ().first , j = q.front ().second; q.pop();

for (int d = 0; d < 4; ++d) {

int ni = i + di[d], nj = j + dj[d];

if (ni < 0 || ni >= N || nj < 0 || nj >= M) continue;

if ( dist_to_enemy[ni][nj] < X) continue;

if (dist[ni][nj] != -1) continue;

dist[ni][nj] = dist[i][j] + 1;

q.push(make_pair(ni , nj));

}

}

if (dist[i2][j2] == -1) hi = X - 1;

else lo = X, sol = dist[i2][j2];

}



Graph
Algorithms

Graphs and
Graph Repre-
sentations

Graph
Traversals

Special
Classes of
Graphs

Minimum
Spanning
Trees

Single Source
Shortest Paths

Dijkstra’s
Algorithm

Bellman-Ford
Algorithm

All Pairs
Shortest Paths

Implicit
Graphs

Trees

Table of Contents 96

1 Graphs and Graph Representations

2 Graph Traversals

3 Special Classes of Graphs

4 Minimum Spanning Trees

5 Single Source Shortest Paths
Dijkstra’s Algorithm
Bellman-Ford Algorithm

6 All Pairs Shortest Paths

7 Implicit Graphs

8 Trees



Graph
Algorithms

Graphs and
Graph Repre-
sentations

Graph
Traversals

Special
Classes of
Graphs

Minimum
Spanning
Trees

Single Source
Shortest Paths

Dijkstra’s
Algorithm

Bellman-Ford
Algorithm

All Pairs
Shortest Paths

Implicit
Graphs

Trees

Intro 97

The nicest class of graphs. In some sense, the closest to a
line you can get.

Many of the techniques you like for lines still work on a
tree.

Linear Sweep is to... DFS
DP is to... DP on a tree
Range Tree is to... Path Queries or Range tree over a tree
Divide and Conquer is to... Centroid Decomposition

We’ll talk about the first 3.
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Shortest Distance on a Tree 98

Problem Statement Given a weighted tree, answer Q
queries of shortest distance between vertex ui and vi .

Input A tree described as |V | − 1 edges. Followed by Q
queries. 1 ≤ |V | ,Q ≤ 100, 000.

Output For each query, an integer, the shortest distance
from ui to vi .
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Shortest Distance on a Tree 99

1

2

3 4

5

1

1 3

7

Sample Queries:

1 3: 2

3 4: 4

4 5: 11
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Shortest Distance on a Tree 100

As usual, assume you’ve run your tree representation DFS
so the tree is now arbitrarily rooted.

Well, the hard part seems to be figuring out what the path
actually is.

1

2

3 4

5

1

1 3

7

And for this it suffices to find the Lowest Common
Ancestor (LCA)!
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Lowest common ancestor 101

Problem statement You are given a labelled rooted tree,
T , and Q queries of the form, “What is the vertex
furthest away from the root in the tree that is an ancestor
of vertices labelled u and v?”

Input A rooted tree T (1 ≤ |T | ≤ 1, 000, 000), as well as
Q (1 ≤ Q ≤ 1, 000, 000) pairs of integers u and v .

Output A single integer for each query, the label for the
vertex that is furthest away from the root that is an
ancestor of u and v
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Lowest common ancestor 102

Algorithm 1 The most straightforward algorithm to solve
this problem involves starting with pointers to the vertices
u and v , and then moving them upwards towards the root
until they’re both at the same depth in the tree, and then
moving them together until they reach the same place

This is O(n) per query, since it’s possible we need to
traverse the entire height of the tree, which is not
bounded by anything useful
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Lowest common ancestor 103

The first step we can take is to try to make the “move
towards root” step faster

Since the tree doesn’t change, we can pre-process the tree
somehow so we can jump quickly
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Binary function composition 104

Let’s examine the parent relation parent[u] in the tree

Our “move towards root” operation is really just repeated
application of this parent relation

The vertex two steps above u is parent[parent[u]], and
three steps above is parent[parent[parent[u]]]
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Binary function composition 105

Immediately, we can precompute the values parent[u][k],
which is parent[u] applied k times

This doesn’t have an easy straightforward application to
our problem, nor is it fast enough for our purposes
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Binary function composition 106

If we only precompute parent[u][k] for each k = 2ℓ, we
only need to perform O(log n) computations.

Then, we can then compose up to log n of these
precomputed values to obtain parent[u][k] for arbitrary k

To see this, write out the binary expansion of k and keep
greedily striking out the most significant set bit — there
are at most log n of them.
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Lowest common ancestor 107

Algorithm 2 Instead of walking up single edges, we use
our precomputed parent[u][k] to keep greedily moving up
by the largest power of 2 possible until we’re at the desired
vertex

How do we find the LCA of u and v given our
precomputation?

First, move both u and v to the same depth.

Binary Search! You are binary searching for the maximum
amount you can jump up without reaching the same
vertex. Then the parent of that vertex is the LCA.

To implement this, we try jumping up in decreasing power
of 2 order. We reject any jumps that result in u and v
being at the same vertex.
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Implementation (preprocessing)

// parent[u][k] is the 2^k-th parent of u

void preprocess () {

for (int i = 0; i < n; i++) {

// assume parent[i][0] (the parent of i) is already filled in

for (int j = 1; (1<<j) < n; j++) {

parent[i][j] = -1;

}

}

// fill in the parent for each power of two up to n

for (int j = 1; (1<<j) < n; j++) {

for (int i = 0; i < n; i++) {

if (parent[i][j-1] != -1) {

// the 2^j-th parent is the 2^(j -1) -th parent of the 2^(j -1) -

th parent

parent[i][j] = parent[parent[i][j -1]][j -1];

}

}

}

}
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Implementation (querying)
int lca (int u, int v) {

// make sure u is deeper than v

if (depth[u] < depth[v]) swap(u,v);

// log[i] holds the largest k such that 2^k <= i

for (int i = log[depth[u]]; i >= 0; i--) {

// repeatedly raise u by the largest possible power of two until

it is the same depth as v

if (depth[u] - (1<<i) >= depth[v]) u = parent[u][i];

}

if (u == v) return u;

for (i = log[depth[u]]; i >= 0; i--)

if (parent[u][i] != -1 && parent[u][i] != parent[v][i]) {

// raise u and v as much as possible without having them

coincide

// this is important because we’re looking for the lowest common

ancestor , not just any

u = parent[u][i];

v = parent[v][i];

}

// u and v are now distinct but have the same parent , and that

parent is the LCA

return parent[u][0];

}
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Complexity? O(n log n) time and memory preprocessing,
O(log n) time per query.

Trap: You must do the jumps from largest power of 2 to
lowest. Otherwise it’s just completely wrong.

You can use this to support a bunch of path queries if
there are no updates. Think of it as the range tree of
paths in trees.

Surprisingly you can do LCA in O(n)/O(1)
preprocessing/per query time.

Even more surprisingly, one can use this to do Range
Minimum Queries with no updates in O(n)/O(1).
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Problem Statement Given a weighted tree, answer Q
queries of shortest distance between vertex ui and vi .

Input A tree described as |V | − 1 edges. Followed by Q
queries. 1 ≤ |V | ,Q ≤ 100, 000.

Output For each query, an integer, the shortest distance
from ui to vi .
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1

2

3 4

5

1

1 3

7

Sample Queries:

1 3: 2

3 4: 4

4 5: 11
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Now we know what the path between u and v looks like,
it’s u → lca followed by lca→ v . What else do we need to
answer distance queries?

Need to know lengths of certain ranges, like in a range
tree.

Generally, you would compute lengths and store it in the
binary composition data structure you are using, like a
range tree.

But since sum has an inverse, we can be a bit lazier and
use a cumulative sum like data structure instead.

We will store dist(root, u) for all u. Then
dist(u, v) = dist(root, u)+dist(root, v)−2·dist(root, lca).
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#include <bits/stdc ++.h>

using namespace std;

const int MAXN = 100000 , LOGN = 18;

struct edge { int nd; long long d; };

int parent[MAXN +5][ LOGN ];

long long distToRoot[MAXN +5];

vector <edge > children[MAXN +5];

// Code to set up LCA and tree representation

void construct_tree(int c, int cPar = -1);

int lca(int a, int b);

void calc_dists_to_root(int c) {

for (auto edg : children[c]) {

distToRoot[edg.nd] = distToRoot[c] + edg.d;

calc_dists_to_root(edg.nd);

}

}

long long find_tree_dist(int a, int b) {

int cLca = lca(a, b);

return distToRoot[a] + distToRoot[b] - 2 * distToRoot[cLca ];

}
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