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1 DFT as a change of basis

Recall that the scalar product (also called the dot product) of two vectors xxx,yyy ∈ Rn, xxx = (x0, x1, . . . , xn−1) and
yyy = (y0, y1, . . . , yn−1), denoted by 〈xxx,yyy〉, is defined as

〈xxx,yyy〉 =

n−1∑
i=0

xiyi.

If the coordinates of the two vectors are complex numbers, i.e., if xxx,yyy ∈ Cn, then the scalar product is defined
as

〈xxx,yyy〉 =

n−1∑
i=0

xiyi, (1.1)

where z denotes the complex conjugate of z, i.e., if z = a + ı̇ b where a, b ∈ R, then z = a − ı̇ b. Note that
〈yyy,xxx〉 = 〈xxx,yyy〉. In fact, in a vector space V , any binary function 〈xxx,yyy〉 : V 2 → C which satisfies the following
three properties is a scalar product because it has all of the important properties which the particular scalar
product given by (1.1) has.

1. (Conjugate symmetry) 〈yyy,xxx〉 = 〈xxx,yyy〉

2. (Linearity in the first argument) for every scalar α, 〈αxxx,yyy〉 = α〈xxx,yyy〉

3. (Positive definitness) 〈xxx,xxx〉 ≥ 0 and 〈xxx,xxx〉 = 0 just in case xxx = 0

Exercise: Define a scalar product on Cn which is different from the usual one, given by (1.1).
Hint: Try giving different “importances” to different coordinates...

Every scalar product also defines an associated norm of a vector by

‖xxx‖ =
√
〈xxx,xxx〉 ≥ 0

Geometrically, the norm plays the role of the length of a vector (and, in case of R2 or R3, it is just the
usual, Euclidean length of the vector).

The usual basis of both Rn and Cn is given by

B = {(1, 0, 0, 0, . . . 0), (0, 1, 0, 0, . . . , 0), . . . , (0, 0, 0, . . . , 1)}

Note that for any vector aaa = (a0, a1, a2, . . . , an−1), such that aaa ∈ Rn or aaa ∈ Cn,

(a0, a1, a2, . . . , an−1) = a0(1, 0, 0, 0, . . . , 0) + a1(0, 1, 0, 0, . . . , 0) + . . .+ an−1(0, 0, 0, . . . , 1)

Let us set

eee0 = (1, 0, 0, . . . , 0, 0); eee1 = (0, 1, 0, . . . , 0, 0); . . . eeen−1 = (0, 0, 0, . . . , 0, 1);

Thus,

(a0, a1, a2, . . . , an−1) = a0e0e0e0 + a1eee1 + . . .+ an−1eeen−1 =

n−1∑
i=0

aieeei

Let us denote the complex number eı̇
2π
n = cos 2π

n + ı̇ sin 2π
n by ωn; such a number is a primitive root of unity

because (ωn)n = 1, and the set of all complex numbers z which satisfy zn = 1 is precisely the set of the n
powers of ωn, i.e., zn = 1 if an only if z is of the form z = (ωn)k for some k such that 0 ≤ k ≤ n− 1.

We now introduce another basis, this time only in Cn, given by F = {fff0, . . . , fffn−1}, where

fffk = ((ω0
n)k, (ω1

n)k, . . . , (ωn−1n )k) = (1, ωkn, . . . , ω
k(n−1)
n ).

Thus, the coordinates of fffk are the kth powers of the sequence of the n roots of unity.
To show that this is indeed a basis we have to show that these vectors are linearly independent. In fact,

they form an orthogonal basis. Two vectors are mutually orthogonal if 〈xxx,yyy〉 = 0.

Exercise: Prove that if a set consists of vectors which are pairwise orthogonal, then such a set of vectors must
be linearly independent.

To see that vectors fffk and fffm are orthogonal if k 6= m we compute their scalar product:
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〈fffk, fffm〉 =

n−1∑
i=0

(ωn)k·i(ωn)m·i =

n−1∑
i=0

(ωn)k·i(ωn)−m·i =

n−1∑
i=0

(ωn)(k−m)·i =

n−1∑
i=0

(ωk−mn )i

The last sum is a sum of a geometric progression with ratio q = ωk−mn and thus, using formula

n−1∑
i=0

qi =
1− qn

1− q

we get

〈fffk, fffm〉 =
1− (ωk−mn )n

1− ωk−mn

= 0

because (ωk−mn )n = (ωnn)k−m = 1 (the denominator is different from 0 because we have assumed that k 6= m).
Let us compute the norm of these vectors:

‖fffk‖2 = 〈fffk, fffk〉 =

n−1∑
i=0

(ωn)k·i(ωn)k·i =

n−1∑
i=0

(ωn)k·i(ωn)−k·i =

n−1∑
i=0

(ωn)0 =

n−1∑
i=0

1 = n.

Thus, ‖fffk‖ =
√
n; consequently, if we define vectors ϕϕϕk = fffk/

√
n, then these n vectors form an orthonormal

basis, Φ = {ϕϕϕ0, . . . ,ϕϕϕn−1}, i.e., a basis satisfying 〈ϕϕϕk,ϕϕϕm〉 = δ(m− k) where δ(0) = 1 and δ(m) = 0 if m 6= 0.
We now show that every scalar product and its corresponding norm satisfy the Cauchy-Bunyakovsky-Schwarz

inequality:

Theorem 1.1
|〈xxx,yyy〉| ≤ ‖xxx‖ · ‖yyy‖.

Proof: Let zzz = 〈xxx, yyy
‖yyy‖ 〉

yyy
‖yyy‖ and uuu = xxx− zzz; note that the scalar product of zzz and uuu satisfies

〈zzz,uuu〉 =
〈
xxx− 〈xxx, yyy

‖yyy‖
〉 y
yy

‖yyy‖
, 〈xxx, yyy

‖yyy‖
〉 y
yy

‖yyy‖

〉
=
〈
xxx, 〈xxx, yyy

‖yyy‖
〉 y
yy

‖yyy‖

〉
−
〈
〈xxx, yyy

‖yyy‖
〉 y
yy

‖yyy‖
, 〈xxx, yyy

‖yyy‖
〉 y
yy

‖yyy‖

〉
= 〈xxx, yyy

‖yyy‖
〉〈xxx, yyy

‖yyy‖
〉 − 〈xxx, yyy

‖yyy‖
〉〈xxx, yyy

‖yyy‖
〉〈 y

yy

‖yyy‖
,
yyy

‖yyy‖
〉

= 0,

i.e., uuu is orthogonal on zzz. Thus, zzz is a vector corresponding to the orthogonal projection of vector xxx onto the
unit vector yyy/‖yyy‖:
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Figure 1.1:

We now have ‖uuu‖ ≥ 0 and thus

0 ≤ 〈xxx− 〈xxx, yyy

‖yyy‖
〉 y
yy

‖yyy‖
, xxx− 〈xxx, yyy

‖yyy‖
〉 y
yy

‖yyy‖
〉

= ‖xxx‖2 − 〈xxx, yyy

‖yyy‖
〉〈 y

yy

‖yyy‖
,xxx〉 − 〈xxx, yyy

‖yyy‖
〉〈xxx, yyy

‖yyy‖
〉+ 〈xxx, yyy

‖yyy‖
〉〈xxx, yyy

‖yyy‖
〉〈 y

yy

‖yyy‖
,
yyy

‖yyy‖
〉

= ‖xxx‖2 − 1

‖yyy‖2
|〈xxx,yyy〉|2;

note that on the second line the second term (or the third, which is equal!) cancels out the fourth term. The
last line implies the claim of the theorem. �
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If the field of scalars is the field of real numbers R, then the scalar product 〈uuu,vvv〉 of any two vectors uuu and vvv is
a real number and the inequality from Theorem 1.1 allows us to define angles between vectors uuu and vvv by

∠(uuu,vvv) = arccos
〈uuu,vvv〉
‖uuu‖ · ‖vvv‖

.

Thus, since we have a length function (the norm ‖x‖ of a vector) and an angle function, a vector space
with a scalar product has a well defined geometry. Also, if yyy is a unit vector, ‖yyy‖ = 1, then we have
〈xxx,yyy〉 = ‖x‖ · cos(∠xxx,yyy), i.e., 〈xxx,yyy〉 is just the length of the orthogonal projection of xxx onto the line to which yyy
belongs; see Fig. 1.1.

Theorem 1.2 Let {ϕϕϕm}0≤m<n be any orthonormal basis of Cn and ccc any vector in Cn; then

ccc =

n−1∑
m=0

〈ccc,ϕϕϕm〉ϕϕϕm; (1.2)

see also figure 1.2.

Proof: Since Φ = {ϕϕϕ0, . . . ,ϕϕϕn−1} is a basis of Cn, we have ccc = λ0ϕϕϕ0 + . . .+λjϕϕϕj + . . .+λn−1ϕϕϕn−1. Then, for
every 0 ≤ j < n we have 〈ccc,ϕϕϕj〉 = λ0〈ϕϕϕ0,ϕϕϕj〉+ . . .+ λj〈ϕϕϕj ,ϕϕϕj〉+ . . .+ λn−1〈ϕϕϕn−1,ϕϕϕj〉 The only non-zero scalar
product on the right is 〈ϕϕϕj ,ϕϕϕj〉 = 1 and thus we obtain λj = 〈c,ϕϕϕj〉, which implies (1.2); see Fig. 1.2. �
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Figure 1.2:

Let us now calculate the vector ĉcc = (ĉ(0), ĉ(1), . . . , ĉ(n − 1)) of coordinates ĉ(m) = 〈ccc,ϕϕϕm〉 of a vector ccc in
basis Φ; using definitions of ϕϕϕm and of the scalar product in Cn we have

ĉ(m) = 〈ccc,ϕϕϕm〉 =
1√
n

n−1∑
k=0

cke
− ı̇ 2π

n mk (1.3)

Vector ĉcc = (ĉ(0), ĉ(1), . . . , ĉ(n − 1)) of coordinates ĉ(m) = 〈ccc,ϕϕϕm〉 is called the Discrete Fourier Trans-
form (DFT) of sequence (vector) ccc.

Thus, the DFT of a vector ccc is just the vector ĉcc = (ĉ(0), ĉ(1), . . . , ĉ(n − 1)) of the coordinates of ccc in the
orthonormal basis Φ = {ϕϕϕ0, . . . ,ϕϕϕn−1} :

ccc =

n−1∑
m=0

ĉ(m)ϕϕϕm (1.4)

Equating each coordinate of the lefthand side vector with the corresponding coordinate of the righthand side
vector we obtain

ck =

n−1∑
m=0

ĉ(m)ϕϕϕm(k) =
1√
n

n−1∑
m=0

ĉ(m)eı̇
2πkm
n (1.5)
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Note that the “forward” transform formula for calculating {ĉ(m)}0≤m<n from {ck}0≤k<n and the inverse
transform formula for calculating {ck}0≤k<n from {ĉ(m)}0≤m<n differ only by the sign of the exponents of the

complex exponentials e± ı̇
2πkm
n . Also, by periodicity of the complex exponential eı̇ x, we have that for every

integer k (but NOT for every real k!)

e−i
2πm
n ·k = ei(−

2πm
n k+2πk) = ei

2π(n−m)
n ·k.

Thus, for every integer k,

ei
2π(n−m)

n ·k = e−i
2πm
n ·k = ei

2πm
n ·k (1.6)

The last equality has two important consequences:

1. The imaginary parts in the righthand side sum in (1.5) will cancel out just in case ĉ(m) = ĉn−m, because,
then, for t = k, (k an integer), using (1.6), we get that for integers m, k, n, such that n ≥ m, k > 0

ĉ(m) ei
2πm
n ·k + ĉ(n−m) ei

2π(n−m)
n ·k = ĉ(m) ei

2πm
n ·k + ĉ(m) ei

2πm
n ·k

= ĉ(m) ei
2πm
n ·k + ĉ(m) ei

2πm
n ·k

= 2Re(ĉ(m) ei
2πm
n ·k).

Thus, real discrete signals ccc of length n are precisely the signals which satisfy ĉ(m) = ĉn−m for all
1 ≤ k ≤ n− 1.

Note that, if signal ccc is real, then

ĉ(0) =
1√
n

n−1∑
k=0

cke
− ı̇ 2π

n k·0 =
1√
n

n−1∑
k=0

ck

and consequently ĉ(0) is also real (ĉ(0) is called the DC component or DC offset of ccc; DC stands for Direct
Current). If, in addition, n is even, then

ĉ(n/2) =
1√
n

n−1∑
k=0

cke− ı̇
2π
n k·n/2 =

1√
n

n−1∑
k=0

cke
− ı̇ π k =

1√
n

n−1∑
k=0

(−1)kck

and thus ĉ(n/2) is also real.

So for real signals, if n is even, in order to store ĉcc we have to store two floating point real numbers ĉ(0)
and ĉ(n/2) plus n/2−1 complex numbers, ĉ(1), . . . , ĉ(n/2−1) because the remaining complex coefficients
ĉ(n/2 + k) can be obtained using (1.6). Thus, in total, to store ĉcc we have to store 2 + 2(n/2 − 1) = n
floating point real numbers, exactly as many as to store the (real) vector ccc.

If n is odd than we have to store one real number (i.e., ĉ(0)) plus (n−1)/2 complex numbers, which again
adds up to n floating point numbers. Thus, both for real and complex vectors ccc, storing ccc takes the same
space as storing ĉ̂ĉc.

Note that if n is even, then the bin with index n/2 has a bin frequency 2π/n · n/2 = π, which is called
the Nyquist frequency.

2. We can replace frequencies larger than π with the corresponding negative frequencies, i.e., we can replace
2π(n−m)/n for m < n/2 with −2πm/n. This is useful if we are considering vectors obtained by sampling
π-bandlimited signals, to be introduced in the next lecture.

2 But why consider such a complicated basis Φ??

To answer this question we look at the complex sinusoids of the form:

Sink (t) =
1√
n

ei
2π
n k·t =

1√
n

(
cos

(
2π

n
k · t

)
+ ı̇ sin

(
2π

n
k · t

))
of frequencies 2πk/n, for all 0 ≤ k ≤ n− 1. Then each of the basis vectors ϕϕϕk = 1/

√
n(ωk·0n , ωk·1n , . . . , ω

k·(n−1)
n )

is just a sequence of samples of the function Sink (t), evaluated at integers t = 0, 1, . . . , n− 1:

ϕϕϕk = (Sink (0), . . . , (Sink (n− 1))
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Thus, if we represent a vector ccc in such a basis, i.e., as ccc =
∑n−1
k=0 ĉ(k)ϕϕϕk, we have represented ccc as a linear

combination of samples of such complex sinusoids. If we also see the sequence ccc as a sequence of samples of a
continuous time (i.e., analog) signal c(t), then over the interval [0, n− 1]

c(t) ≈
n−1∑
k=0

ĉ(k)Sink (t) =
1√
n

n−1∑
k=0

ĉ(k)ei
2πk
n ·t (2.1)

where the equality is exact on integers 0, 1, . . . , n − 1. Let us write each coordinate ĉ(k) in the polar form:
ĉ(k) = |ĉ(k)|eı̇ arg(ĉ(k)); then we get

c(t) ≈
n−1∑
k=0

|ĉ(k)|eı̇ arg(ĉ(k))
ei

2πk
n ·t
√
n

=

n−1∑
k=0

|ĉ(k)|√
n

ei(
2πk
n ·t+arg(ĉ(k)))

=

n−1∑
k=0

|ĉ(k)|√
n

(
cos

(
2πk

n
· t+ arg(ĉ(k))

)
+ ı̇ sin

(
2πk

n
· t+ arg(ĉ(k))

))
.

Note that the equality is exact only on integers 0, . . . , n− 1, i.e., for m such that 0 ≤ m ≤ n− 1, we have

c(m) =

n−1∑
k=0

|ĉ(k)|√
n

ei(
2πk
n ·m+arg(ĉ(k)))

=

n−1∑
k=0

|ĉ(k)|√
n

(
cos

(
2πk

n
·m+ arg(ĉ(k))

)
+ ı̇ sin

(
2πk

n
·m+ arg(ĉ(k))

))
Thus, we have obtained, what is called, a spectral analysis of ccc, because the values |ĉ(k)|/

√
n represent the

amplitudes of the harmonics, i.e., complex sinusoids of frequencies 2πk
n , and the arguments arg(ĉ(k)) represent

the phase shifts of these complex sinusoids. The values of k, 0 ≤ k < n, are the indices of the corresponding
frequency bins.

The above approximation given by (2.1) has two important shortcomings:

1. Evan if ccc is real, the sum (2.1) attains complex values for non integer values of t, because, as we have
emphasized, (1.6) holds only for t = k, where k is an integer.

2. It unnecessarily involves complex exponentials of frequencies larger than π.

This can easily be remedied by allowing complex exponentials of negative frequencies, thus letting

Sink (t) =
1√
n

ei
2π
n k·t =

1√
n

(
cos

(
2π

n
k · t

)
+ ı̇ sin

(
2π

n
k · t

))
for all k such that −b(n− 1)/2c ≤ k ≤ b(n− 1)/2c, and, if n is even, also

Sinn/2(t) =
1√
n

cos (πt) .

These basis functions have frequencies at most π and, for real valued ccc, they result in a real valued interpolation
function which is exact on the integers 0 . . . n− 1 and with frequencies of its components at most equal to ±π:

– for even n:

c(t) ≈ 1√
n

(
ĉ(0) + ĉ(1)ei

2π
n t + ĉ(2)ei

2π
n 2t + . . .+ ĉ(n/2− 1)ei

2π
n (n/2−1)t + ĉ(n/2) cosπt+

+ ĉ(n/2 + 1)e−i
2π
n (n/2−1)t + . . .+ ĉ(n− 1)e−i

2π
n t
)

– for odd n:

c(t) ≈ 1√
n

(
ĉ(0) + ĉ(1)ei

2π
n t + ĉ(2)ei

2π
n 2t + . . .+ ĉ(bn/2c)ei 2πn bn/2ct+

+ ĉ(bn/2c+ 1)e−i
2π
n bn/2ct + . . .+ ĉ(n− 1)e−i

2π
n t
)
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3 Application to signal compression

One of the main applications of spectral analysis of signals, namely signal compression, is based on the following
heuristics:

If a signal is not just noise, then only a small number of harmonics have a significant amplitude, i.e., only a
small number of values ĉ(k) are significant; thus, all the remaining values ĉ(k) can be set to zero without causing
an unacceptable distortion of the original signal.

You might want to look at the Mathematica file used to produce the calculations and plots below, available
at http://www.cse.unsw.edu.au/~cs4121/DFT_and_DCT.nb.

Let us start by considering the following signal:

s1(t) = cos

(
2π · 3

32
t+ 2

)
+ 2 cos

(
2π · 7

32
t− 1

)
Note that this signal is real valued; thus, for each component we need two complex exponentials which are

complex conjugates of each other, to cancel out the imaginary parts:

s1(t) =
1

2

(
eı̇(

2π·3
32 t+2) + e− ı̇(

2π·3
32 t+2)

)
+ eı̇(

2π·7
32 t−1) + e− ı̇(

2π·7
32 t−1)

=
1

2

(
eı̇(

2π·3
32 t+2) + eı̇(

2π·61
32 t−2)

)
+ eı̇(

2π·7
32 t−1) + eı̇(

2π·57
32 t+1)

=
e2 ı̇

2
eı̇

2π·3
32 t +

e−2 ı̇

2
eı̇

2π·61
32 t + e− ı̇eı̇

2π·7
32 t + eı̇eı̇

2π·57
32 t

Let us sample this signal at 32 integer points, thus obtaining the sequence sss1 = (s1(0), s1(1), . . . , s1(31)). Let
us also take the DFT of the sequence sss1, denoted by ŝ̂ŝs1 = (ŝ1(0), ŝ1(1), . . . , ŝ1(31)) and then look at the sequence
of the moduli of the components, |ŝ̂ŝs1| = (|ŝ1(0)|, |ŝ1(1)|, . . . , |ŝ1(31))|). Using Mathematica we obtain Fig. 3.1
with a plot of |ŝ̂ŝs1| and which looks as expected, with 4 peaks at frequency bins k = 3, k = 7, k = 32− 7 = 25
and k = 32− 3 = 29.

Figure 3.1:

Clearly, such a signal is extremely compressible in the frequency domain because all we need to store are
4 real numbers, namely the real and imaginary components of ŝ1(3) and of ŝ1(7) plus the corresponding bin
indices 3 and 7; ŝ1(25) can then be obtained as ŝ1(7) and ŝ1(29) as ŝ1(3), and we can then recover all samples
of the signal using formula (1.5).

But what happens if the samples s0, s1, . . . sn−1 come from a signal containing frequencies different from the
bin frequencies, i.e., not of the form 2πk/n? Let us now consider the following example. Define

s2(t) = cos

(
2π · 1.35

32
t+ 2

)
+ 2 cos

(
2π · 4.05

32
t− 2

)

6
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We again evaluate this sequence at integers t = 0 to t = 31 thus obtaining a sequence of values sss2 and then
compute the DFT ŝ̂ŝs2 of such a sequence. Figure 3.2 shows plots of the real part (blue) of ŝ̂ŝs2 and of its imaginary
part (red).

Figure 3.2: Plots of |Re(ŝ2)| (blue) and of |Im(ŝ2)| (red).

Since the components of the signal do not correspond to the frequencies of the bins of the DFT of length

32, for each of the four complex exponentials
{
eı̇

2π·1.35
32 t, e− ı̇

2π·1.35
32 t, eı̇

2π·4.05
32 t, e− ı̇

2π·4.05
32 t

}
there are several

complex exponentials with significant amplitudes (and with bin frequencies), because several adjacent complex
exponentials have to superimpose in order to approximate a complex exponential of frequency between two bin
frequencies. However, the signal is still compressible, because lots of components have small amplitudes.

As we have explained, out of 32 values of the DFT, we need to keep only the first 17 values ŝ2(0), . . . , ŝ2(16)
(out of which ŝ2(0) and ŝ2(16) are real and the rest are complex), because the remaining values can be obtained
from these by complex conjugation, using ŝ2(32− k) = ŝ2(k) for k = 1 to k = 15.

To compress our signal, let us keep only 8 largest components (real or imaginary) of the 17 numbers
ĉ(0), . . . ĉ(16), setting all other components to zero, thus obtaining the sequence σ̂2(0), . . . , σ̂2(16), and then
again obtain the remaining values as σ̂2(32− k) = σ̂2(k) for k = 1 to k = 15. We now use (1.5) in the form

s2(m) ≈ σ2(m) =
1√
n

n−1∑
k=0

σ̂2(k)ei
2πk
n ·m (3.1)

to obtain the time domain representation of the corresponding approximation σσσ2 = (σ2(m) : 0 ≤ m < 32). We
plot the reconstructed sequence σσσ2 = (σ2(m) : 0 ≤ m < 32) in blue and the original sequence sss2 = (s2(m) :
0 ≤ m < 32) in red:

So σσσ2 looks like a pretty good approximation of sss2, given that we used only 8/32=1/4 of the original
information. So one might be tempted to think that sampled signals which are not noise can be compressed by
simply computing the DFT of the sampled signal and by setting to zero all real and imaginary components of
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the elements of such a DFT which are smaller than a threshold (of course the floats can then be quantized to
further improve compression). However, unfortunately, things are more complicated than that.

To see this, lets look at another signal:

s3(t) = cos

(
2π · 1.34

32
t

)
+ 2 cos

(
2π · 3.5

32
t

)
Sampling this signal at integers 0 − 31 we obtain a vector of samples sss3. Taking the DFT of this sequence
we obtain a complex valued sequence ŝ̂ŝs3; let us plot the real and imaginary parts of ŝ̂ŝs3 (left on Fig. 3.3) and
compare them with the real and imaginary parts of ŝ̂ŝs2 (right).

Figure 3.3: Real (blue) and imaginary (red) components of ŝ̂ŝs3 (left) and of ŝ̂ŝs2 (right).

Suddenly, a large number of components appear with significant amplitudes; thus, taking only 8 largest real
or imaginary parts of the components of ŝss3 will no longer result in good approximation. Fig. 3.4 on the left
shows the plot of signal ccc3 (in blue) and the plot of the signal σσσ3 (in red), obtained by computing the DFT
ŝss3 of sss3 and then replacing all the real and the imaginary components of the elements of ŝss3 with zero, except
for 8 largest such components, thus obtaining sequence σ̂σσ3, and then using (1.5) to obtain the corresponding
sequence σσσ3; on the right are shown sequences sss2 and σσσ2 from the previous example.

Figure 3.4: Left: signal sss3 (blue) and its approximation σσσ3 (red); right: signal sss2 and its approximation σσσ2.

Fig. 3.5 compares errors sss3 − σσσ3 (blue) and sss2 − σσσ2 (red) of approximation σσσ3 of sss3 and approximation σσσ2

of sss2. Clearly, σσσ3 does much worse job of approximating signal sss3 then σσσ2 approximating sss2, especially towards
the edges of the interval [0, 31]. We now want to examine why this is so.

Note that formula (1.5), namely

ck =
1√
n

n−1∑
m=0

ĉ(m)eı̇
2πkm
n (3.2)

can be evaluated not only for k = 0 . . . n − 1, but for arbitrary values of integer k; this results in a periodic
repetition of the values c0, . . . , cn−1. So, instead of plotting just one such period, let us plot on Fig. 3.6 two
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Figure 3.5: Approximation errors |sss3 − σσσ3| (blue) and |sss2 − σσσ2| (red).

consecutive complete periods of sss2 (left) and of sss3 (right); the first periods of both sequences are shown in red
and the second periods in blue, joining the two periods with a dashed black line.

Figure 3.6: Two consecutive periods of sss3 (left) and of sss2 (right).

We now see that the initial samples of the second period of sss2 (on the right) “continue the trend” of the
final samples of the first period of sss2; thus, the two periods taken together look like a sequence of samples of a
continuous function. On the other hand, as it can be seen on the left plot, there is a large mismatch between
the last sample of the first period of sss3 and the first sample of its second period; the two periods taken together
look more like samples of a signal which has a discontinuity somewhere between points t = 31 and t = 32. As a
consequence, in order for sss3 to “jump” between samples at t = 31 and t = 32, ŝ̂ŝs3 needs to contain significant high
frequency harmonics (which are more rapidly changing in value) and which enable sss3 to make such a steep jump.

Thus, these higher frequency harmonics are NOT “genuinely” present in the original signal but are spuri-
ous artifacts of our signal representation with complex exponentials!

Since such spurious harmonics present in ŝss3 are significant in size, they would also have to be encoded in
the compressed encoding of the signal, to avoid large distortions after signal reconstruction (decompression)
from its compressed spectral representation, as Fig. 3.3 has shown. However, this clearly reduces the level of
compression we can achieve. Thus, we have to improve our signal model (i.e., our signal representation), in
order to reduce the artifacts it introduces, so that they can be safely neglected during compression.

4 The Discrete Cosine Transform

In order to avoid artifacts caused by such jumps between the end point of a period and the first point of the
next period, the JPEG algorithm uses another signal transform instead of the DFT, called the Discrete Cosine
Transform or the DCT. In order to understand why DCT works, we will arrive to it via a somewhat roundabout
way, but which is very much worth the effort.
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In order to avoid artifacts caused by steep jumps between the end point of a period and the first point of
the next period, JPEG relies on the following trick: given a signal sss of length n, we first produce a new signal
SSS, of length 2n, obtained by adding a “mirror image” of the original signal sss at the end of sss; thus we let

SSS(m) =

{
sss(m) if 0 ≤ m < n

sss(2n− 1−m) if n ≤ m ≤ 2n− 1

So
SSS = (sss(0), sss(1), . . . , sss(n− 2), sss(n− 1), sss(n− 1), sss(n− 2), . . . , sss(1), sss(0)).

If we plot such a signal obtained from our signal sss3 and showing its sss3 part in red and the mirror image
reflection of sss3 in blue, we obtained the following plot:

Figure 4.1: Signal SSS3 consisting of sss3 (red) followed by the mirror image of sss3 (blue)

Clearly, there is no jump at the junction of the signal and its mirror image; also the left end of SSS3 perfectly
matches its right end, so, if we extend periodically SSS3, no large jumps will occur anywhare. Thus, now just
the usual DFT of SSS3 will not contain spurious high frequency harmonics and will be readily compressible. To
verify this, we compute ŜSS3 which is the DFT SSS3. On Fig. 4.2 we plot (on the left) the real part of ŜSS3 (blue)

and imaginary part of ŜSS3 (red) and compare them with the real and imaginary parts of ŝss3 which is the DFT of
sss3, plotted again on the right:

Figure 4.2: The real (blue) and the imaginary (red) parts of ŜSS3 (on the left), compared with the real and
imaginary parts of ŝss3 (on the right)

As it can be seen on Fig. 4.2, almost all high frequency artifacts are gone. Some of the artifacts remain
because at the junction of a period of sss3 with its adjacent mirror image, as well as between periods of SSS3,
we might have something which looks like a cusp, while the complex exponentials are smooth, continuously
differentiable functions. However, artifacts due to such cusps are much milder than the artifacts caused by a
“discontinuity” (i.e., by a large jump) in the signal.

This is an excellent example of what engineering is all about: producing approximate models (i.e., so-
lutions), physical or software, which meet the desired specifications with just a sufficient degree
of accuracy for the purpose they are intended, while minimizing the incurred cost (financial,
computational). Making models which meet the specifications with an unnecessarily high degree of accuracy
invariably makes such models unnecessarily costly for the intended purpose (this is called over-engineering).
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We now have to overcome another problem caused by our “trick”. The length of ŜSS is 2n. Since SSS is real ŜSS
is “conjugate-symmetric”, so it is enough to encode only n components of ŜSS, i.e., ŜSS(0), . . . , ŜSS(n− 1). However,
these n components are complex, and this subsequence is NOT conjugate symmetric. So, it would appear that
we would need 2n floating point numbers to represent ŜSS. To avoid this, we have to slightly improve our transform.

Since the the sequence SSS is symmetric (i.e., a palindrom), equation (1.3) for ŜSS can be written in the following
form, grouping equal components S(k) and S(2n− 1− k) for 0 ≤ k < 2n.

Ŝ(m) =
1√
2n

2n−1∑
k=0

Ske
− ı̇ 2π

2n mk =
1√
2n

n−1∑
k=0

Sk(e− ı̇
2π
2n mk + e− ı̇

2π
2n m (2n−1−k))

A conversion from an exponential to a trigonometric form shows that

e− ı̇
2π
2n mk + e− ı̇

2π
2n m (2n−1−k) = cos

π km

n
+ cos

πm(2n− 1− k)

n
− ı̇
(

sin
π km

n
+ sin

πm(2n− 1− k)

n

)
Representing the imaginary part as a product we obtain

sin
π km

n
+ sin

πm(2n− 1− k)

n
= 2 cos

πm(2n− 1− 2k)

2n
sin

(
πm

(
1− 1

2n

))
We now see that the sum e− ı̇

2π
2n mk+e− ı̇

2π
2n m (2n−1−k) is “almost real”: if instead of the factor sin

(
πm

(
1− 1

2n

))
on the righthand side of the above equation we had just sin (πm), since m is an integer, sin (πm) would be equal
to 0 and the imaginary part would vanish. So, to annihilate the imaginary part, we slightly rotate each
component of Ŝ(m), namely, we define a new transform S̃SS via

S̃(m) = eı̇
πm
2n Ŝ(m) =

1√
2n

2n−1∑
k=0

Ske
− ı̇ πn m (k+ 1

2 ) (4.1)

Since Sk = S2n−1−k, by taking again the summands in pairs, we obtain that now imaginary parts cancel
out and we get

e− ı̇
2π
2n m (k+ 1

2 ) + e− ı̇
2π
2n m (2n−1−k+ 1

2 ) = 2 cos
πm(k + 1/2)

n
(4.2)

Since |eı̇ πm2n | = 1 we have |S̃(m)| = |Ŝ(m)|, so the amplitudes of the harmonics did not change and thus S̃SS
is also compressible. More over, we also have

cos
π (2n−m)(k + 1/2)

n
= cos

(
π − m(k + 1/2)

n

)
= − cos

m(k + 1/2)

n

which implies that S̃SS satisfies
S̃(2n−m) = −S̃(m), (4.3)

and, in particular, S̃(n) = 0. Thus, we only need to store n real values S̃(0), . . . , S̃(n− 1).

Vector s̃ss = (S̃(0), . . . , S̃(n− 1)) is called the Discrete Cosine Transform (DCT) of type II of vector sss
(not of SSS !), and (4.1) and (4.2) imply

S̃(m) =

√
2

n

n−1∑
k=0

sk cos
πm(k + 1/2)

n

It is easy to verify by a direct calculation that the set of 2n vectors Φ̃ΦΦ = {φ̃φφ0, . . . , φ̃φφ2n−1} where

φ̃φφk =

(
1√
2n

eı̇
πk
n ·1/2,

1√
2n

eı̇
πk
n ·(1+1/2), . . . ,

1√
2n

eı̇
πk
n (2n−1+1/2)

)
forms an orthonormal basis of C2n. Thus, (4.1) simply states that S̃SS is just the vector of the coordinates of

vector SSS = (s0, . . . , sn−1, sn−1, . . . , s0) in the basis Φ̃ΦΦ, which implies that SSS =
∑2n−1
k=0 S̃(k)φ̃φφk, which in turn

implies that, coordinate-wise,

S(m) =

2n−1∑
k=0

S̃(k)φ̃φφk(m) =

2n−1∑
k=0

S̃(k)
1√
2n

eı̇
πk
n (m+1/2)
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Using (4.3) we now obtain that for all m such that 0 ≤ m < 2n we have

S(m) =
1√
2n

(
S̃(0) +

n−1∑
k=1

S̃(k)
(

eı̇
πk
n (m+1/2) − eı̇

π(2n−k)
n (m+1/2)

))
By replacing the complex exponentials with trigonometric functions we obtain

eı̇
π(m+1/2)k

n − eı̇
π(m+1/2)(2n−k)

n = 2 cos
π(m+ 1/2)k

n
.

Letting m range only from 0 to n− 1 we obtain

sm = Sm =

√
2

n

(
S̃(0)

2
+

n−1∑
k=1

S̃(k) cos
π(m+ 1/2)k

n

)
Sometimes we use the following, less intuitive but perhaps simpler versions:

S̃(m) = 2

n−1∑
k=0

sk cos
πm(k + 1/2)

n

and

sm =
1

n

(
S̃(0)

2
+

n−1∑
k=1

S̃(k) cos
π(m+ 1/2)k

n

)
Fig. 4.3 compares the absolute values of the DCT of signal sss3 (left) with the real (blue) and the imaginary

part of the DFT of the same signal (right).

Figure 4.3: The DCT s̃ss3 of signal sss3 (left) and the real (blue) and the imaginary (red) parts of the DFT ŝss3 of
the same signal (right)

Clearly, the 32 values of s̃ss3 are much more compressible with low artifacts than the 32 values of ŝss3. In
fact, choosing again only the 8 largest numbers of s̃ss3 and setting the rest to 0 produces an approximation σ̃σσ3 of
s̃ss3. Inverting σ̃σσ3 we obtain an approximation σσσ∗3 of signal sss3 which we compare on Fig. 4.4 with the previous
approximation σσσ3 obtained by taking 8 largest components of the DFT σ̂σσ3 of the same input signal sss3 thus
obtaining σ̂σσ3 and then inverting σ̂σσ3 to obtain the corresponding time domain sequence σσσ3. It is obvious from
that plot that the DCT does a much better job than the DFT, especially towards the end points of the signal
sss3. This is further made even more obvious by considering the corresponding errors of approximations, shown
on Fig.4.5.

5 The DFT and the DCT in two dimensions and the JPEG

Both the DFT and the DCT readily generalize to several dimensions. For 2 dimensions, i.e., for images, a basis
for n× n matrices can be obtained as the outer product (which is also the tensor product) of 1D basis vectors,
i.e., for all 0 ≤ k < n and 0 ≤ p < n we have a basis matrix

ϕϕϕ(k, p) =

{
1

n
· eı̇ 2πkm

n · eı̇
2πp q
n : 0 ≤ m, q < n

}
=

{
1

n
e2π ı̇

km+p q
n : 0 ≤ m, q < n

}
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Figure 4.4: The DCT s̃ss3 of signal sss3 (left) and the real (blue) and the imaginary (red) parts of the DFT ŝss3 of
the same signal (right)

Figure 4.5: The DCT s̃ss3 of signal sss3 (left) and the real (blue) and the imaginary (red) parts of the DFT ŝss3 of
the same signal (right)

The DCT also generalizes in 2D in a straightforward way, using basis matrices

φ̃φφ(k, p) =

(
cos

πi(k + 1/2)

n
cos

πj(p+ 1/2)

n
: 0 ≤ i, j < n

)
.

These 64 matrices are shown below (image pinched from the Wikipedia article):

DCT generalized to 2 dimensions is given by the following two formulas:

X̃(k, p) =
1

n

n−1∑
i=0

n−1∑
j=0

X(i, j) cos
π(j + 1/2)k

n
cos

π(i+ 1/2)p

n
,
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and, letting a(0) = 1/2 and a(k) = 1 if k 6= 0,

X(k, p) =
4

n

n−1∑
i=0

n−1∑
j=0

a(i)a(j)X̃(i, j) cos
πi(k + 1/2)

n
cos

πj(p+ 1/2)

n
.

!!TO BE EXPANDED FOR NEXT YEAR’s RUN!!

We very briefly sketch the JPEG image compression algorithm as applied to grey scale images; for more tech-
nical details please read, for example, the Wikipedia entry https://en.wikipedia.org/wiki/JPEG#/media/

File:Dctjpeg.png. The uncompressed images are usually encoded by the values of each pixel, using 8 bits,
with pixel values ranging from 0 to 255, where smaller values correspond to darker pixels. JPEG splits such an
image into squares of size 8× 8 pixels, which are encoded separately. As an example, let us consider one such
block, taken from the famous photo of Lena of size 512× 512 pixels, from her right eye, taking pixels belonging
to rows 264 to 271 and columns 264 to 271, which is block (33,33):

Note that this is one of the “trickiest” blocks to compress, because it contains quite a bit of details. The
values of the 64 pixels are given by the matrix

M =



50 40 46 48 76 62 69 94
45 39 36 40 88 87 65 86
48 38 36 39 56 90 65 50
76 48 41 43 69 112 77 56
90 72 66 66 90 108 74 53
98 86 86 91 83 72 57 66
79 87 90 80 77 55 65 113
57 54 61 58 65 77 107 160


Since our basis matrices attain both positive and negative values, the image is first centered around 0 (as

opposed to 128) by subtracting from each pixel value 128, thus obtaining matrix

S =



−78 −88 −82 −80 −52 −66 −59 −34
−83 −89 −92 −88 −40 −41 −63 −42
−80 −90 −92 −89 −72 −38 −63 −78
−52 −80 −87 −85 −59 −16 −51 −72
−38 −56 −62 −62 −38 −20 −54 −75
−30 −42 −42 −37 −45 −56 −71 −62
−49 −41 −38 −48 −51 −73 −63 −15
−71 −74 −67 −70 −63 −51 −21 32


We now compute the 2D DCT of this matrix. The values of each component of the DCT are now divided

by corresponding value of the following “psycho-visual” matrix Q and thus computed ratios are rounded to the
nearest integer:
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Q =



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99


The idea is that human vision is not equally sensitive to all spacial frequencies; high spacial frequency compo-
nents change more rapidly and can thus be represented with lower accuracy. Just think of a stain on a light
plain shirt, versus the same stain on a shirt with a busy pattern; the same stain will be much less noticeable on
a shirt with a busy pattern than on a plain shirt.

Let C =
(

[Ŝ(i, j)/Q(i, j)] : 1 ≤ i, j ≤ 8
)

where [x] denotes the value of x rounded to the nearest integer;

in our example we obtain

C =



−29 −4 1 1 0 0 0 0
−4 −1 −1 1 0 0 0 0
0 −2 1 −1 0 0 0 0
2 2 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


The choice of Q is determined by the desired level of compression; more aggressive compression will have larger
entries, thus producing more zeros in matrix C. Note an interesting feature of Q: the matrix is not symmetric,
indicating that human vision is not equally sensitive for horizontal and vertical patterns.

Such a resulting 2D matrix C is turned into a 1D array by ordering the values using the “Cantor snake-like”
path, where entry C(i, j) is placed at the position 1/2(i+ j)(i+ j + 1) + i, as shown on the following diagram
from the Wikipedia article: In this way zeros appear as long stretches. Such a sequence is obviously highly

compressible using standard lossless compression algorithms.
We now decompress matrix C by multiplying it element by element with matrix Q, take the inverse DCT

and then add value 128 which we originally subtracted. The result of such decompression is shown on figure
below; on the left is the original, in the middle is the decompressed version of the same original and on the right
is the error (inverted, so that larger values correspond to darker pixels.
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