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How does <vector> work? 3

Vectors are dynamic arrays

Random access is O(1), like arrays

A vector is stored contiguously in a single block of memory

Supports an extra operation push_back(), which adds an
element to the end of the array
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How does push back() allocate memory? 4

Do we have enough space allocated to store this new
element? If so, we’re done: O(1).
Otherwise, we need to allocate a new block of memory
that is big enough to fit the new vector, and copy all of
the existing elements to it. This is an O(N) operation
when the vector has N elements. How can we improve?
If we double the size of the vector each reallocation, we
perform O(N) work once, and then O(1) work for the next
N − 1 operations, an average of O(1) per operation.
We call this time complexity amortised O(1).
How is this different from average case complexity? When
we quote ‘average case’ complexity (e.g. for a hash table),
it is usually possible to construct a case where N
consecutive operations will each take O(N) time, for a
total time of O(N2). This is not possible with amortised
complexity.
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Example Vector Usage 5

#include <cassert >

#include <vector >

using namespace std;

int main () {

vector <int > v;

for (int i = 0; i < 10; i++) v.push_back(i*2);

v[4] += 20;

assert(v[4] == 28);

return 0;

}
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Stacks 7

Supports push() and pop() operations in O(1)

LIFO (last in, first out)

STL implements a templated stack in <stack>

Equivalently, you can use an array or vector to mimic a
stack, with the advantage of allowing random access
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Queues 8

Supports push() and pop() operations in O(1)

FIFO (first in, first out)

STL implements a templated queue in <queue>

Equivalently, you can use an array or vector to mimic a
queue, with the advantage of allowing random access
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Example Usage 9

#include <cassert >

#include <queue >

#include <stack >

using namespace std;

int main () {

stack <int > stk;

queue <long long > que;

stk.push (1);

stk.push (2);

assert(stk.top() == 2);

stk.pop();

assert(stk.top() == 1);

assert(stk.size () == 1);

assert (!stk.empty ());

que.push (1);

que.push (2);

assert(que.front () == 1);

return 0;

}
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Sets 11

STL’s <set> is a set with O(log n) random access

Internally implemented as a red/black tree of set elements

Unfortunately doesn’t give you easy access to the
underlying tree - iterator traverses it by infix order

C++11 adds <unordered_set>, which uses hashing for
O(1) average case (O(n) worst case) random access

Main advantage of <set> is it keeps the data ordered,
hence has lower_bound(x) and upper_bound(x) which
returns the next element not less than (resp. greater than)
x .

<multiset> and (C++11) <unordered_multiset> are
also available
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Maps 12

STL’s <map> is a dictionary with O(log n) random access

Internally implemented with a red/black tree of (key,value)
pairs

Unfortunately doesn’t give you access to the underlying
tree - iterator traverses it by infix order

C++11 adds <unordered_map>, which uses hashing for
O(1) average case (O(n) worst case) random access

Main advantage of <set> is it keeps the data ordered,
hence has lower_bound(x) and upper_bound(x) which
returns the next element not less than (resp. greater than)
x .

<multimap> and (C++11) <unordered_multimap> are
also available
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#include <bits/stdc ++.h>

using namespace std;

set <int > s;

map <int , char > m;

int main () {

s.insert (2); s.insert (4); s.insert (1);

m = {{1,’a’}, {4,’c’}, {2,’b’}};

// Check membership :

cout << (s.find (2) != s.end()) << ’ ’ << (s.find (3) != s.end()) << ’\n’;

// 1 0

// Access map:

cout << m[1] << ’\n’; // ’a’

// WARNING: Access to non - existent data just silently adds it , avoid

this.

// cout << m[3] << ’\n ’;

// Lower and upper bounds:

cout << *s.lower_bound (2) << ’\n’; // 2

cout << *s.upper_bound (2) << ’\n’; // 4

auto it = m.lower_bound (2);

cout << it ->first << ’ ’ << it ->second << ’\n’; // 2 b

// Move around with prev/next or increment / decrement

cout << prev(it)->first << ’\n’; // 1

++it;

cout << it ->first << ’\n’; // 4

return 0;

}
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Order Statistic Trees 14

One of the main problems with set and map is they don’t
track index information.

So you can’t query what the k-th number is or how many
numbers are < x .

Most SBBSTs can be modified to track this metadata.
But we do not want to implement a SBBST.
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Order Statistic Trees 15

There is a fix in GNU C++. So it is not a C++ standard
but pretty widespread.

Contained in an extension called ”Policy Based Data
Structures”.

In headers:

#include <ext/pb_ds/assoc_container.hpp>

#include <ext/pb_ds/tree_policy.hpp>

using namespace __gnu_pbds;

Details are pretty technical, fortunately we don’t need to
know them.
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Order Statistic Trees 16

New data structure:

typedef tree<int, null_type, less<int>, rb_tree_tag,

tree_order_statistics_node_update>

ordered_set;

Key type: int

No mapped type (a set not a map)

Comparison: less<int>

rb_tree_tag: Implemented as a red-black tree,
guarantees O(log n) performances

tree_order_statistics_node_update. The magic.
Tells it to update order statistics as it goes.
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Order Statistic Trees 17

Essentially a set/map with 2 extra operations:

find_by_order(x): Find the x-th element, 0-indexed.

order_of_key(x): Output the number of elements that
are < x .

Both are O(log n) still!

Furthermore, in other regards they still behave like a
set/map!



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Example
Problems

Range Queries
and Updates

#include <bits/stdc ++.h>

#include <ext/pb_ds/assoc_container.hpp >

#include <ext/pb_ds/tree_policy.hpp >

using namespace __gnu_pbds;

using namespace std;

typedef tree <int , null_type , less <int >, rb_tree_tag ,

tree_order_statistics_node_update > ordered_set;

ordered_set myset;

int main () {

myset.insert (2);

myset.insert (4);

myset.insert (1);

printf("%d\n", *( myset. find_by_order (0))); // 1

printf("%d\n", (int)myset.order_of_key (3)); // 2

printf("%d\n", (int)myset.order_of_key (4)); // 2

printf("%d\n", (int)myset.size ()); // 3

}
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#include <bits/stdc ++.h>

#include <ext/pb_ds/assoc_container.hpp >

#include <ext/pb_ds/tree_policy.hpp >

using namespace __gnu_pbds;

using namespace std;

typedef tree <int , char , less <int >, rb_tree_tag ,

tree_order_statistics_node_update > ordered_map;

ordered_map mymap;

int main () {

mymap [2] = ’a’;

mymap [4] = ’b’;

mymap [1] = ’c’;

pair <int , char > pic = *mymap. find_by_order (0);

printf("%d %c\n", pic.first , pic.second); // 1 c

printf("%d\n", (int)mymap.order_of_key (3)); // 2

printf("%d\n", (int)mymap.order_of_key (4)); // 2

printf("%d\n", (int)mymap.size ()); // 3

}
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Heaps 21

Supports push() and pop() operations in O(log n)
Supposes top() in O(1).

top() returns the value with highest priority

Is usually used to implement a priority queue data
structure

STL implements a templated priority queue in <queue>

The default is a max heap - often we want a min heap, so
we declare it as follows:
priority_queue <T, vector <T>, greater <T>> pq;

It’s significantly more code to write a heap yourself, as
compared to writing a stack or a queue, so it’s usually not
worthwhile to implement it yourself
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Heaps 22

The type of heaps usually used is more accurately called a
binary array heap which is a binary heap stored in an array.

It is a binary tree with two important properties:

Heap property: the value stored in every node is greater
than the values in its children
Shape property: the tree is as close in shape to a
complete binary tree as possible
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Heaps 23

Operation implementation

push(v): add a new node with the value v in the first
available position in the tree. Then, while the heap
property is violated, swap with parent until it’s valid again.
pop(): the same idea (left as an exercise)
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Heaps 24
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Heaps 25
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Heaps 26
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Heaps 27

Implementation
#include <queue >
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Basic Uses 29

Most uses fall out naturally from the use case.

Vectors: Use everywhere.

Stacks: When you need a LIFO structure. Generally when
the most recent thing you’ve seen is most important or
should be processed first.

E.g: basic parsers, dfs, bracket matching.

Queues: When you need a FIFO structure. Generally when
you want to process events in order of occurrence.

E.g: event processing, bfs.
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Basic Uses 30

Heap: When you find yourself asking how I can get the
”largest/smallest” item.

E.g: Dijkstras, problem from yesterday.

Set: Seen array on unbounded keys. Also when you need
to dynamically maintain a sort order.

E.g: Recognizing duplicates, find closest key to x .

Map: As above but with keyed data.

E.g: Count duplicates, find index of the closest key to x .
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Example problem: Restaurants 32

Recall this problem boiled down to:

Process countries in any order.

For each, seat delegates at restaurant with most seats,
then second most, etc.

Sounds like a max heap to me!
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Example problem: Restaurants 33

#include <bits/stdc ++.h>

using namespace std;

const int MAXN = 2005, MAXM = 2005;

int N, numDelegates[MAXN], M;

priority_queue <int > restaurants;

int main () {

cin >> N;

for (int i = 0; i < N; i++) cin >> numDelegates[i];

cin >> M;

for (int i = 0; i < M; i++) {

int s; cin >> s; restaurants.push(s);

}

int starved = 0;

for (int i = 0; i < N; i++) {

vector <int > poppedRestaurants;

int delegatesRemaining = numDelegates[i];

while ( delegatesRemaining && !restaurants.empty ()) {

// seat a delegate at the restaurant with the most seats.

delegatesRemaining --;

int seatsRemaining = restaurants.top() - 1;

restaurants.pop();

poppedRestaurants .push_back( seatsRemaining);

}

for (int r : poppedRestaurants)

if (r > 0) restaurants.push(r);

starved += delegatesRemaining;

}

cout << starved << ’\n’;

}
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Example problem: Restaurants 34

New complexity?

Let A be the maximum number of delegates per country.

O(A · N · logM) ≈ O(2000 · 20 · 11).
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Subsequence Sum 35

Problem statement You are given an array of n numbers,
say a0, a1, . . . , an−1. Find the number of pairs (i , j) with
0 ≤ i < j ≤ n such that the corresponding contiguous
subsequence satisfies

ai + ai+1 + . . .+ aj−1 = S

for some specified sum S .

Input The size n of the array (1 ≤ n ≤ 100, 000), and the
n numbers, each of absolute value up to 20,000, followed
by the sum S , of absolute value up to 2,000,000,000.

Output The number of such pairs
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Subsequence Sum 36

Algorithm 1 Evaluate the sum of each contiguous
subsequence, and if it equals S , increment the answer.

Complexity There are O(n2) contiguous subsequences,
and each takes O(n) time to add, so the time complexity
is O(n3).

Algorithm 2 Compute the prefix sums

bi = a0 + a1 + . . .+ ai−1.

Then each subsequence can be summed in constant time:

ai + ai+1 + . . .+ aj−1 = bj − bi .

Complexity This solution takes O(n2) time, which is an
improvement but still too slow.
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Subsequence Sum 37

We need to avoid counting the subsequences individually.

For each 1 ≤ j ≤ n, we ask: how many i < j have the
property that bi = bj − S?

If we know the frequency of each value among the bi , we
can add all the answers involving j at once.

The values could be very large, so a simple frequency table
isn’t viable - use a map!
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Subsequence Sum 38

Algorithm 3 Compute the prefix sums as above. Then
construct a map, and for each bj , add the frequency of
bj − S to our answer and finally increment the frequency
of bj .

Complexity The prefix sums take O(n) to calculate, since

bi+1 = bi + ai .

Since map operations are O(log n), and each bj requires a
constant number of map operations, the overall time
complexity is O(n log n).
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Subsequence Sum 39

Implementation
const int N = 100100;

int a[N];

int b[N];

int main () {

int n, S;

cin >> n;

for (int i = 0; i < n; i++) {

cin >> a[i];

b[i+1] = b[i] + a[i];

}

cin >> S;

long long ret = 0;

map <int ,int > freq;

for (int i = 0; i <= n; i++) {

ret += freq[b[i]-S];

freq[b[i]]++;

}

cout << ret << endl;

}
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Largest Interval 40

Problem statement You have M ≤ 1, 000, 000, 000
chairs, initially all empty. There are U ≤ 100, 000 updates,
in each a person comes in and takes an unoccupied chair
ci . After each update, what is the longest range of
unoccupied chairs?

Input First line, M then U. Next U lines, each contains
one integer, 1 ≤ ci ≤ M. Guaranteed no integer appears
more than once.

Output For each update, an integer, the longest range of
unoccupied chairs after the update.
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Largest Interval 41

Sample Input:

12 3

5

7

10

Sample Output:

7

5

4
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Largest Interval 42

Observation 1: We only care about maximal ranges.
Assuming chair 0 and chair M + 1 are occupied, we only
care about ranges starting and ending with occupied
chairs.

So we will maintain for each chair, what is the length of
the range to its right.

How does an update change the intervals?

It breaks one apart and adds 2.
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Largest Interval 43

What data do we need to store to handle updating
intervals (i.e: to determine what the 2 new intervals are
when we insert a chair)?

For each update, we need to find the closest chair in both
directions.

We need to maintain a sorted list of chairs associating with
each chair the length of the range starting at that chair.

Map!

Figuring out the new range lengths is basic maths, just be
careful with off-by-1s!



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Example
Problems

Range Queries
and Updates

Largest Interval 44

Now we know how to track length of each range. Remains
to track the largest of the ranges.

Heap!

But wait, heaps can not do arbitrary deletions... (which
we need when we delete an interval)

Set!
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Largest Interval 45

#include <bits/stdc ++.h>

using namespace std;

int M, U;

map <int , int > chairToRange;

multiset <int > allRanges;

void addRange(int start , int length) {

chairToRange[start] = length;

allRanges.insert(length);

}

void updateRange(int start , int length) {

allRanges.erase(allRanges.find(chairToRange[start ]));

chairToRange[start] = length;

allRanges.insert(length);

}
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Largest Interval 46

int main () {

cin >> M;

// Pretend the 2 ends are occupied. This reduces case handling.

addRange (0, M); addRange(M+1, 0);

cin >> U;

for (int i = 0; i < U; i++) {

int q; cin >> q;

auto it = chairToRange.lower_bound(q);

int qLength = it ->first - q - 1;

--it;

int updatedLength = q - it ->first - 1;

addRange(q, qLength);

updateRange(it ->first , updatedLength);

cout << *allRanges.rbegin () << ’\n’;

}

return 0;

}



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Example
Problems

Range Queries
and Updates

Area Under Histogram 47

Many of our data structures work best if data is sorted.

E.g: we can then chuck them into a set and use
lower_bound

Or we can chuck them into a vector and binary search.

Sometimes we have to work a bit to get this!
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Area Under Histogram 48

Problem statement Given a histogram with n unit-width
columns, the i-th with height hi . What is the largest area
of a rectangle that fits under the histogram.

Input The integer 1 ≤ n ≤ 100, 000 and n numbers,
0 ≤ hi ≤ 1, 000, 000, 000.

Output The largest area of a rectangle that you can fit
under the histogram.
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Area Under Histogram 49

Sample Input:

5

3 2 4 1 2

Sample Output: 6
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Area Under Histogram 50

Observation 1: We only care about ”maximal”
rectangles.

More formally, they hit some column’s roof and can not be
extended to the left or right.

Many angles to approach this problem. Let us focus on
one specific column’s roof. We now want to find the
largest histogram that hits that column’s roof.

Claim: We just need to know the first column to its left
(and right) that has lower height than it.

But we need this for all choices of our ”specific column”.
So we will try to do this in a linear sweep and maintain
some sort of data structure that can answer this.
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Area Under Histogram 51

Queries: what is the first column with height < h.

Updates: add a new column (pos, hpos) where pos is
greater than all previous positions.

Multimap? But what can we search on...?

If our key is height then we can find a column lower than
us. But it is not guaranteed to be the closest one.
If our key is position then we can’t do anything.

Heap? Again, same problem (our heap can’t do anything
a set can’t do).
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Area Under Histogram 52

Key Observation: Out of all added columns, we only care
about columns that have no lower columns to their right!

So if we only keep the blue columns in our map then now,
the first column in our map lower than us is also the
closest column lower than us.
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Area Under Histogram 53

#include <bits/stdc ++.h>

using namespace std;

int N, h[100005];

// height -> column

map <int , int > importantColumns;

int main () {

cin >> N;

for (int i = 0; i < N; i++) cin >> h[i];

// Reduces cases. Important -2 has lower height than all input heights.

importantColumns [-2] = -1;

for (int i = 0; i < N; i++) {

// find closest column to i’s left with lower height.

auto it = prev( importantColumns.lower_bound(h[i]));

cout << it ->second << ’\n’;

// update importantColumns

while ( importantColumns.rbegin ()->first >= h[i]) {

importantColumns.erase( importantColumns.rbegin ()->first);

}

importantColumns[h[i]] = i;

}

return 0;

}
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Area Under Histogram 54

Complexity? Dominated by map operations. O(n) calls
to lower_bound. How about calls to push and pop?

Each item is pushed and popped once so O(n) calls to
both.

Amortizes to O(n log n).

Do this in reverse and add a bit of maths to solve original
problem regarding largest rectangle under histogram.

Could have sped this up to O(n) by using a vector instead
of a set and binary searching.

Challenge: There is a beautiful algorithm that does it in
one stack sweep in O(n). Essentially the same idea except
process a rectangle not at the column where it attains its
maximum but at the right end.

Another famous problem using a similar idea is Longest
Increasing Subsequence.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Example
Problems

Range Queries
and Updates

Table of Contents 55

1 Vectors

2 Stacks and Queues

3 Sets and Maps

4 Heaps

5 Basic Examples

6 Example Problems

7 Union-Find

8 Example Problems

9 Range Queries and Updates



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Example
Problems

Range Queries
and Updates

Digression: Rooted Trees 56

A tree is a connected, undirected graph with a unique
simple path between any two vertices.

A rooted tree is one with a designated root. All other
vertices have a parent, for v , par [v ] is the next node in the
unique path from v to the root.

An easy way to represent a rooted tree is to just store this
parent array.

Example: (Drawn in class)
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Union-Find 57

Also called a system of disjoint sets

Used to represent disjoint sets of items.

Given some set of elements, support the following
operations:

union(A,B): union the disjoint sets that contain A and B
find(A): return a canonical representative for the set that
A is in

More specifically, we must have find(A) = find(B)
whenever A and B are in the same set.
It is okay for this answer to change as new elements are
joined to a set. It just has to remain consistent across all
elements in each disjoint set at a given moment in time.
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Union-Find: Straightforward Implementation 58

Strategy: Represent each disjoint set as a rooted tree.
For this, we just need to store the parent of each element

The representative of each rooted tree is the chosen root

A find is just walking up parent edges in the tree until the
root is found

A union is just adding an edge between two separate
rooted trees.

Due to how we store our rooted tree, we will add the edge
between root(A) and root(B), not directly between A and
B

The number of edges traversed is equal to the height of
the tree, so this is O(h), where h is the maximum height
of the tree, which is O(n)
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Union-Find: Size Heuristic 59

When adding an edge for a union, find the representative
for both sets first

Then, set the parent of the representative for the smaller
set to the representative of the larger set

The maximum height of this tree is now O(log n)

When we traverse the edges from any particular element to
its parent, we know that the subtree rooted at our current
element must at least double in size, and we can double in
size at most O(log n) times

find and union are now O(log n) time, since the height is
now O(log n)
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Union-Find: Path Compression 60

When performing a find operation on some element A,
instead of just returning the representative, we change the
parent edge of A to whatever the representative was,
flattening that part of the tree

Alone gives an amortised O(log n) per operation
complexity. Proof is nontrivial, omitted.

Combined with the size heuristic, we get a time complexity
of amortised O(α(n)) per operation, but the proof is very
complicated.
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Union-Find: Complexity 61

What is α(n)? α(n) is the inverse Ackermann function, a
very slow growing function which is less than 5 for

n < 22
22

16

.

As mentioned, the above two optimisations together bring
the time complexity down to amortised O(α(n)).

Warning: due to a low-level detail, the path compression
optimisation actually significantly slows down the find
function, because we lose the tail recursion optimisation,
now having to return to each element to update it. This
may overshadow the improvement from O(log n) to
O(α(n)) depending on bounds of the problem.
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Implementation 62

Implementation
int parent[N];

int subtree_size[N];

void init(int n) {

for (int i = 0; i < n; i++) {

parent[i] = i; subtree_size[i] = 1;

}

}

int root(int x) {

// only roots are their own parents

// otherwise apply path compression

return parent[x] == x ? x : parent[x] = root(parent[x]);

}

void join(int x, int y) {

// size heuristic

// hang smaller subtree under root of larger subtree

x = root(x); y = root(y);

if (x == y) return;

if ( subtree_size[x] < subtree_size[y]) {

parent[x] = y;

subtree_size[y] += subtree_size[x];

} else {

parent[y] = x;

subtree_size[x] += subtree_size[y];

}

}
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Problem: Basic Dynamic Connectivity 64

The main application of union find.

Given a graph with N vertices and no edges. Support Q
queries of two forms

Support updates of add an edge between a and b
Support queries of, is a connected to b?

N,Q up to 100,000

Add updates will be of the form add a b

Connectedness queries will be of the form q a b, output 1
if they are connected, 0 otherwise.
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Problem: Basic Dynamic Connectivity 65

#include <bits/stdc ++.h>

using namespace std;

// TODO: insert your union find implementation here

int root (int u);

void join (int u, int v);

int main () {

int N, Q;

cin >> N >> Q;

for (int q = 0; q < Q; q++) {

string queryType;

int a, b;

cin >> queryType >> a >> b;

if (queryType == "add") {

join(a,b);

} else {

cout << (root(a) == root(b)) << ’\n’;

}

}

return 0;

}
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Problem: Basic Dynamic Connectivity 66

When is it useful? When you need to maintain which
items are in the same set.

Main limitation: You can not delete connections, only
add them. However, in a lot of natural contexts, this is
not a restriction since items in the same set can be treated
as the same item.
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Range Data Structures 68

Last main topic is data structures that support operations
on a range

Why do we care about this?

Pragmatic answer: Impossible to just support arbitrary
queries and updates. Meanwhile there is a lot of
interesting stuff we can do with ranges.
But also, a lot of useful applications by itself. Naturally, a
lot of what we care about comes in the form of ranges.
E.g: ranges of numbers, a range in an array, linear sweeps
often result in caring about ranges...
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Problem: Range Queries 69

Given N integers a0, a1, . . . , aN−1, answer queries of the
form:

r−1∑
i=l

ai

for given pairs l , r .

N is up to 100, 000.

There are up to 100, 000 queries.

We can’t answer each query näıvely, we need to do some
kind of precomputation.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Example
Problems

Range Queries
and Updates

Problem: Range Queries 70

Algorithm Construct an array of prefix sums.

b0 = a0.

bi = bi−1 + ai .

This takes O(N) time.

Now, we can answer every query in O(1) time.

This works on any “reversible” operation. That is, any
operation A ⋆ B where if we know A ⋆ B and A, we can
find B.

This includes addition and multiplication, but not max or
gcd.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Example
Problems

Range Queries
and Updates

Problem: Range Max Queries 71

Given N integers a0, a1, . . . , aN−1, answer queries of the
form:

max(a[l , r))

for given pairs l , r .

N is up to 100, 000.

There are up to 100, 000 queries.

We can’t answer each query näıvely, we need to do some
kind of precomputation.

Also can’t take prefix sums as knowing max([a0, . . . , al))
and max([a0, ar )) says almost nothing about max([al , ar )).
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Sparse Tables 72

Max is not ”reversible” but it does have a nice property:
idempotence. This just means max(x , x) = x , i.e: I can
apply max as many times as I want to the same element,
it does not do anything.

This translates to the following property. If l ≤ s ≤ t ≤ r
then

max([al , ar )) = max(max([al , at)),max([as , ar )))

So we want to precompute the max of a bunch of
intervals, such that [al , ar ) is always the union of two of
these intervals.
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Sparse Tables 73

Key Idea: Instead of precomputing prefix sums,
precompute all intervals whose lengths are powers of 2.

This can be done quickly since an interval of length 2k is
the union of two intervals of length 2k−1.
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Sparse Tables 74

Precomp Implementation
#include <bits/stdc ++.h>

using namespace std;

const int MAXN = 100000;

const int LOGN = 18;

// sparseTable [l][i] = max a[i...i+2^l)

int sparseTable[LOGN ][ MAXN ];

int main () {

// Input the initial array

for (int i = 0; i < MAXN; i++) cin >> sparseTable [0][i];

for (int l = 1; l < LOGN; l++) {

int prevp2 = 1 << (l-1);

for (int i = 0; i < MAXN; i++) {

int intEnd = i + prevp2;

if (intEnd < MAXN)

sparseTable[l][i] = max(sparseTable[l -1][i],

sparseTable[l -1][ intEnd ]);

else

sparseTable[l][i] = sparseTable[l-1][i];

}

}

}
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Sparse Tables 75

Suppose we now want max[al , . . . , al+s).

Let p = 2t be the largest power of 2 that is ≤ s.

Key Observation:

l ≤ (l + s)− p ≤ l + p ≤ l + s

since p ≤ s ≤ 2p.

Hence:

max([al , al+s)) = max(max([al , al+p)),max([al+s−p, al+s)))

But we’ve precomputed these internal maxes since they
have length a power of 2!
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Sparse Tables 76

Query Implementation
#include <bits/stdc ++.h>

using namespace std;

const int MAXN = 100000 , LOGN = 18;

// sparseTable [l][i] = max a[i...i+2^l)

int N, sparseTable[LOGN ][ MAXN], log2s[MAXN ];

void precomp () {

// TODO: Insert precomp of sparse table here.

for (int i = 2; i < MAXN; i++) log2s[i] = log2s[i/2] + 1;

}

int main () {

// Input the initial array

cin >> N;

for (int i = 0; i < N; i++) cin >> sparseTable [0][i];

precomp ();

int Q; cin >> Q;

for (int q = 0; q < Q; q++) {

int l, r; cin >> l >> r;

// Problem: Find max of a[l...r)

int l2 = log2s[r-l];

int res = max(sparseTable[l2][l], sparseTable[l2][r-(1<<l2)]);

cout << res << ’\n’;

}

return 0;

}
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Sparse Tables 77

Complexity? O(N logN) precomp, O(1) per query.

Warning: You need your operation to be idempotent.
E.g: this will double count for sum, multiply, count, etc...

Works for max,min, gcd, lcm.

Practically, don’t see it too often. But a nice idea and the
data structure for Lowest Common Ancestor is similar.
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Problem: Updates 78

Problem with earlier data structures: They do not
support updates.
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Problem: Updates 79

New problem:

Given N integers a0, a1, . . . , aN−1, answer queries of the
form:

r−1∑
i=l

ai

for given pairs l , r .

But there are now also updates of the form, set:

ai := k

N is up to 100, 000.

There are up to 100, 000 queries and updates total.
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Problem: Updates 80

Recomputing the prefix sums will take O(N) time per
update, so our previous solution is now O(N2) for this
problem, which is too slow.

Let’s try to find a solution that slows down our queries but
speeds up updates in order to improve the overall
complexity.
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Range Tree Motivation 81

The problem with our earlier data structures is there are
too many ranges containing any given value, updating all
of them is O(N) per update.

The problem with just storing the array is there are not
enough ranges, querying is O(N).

We need a new way to decompose [1,N] into ranges that
is a healthy balance.
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Let’s make a tree 82

We will make a tree. Each node in the tree is responsible
for a range.

[0,8)

[0,4)

[0,2)

[0,1) [1,2)

[2,4)

[2,3) [3,4)

[4,8)

[4,6)

[4,5) [5,6)

[6,8)

[6,7) [7,8)

The array itself goes into the leaves.

The internal nodes store information on the range.

This depends on problem. For our earlier problem, we
would want each node to store the sum of that range.
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Let’s make a tree 83

Consider the array

[35, 13, 19, 15, 31, 12, 33, 23]

We would get the tree

183

82

48

35 13

34

19 15

101

43

31 12

58

33 25

Note, the leaves store the array and every other node is
just the sum of its two children.
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Queries 84

Let’s query the sum of [2, 8) (inclusive-exclusive).

189

88

48

35 13

40

25 15

101

43

31 12

58

33 25

Recall each node in the tree has a “range of
responsibility”.
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Queries 85

Let’s query the sum of [2, 8) (inclusive-exclusive).

189 [0, 8)

88 [0, 4)

48 [0, 2)

35 13

40 [2, 4)

25 15

101 [4, 8)

43 [4, 6)

31 12

58 [6, 8)

33 25

Our goal is the same as in the sparse table, find a set of
ranges whose disjoint union is [2, 8). Then taking the sum
of those nodes gives us the answer.
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Queries 86

Let’s query the sum of [2, 8) (inclusive-exclusive).

189 [0, 8) [2, 8)

88 [0, 4)

48 [0, 2)

35 13

40 [2, 4)

25 15

101 [4, 8)

43 [4, 6)

31 12

58 [6, 8)

33 25

We start at the top of the tree, and ‘push’ the query range
down into the applicable nodes.
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Queries 87

Let’s query the sum of [2, 8) (inclusive-exclusive).

189 [0, 8) [2, 8)

88 [0, 4) [2, 4)

48 [0, 2)

35 13

40 [2, 4)

25 15

101 [4, 8) [4, 8)

43 [4, 6)

31 12

58 [6, 8)

33 25

This is a recursive call, so we do one branch at a time.
Let’s start with the left branch.
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Queries 88

Let’s query the sum of [2, 8) (inclusive-exclusive).

189 [0, 8) [2, 8)

88 [0, 4) [2, 4)

48 [0, 2)

35 13

40 [2, 4) [2, 4)

25 15

101 [4, 8) [4, 8)

43 [4, 6)

31 12

58 [6, 8)

33 25

There is no need to continue further into the left subtree,
because it doesn’t intersect the query range.
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Queries 89

Let’s query the sum of [2, 8) (inclusive-exclusive).

189 [0, 8) [2, 8)

88 [0, 4) [2, 4)

48 [0, 2)

35 13

40 [2, 4) 40

25 15

101 [4, 8) [4, 8)

43 [4, 6)

31 12

58 [6, 8)

33 25

There is also no need to continue further down, because
this range is equal to our query range.
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Let’s query the sum of [2, 8) (inclusive-exclusive).

189 [0, 8) [2, 8)

88 [0, 4) 40

48 [0, 2)

35 13

40 [2, 4)

25 15

101 [4, 8) [4, 8)

43 [4, 6)

31 12

58 [6, 8)

33 25

We return the result we have obtained up to the chain,
and let the query continue.
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Let’s query the sum of [2, 8) (inclusive-exclusive).

189 [0, 8) [2, 8) 40 + ?

88 [0, 4)

48 [0, 2)

35 13

40 [2, 4)

25 15

101 [4, 8) [4, 8)

43 [4, 6)

31 12

58 [6, 8)

33 25

We return the result we have obtained up to the chain,
and let the query continue.



Data
Structures I

Vectors

Stacks and
Queues

Sets and Maps

Heaps

Basic
Examples

Example
Problems

Union-Find

Example
Problems

Range Queries
and Updates

Queries 92

Let’s query the sum of [2, 8) (inclusive-exclusive).

189 [0, 8) [2, 8) 40 + ?

88 [0, 4)

48 [0, 2)

35 13

40 [2, 4)

25 15

101 [4, 8) [4, 8)

43 [4, 6)

31 12

58 [6, 8)

33 25

Now, it is time to recurse into the other branch of this
query.
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Let’s query the sum of [2, 8) (inclusive-exclusive).

189 [0, 8) [2, 8) 40 + ?

88 [0, 4)

48 [0, 2)

35 13

40 [2, 4)

25 15

101 [4, 8) 101

43 [4, 6)

31 12

58 [6, 8)

33 25

Here, the query range is equal to the node’s range of
responsibility, so we’re done.
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Let’s query the sum of [2, 8) (inclusive-exclusive).

189 [0, 8) [2, 8) 40 + 101

88 [0, 4)

48 [0, 2)

35 13

40 [2, 4)

25 15

101 [4, 8)

43 [4, 6)

31 12

58 [6, 8)

33 25

Here, the query range is equal to the node’s range of
responsibility, so we’re done.
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Let’s query the sum of [2, 8) (inclusive-exclusive).

189 [0, 8) [2, 8) 141

88 [0, 4)

48 [0, 2)

35 13

40 [2, 4)

25 15

101 [4, 8)

43 [4, 6)

31 12

58 [6, 8)

33 25

Now that we’ve obtained both results, we can add them
together and return the answer.
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We didn’t visit many nodes during our query.

189 [0, 8) [2, 8)

88 [0, 4)

48 [0, 2)

35 13

40 [2, 4)

25 15

101 [4, 8)

43 [4, 6)

31 12

58 [6, 8)

33 25

In fact, because only the left and right edges of the query
can ever get as far as the leaves, and ranges in the middle
stop much higher, we only visit O(logN) nodes during a
query.
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One way to see this is consider cases based on if the query
range shares an endpoint with the current node’s range of
responsibility.

Another way is to consider starting with the full range
from the bottom and going up.

Probably easiest if you play around a bit and convince
yourself of this fact.
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Let’s update the element at index 2 to 25.

183

82

48

35 13

34

19 15

101

43

31 12

58

33 25
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Let’s update the element at index 2 to 25.

183

82

48

35 13

34

25 15

101

43

31 12

58

33 25
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Let’s update the element at index 2 to 25.

183

82

48

35 13

40

25 15

101

43

31 12

58

33 25
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Let’s update the element at index 2 to 25.

183

88

48

35 13

40

25 15

101

43

31 12

58

33 25
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Let’s update the element at index 2 to 25.

189

88

48

35 13

40

25 15

101

43

31 12

58

33 25
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Let’s update the element at index 2 to 25.

189

88

48

35 13

40

25 15

101

43

31 12

58

33 25

We always construct the tree so that it’s balanced, then
its height is O(logN).

Thus, updates take O(logN) time.
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Range Tree 104

Thus we have O(logN) time for both updates and queries.

This data structure is commonly known as a range tree,
segment tree, interval tree, tournament tree, etc.

The number of nodes we add halves on each level, so the
total number of nodes is still O(N).

For ease of understanding, the illustrations used a full
binary tree, which always has a number of nodes one less
than a power-of-two. This data structure works fine as a
complete binary tree as well (all layers except the last are
filled). This case is harder to imagine conceptually but the
implementation works fine, for each internal node just split
the range of responsibility by the average.

All this means is that padding out the data to the nearest
power of two is not necessary.
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Since these binary trees are complete, they can be
implemented using the same array-based tree
representation as with an array heap

Place the root at index 0. Then for each node i , its
children (if they exist) are 2i + 1 and 2i + 2.
Alternatively, place the root at index 1, then for each node
i the children are 2i and 2i + 1.

This works with any binary associative operator, e.g.

min, max
sum
gcd
merge (from merge sort)

For a non-constant-time operation like this one, multiply
the complexity of all range tree operations by the
complexity of the merging operation.
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We can extend range trees to allow range updates in
O(logN) using lazy propagation

The basic idea is similar to range queries: push the update
down recursively into the nodes whose range of
responsibility intersects the update range.

However, to keep our O(logN) time complexity, we can’t
actually update every value in the range.

Just like we returned early from queries when the query
range matched a node’s entire range, we cache the update
at that node and return without actually applying it.

When a query or a subsequent update is performed which
visits this node you might need to push the cached update
one level further down.

Will talk more about this in 2 weeks time.
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Implementation (updates)
#define MAX_N 100000

// the number of additional nodes created can be as high as the next

power of two up from MAX_N (131 ,072)

int tree [266666];

// a is the index in the array. 0- or 1-based doesn ’t matter here , as

long as it is nonnegative and less than MAX_N.

// v is the value the a-th element will be updated to.

// i is the index in the tree , rooted at 1 so children are 2i and 2i

+1.

// instead of storing each node ’s range of responsibility , we

calculate it on the way down.

// the root node is responsible for [0, MAX_N)

void update(int a, int v, int i = 1, int start = 0, int end = MAX_N) {

// this node ’s range of responsibility is 1, so it is a leaf

if (end - start == 1) {

tree[i] = v;

return;

}

// figure out which child is responsible for the index (a) being

updated

int mid = (start + end) / 2;

if (a < mid) update(a, v, i * 2, start , mid);

else update(a, v, i * 2 + 1, mid , end);

// once we have updated the correct child , recalculate our stored

value.

tree[i] = tree[i*2] + tree[i*2+1];

}
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Implementation (queries)

// query the sum in [a, b)

int query(int a, int b, int i = 1, int start = 0, int end = MAX_N) {

// the query range exactly matches this node ’s range of

responsibility

if (start == a && end == b) return tree[i];

// we might need to query one or both of the children

int mid = (start + end) / 2;

int answer = 0;

// the left child can query [a, mid)

if (a < mid) answer += query(a, min(b, mid), i * 2, start , mid);

// the right child can query [mid , b)

if (b > mid) answer += query(max(a, mid), b, i * 2 + 1, mid , end);

return answer;

}

Implementation (construction)
It is possible to construct a range tree in O(N) time, but
anything you use it for will take O(N logN) time anyway.
Instead of extra code to construct the tree, just call
update repeatedly for O(N logN) construction.
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Problem statement Given an array of integers, find the
longest (strictly) increasing (not necessarily contiguous)
subsequence.

Input N, the size of the array, followed by N integers, ai .
1 ≤ N, ai ≤ 100, 000.

Output A single integer, the length of the longest
increasing subsequence.
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Example Input

5

4 0 3 2 8

Example Output 3

Explanation: Either the subsequence 0, 3, 8 or 0, 2, 8.
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Example problem: LIS 111

We will compute this iteratively, for each index find the
longest increasing subsequence that ends at that index.

Let’s say we store this in an array best[0 . . .N).

Let us try to sweep from left to right, pretty natural order
for subsequences.

How do we compute best[i ]?

Either best[i ] = 1 or it extends an existing subsequence.

The subsequence we extend must be the longest one
ending at some j < i where a[j] < a[i].

Note: the bolded part is a range requirement (the other
condition is also a range requirement but is handled by the
sweep order).
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Example problem: LIS 112

So we want to query, out of all j where a[j] < a[i], what is
the max value of best[j ].

Solution: Range tree over the values a[j ]!

As we sweep, we maintain a range tree, over the array

bestWithEnd [h]

where bestWithEnd [h] is defined to be the longest
subsequence we can make so far whose last value is h.

Then to process a new index, i , the longest subsequence
ending at i is

max ([bestWithEnd [1], bestWithEnd [a[i ]])) + 1

Finally, we update bestWithEnd [a[i ]] with best[i ].
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Example problem: LIS 113

#include <bits/stdc ++.h>

using namespace std;

const int MAXVAL = 100000;

// TODO: Add your range tree code here.

// The range tree should initially start with all values 0 and support:

void update(int index , int val);

int query(int a, int b); // Returns the minimum of the range [a,b)

int main () {

int N;

cin >> N;

for (int i = 0; i < N; i++) {

int cVal; cin >> cVal;

int best = query(0, cVal);

update(cVal , best + 1);

}

cout << query(0, MAXVAL + 1) << endl;

return 0;

}
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Example problem: LIS 114

Complexity? N range tree queries and updates, each
O(logN). Total: O(N logN) ≈ O(100, 000 · 17).
Moral: When trying to solve a problem, be on the lookout
for suboperations that might be sped up by data
structures. Often take the form of needing to support
simple queries.

Also it is useful to consider range trees over values, not
just indices.

The bound hi ≤ 100, 000 was not necessary, only the
relative order of the hi values mattered. So we could have
sorted them and replaced each with its rank in the
resulting array. Sometimes called “coordinate
compression“.
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Example problem: LIS 115

Alternatively, instead of doing it from left to right, one can
do it in increasing order of values in the array. Then your
range tree is over indices not values, and your queries
become “what is the largest value in best[0, . . . , i).

There is also a really elegant solution with a left to right
sweep and a sorted stack. Let minEnd [i ] store the
minimum end value for a subsequence of length i . This is
a sorted array and we can update it in O(logN) time with
binary search.
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