
COMP4121
An example of the Viterbi algorithm application

• In California there are twice as many raccoons as possums. Having gotten a job with Google, you are
in California observing your back yard. It is dusk, so the probability that you think you saw a raccoon
when you are actually looking at a possum at a distance is 1/3; the probability that you think you saw a
possum while you are actually looking at a raccoon at a distance is 1/4. Raccoons move in packs; so if
a raccoon comes to your back yard the probability that the next animal to follow will also be a raccoon
is 4/5. Possums are solitary animals, so if a possum comes to your back yard, this does not impact the
probabilities what the next animal to come will be (a possum or a raccoon, but recall in California there
are twice as many raccoons as possums!) You believe that you saw four animals coming in the following
order: a raccoon, a possum, a possum, a raccoon (rppr). Given such a sequence of observations, what
actual sequence of animals is most likely to cause such a sequence of your observations?

• probabilities of initial states: π(R) = 2/3; π(P ) = 1/3.

• transition probabilities:
P(R→ R) = 4/5; P(R→ P ) = 1/5; P(P → P ) = 1/3; P(P → R) = 2/3.

• emission probabilities:
O(r|P ) = 1/3; O(p|P ) = 2/3; O(p|R) = 1/4; O(r|R) = 3/4.
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• The sequence of observations is rppr.

• probabilities of initial states: π(R) = 2/3; π(P ) = 1/3.

• transition probabilities:
P(R→ R) = 4/5; P(R→ P ) = 1/5; P(P → P ) = 1/3; P(P → R) = 2/3.

• emission probabilities:
E(r|P ) = 1/3; E(p|P ) = 2/3; E(p|R) = 1/4; E(r|R) = 3/4.

• The states of the Markov Chain states: s1 = R; s2 = P . (actual animals)

• The observations: o1 = r; o2 = p. (observations you make, i.e., what you believe that you have seen)

• The initialisation and the recursion:

L(1, k) = π(sk) · E(o1|sk) (1)

L(i, k) = max
m∈S

(L(i− 1,m)P(sm → sk)E(oi|sk)) ; (2)

σ(i, k) = arg max
m∈S

(L(i− 1,m)P(sm → sk) E(oi|sk)) . (3)

Here σ(i, k) stores the value of m for which L(i − 1,m)P(sm → sk)E(oi|sk) is the largest which allows
us to reconstruct the sequence of states which maximise the probabilities we are tracking. We now obtain
the solution for our original problem by backtracking:

xT = arg max
m∈S

(L(T,m))

xi−1 = σ(i, xi), i = T, T − 1, . . . , 2.

Initialisation t = 1 with our first observation o1 = r, using 1 applied to state s1 = R and then state
s2 = P :

L(1, R) = π(s1)E(o1|s1) = π(R)E(r|R) = 2/3× 3/4 = 1/2;

L(1, P ) = π(s2)E(o1|s2) = π(P )E(r|P ) = 1/3× 1/3 = 1/9.

Note that, generally, likelihoods do not define probability spaces, because they need not sum up to 1!
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L(2, R) = max{L(1, R)P(R→ R)E(p|R), L(1, P )P(P → R)E(p|R)}
= max{1/2× 4/5× 1/4, 1/9× 2/3× 1/4} = max{1/10, 1/54} = 1/10;

σ(2, R) = R;

L(2, P ) = max{L(1, R)P(R→ P )E(p|P ), L(1, P )P(P → P )E(p|P )}
= max{1/2× 1/5× 2/3, 1/9× 1/3× 2/3} = max{1/15, 2/81} = 1/15;

σ(2, P ) = R;

L(3, R) = max{L(2, R)P(R→ R)E(p|R), L(2, P )P(P → R)E(p|R)}
= max{1/10× 4/5× 1/4, 1/15× 2/3× 1/4} = max{1/50, 1/90} = 1/50;

σ(3, R) = R;

L(3, P ) = max{L(2, R)P(R→ P )E(p|P ), L(2, P )P(P → P )E(p|P )}
= max{1/10× 1/5× 2/3, 1/15× 1/3× 2/3} = max{1/75, 2/135} = 2/135;

σ(3, P ) = P ;

L(4, R) = max{L(3, R)P(R→ R)E(r|R), L(3, P )P(P → R)E(r|R)}
= max{1/50× 4/5× 3/4, 2/135× 2/3× 3/4} = max{3/250, 1/135} = 3/250;

σ(4, R) = R;

L(4, P ) = max{L(3, R)P(R→ P )E(r|P ), L(3, P )P(P → P )E(r|P )}
= max{1/50× 1/5× 1/3, 2/135× 1/3× 1/3} = max{1/750, 2/1215} = 2/1215;

σ(4, P ) = P.

Since L(4, R) > L(4, P ) we conclude that the event ends with R,. and this events’ likelihood is 3/250 ≈
0.012. To retrieve the whole most likely sequence we now use σ function to backtrack. Since σ(4, R) = R;
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σ(3, R) = R, σ(2, R) = R we conclude that the most likely sequence is actually RRRR, despite the fact
that our observations were rppr!

Let us now calculate the likelihood that it was sequence RPPR which caused our observations rppr:

π(R)P(R→ P )P(P → P )P(P → R)︸ ︷︷ ︸
likelihood of run RPPR

× E(r|R)E(p|P )E(p|P )E(r|R)︸ ︷︷ ︸
likelihood of emissions rppr for run RPPR

=

= (2/3× 1/5× 1/3× 2/3)× (3/4× 2/3× 2/3× 3/4)

= 4/135× 1/4

= 1/135 ≈ 0.0074

Thus, it is more likely that the sequence RRRR caused the sequence of observations rppr (likelihood
≈ 0.012) then that the sequence RPPR caused the same observations (likelihood ≈ 0.0074). Without the
Viterbi algorithm we would conclude that the sequence is RPPR which is likely incorrect. So you can
appreciate why this algorithm is a powerful tool for solving many problems related to noisy signals and thus
noisy observations, such as for speech recognition, decoding convolutional codes in telecommunications
and in many other applications in diverse fields such as bioinformatics and many others.

4


