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Models and Planning

We previously used a transition table for our World Model, with Planning

done by State-Based Search (BFS, DFS, UCS, IDS, Greedy, A*, etc.)

UNSW c©AIMA, 2002, Alan Blair, 2010-8

COMP3411/COMP9414/9814: Artificial
Intelligence

Week 9: Logical Agents

Russell & Norvig, Chapters 7 & 8.

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Models and Planning

Some environments instead require a Knowledge Base of factsand a set
of Logical Inference Rules to reason about those facts.

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Outline

� Logic in general – models and entailment

� Propositional Logic

� Equivalence, Validity, Satisfiability

� Inference Rules and Theorem Proving

� Resolution and Conjunctive Normal Form

� Forward and Backward Chaining

� First Order Logic

� Universal and Existential Quantifiers

� Situation Calculus

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Logical Reasoning for Wumpus World
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� If there is a Breeze in (1,2) and (2,1), then there are no safe actions.

� Assuming that pits are uniformly distributed, a pit is more likely in

(2,2) than in (3,1). How much more likely?

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Logical Reasoning for Wumpus World
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Need to represent:

� Facts: “Breeze in Square (1,2)”, “Stench in Square (2,1)”

� Inference Rules: “If there is a Breeze in Square (1,2) then there is a
Wumpus in Square (1,1), (2,2) or (1,3)”.

Then try to deduce, for example, whether it is safe to move into Square (2,2).

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Reasoning about Future States

A

S

If there is a Smell in (1,1), there is no safe square to move into.
However, we can use logic to reason about future states.

� Shoot straight ahead

� Wumpus was there⇒ dead⇒ safe

� Wumpus wasn’t there⇒ safe

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Knowledge bases

Inference engine

Knowledge base domain−specific content

domain−independent algorithms

A Knowledge Base is a set ofsentencesin a formal language. It takes a

Declarativeapproach to building an agent (or other system):

� Tell the system what it needs to know, then it canAsk itself what it

needs to do

� Answers should follow from the KB.

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Entailment

Entailmentmeans that one thingfollows from another:

KB |= α

Knowledge baseKB entails sentenceα if and only if

α is true in all worlds whereKB is true.

e.g. the KB containing “the Moon is full” and “the tide is high”

entails “Either the Moon is full or the tide is high”.

e.g.x+ y = 4 entails 4= x+ y

Entailment is a relationship between sentences (i.e.syntax)

that is based onsemantics.

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Knowledge Based Agent

The agent must be able to:

� represent states, actions, etc.

� incorporate new percepts

� update internal representations of the world

� deduce hidden properties of the world

� determine appropriate actions

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Models

Logicians typically think in terms ofmodels, which are formally
structured worlds with respect to which truth can be evaluated.

We saym is a model ofa sentenceα if α is true inm

M(α) is the set of all models ofα

ThenKB |= α if and only if M(KB)⊆ M(α)
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Logic in general

Logics are formal languages for representing information such that

conclusions can be drawn.

Syntaxdefines the sentences in the language.

Semanticsdefine the “meaning” of sentences; i.e. definetruth of a

sentence in a world.

For example, the language of arithmetic:

x+2≥ y is a sentence;x2+ y > is not a sentence

x+2≥ y is true iff the numberx+2 is no less than the numbery

x+2≥ y is true in a world wherex = 7, y = 1

x+2≥ y is false in a world wherex = 0, y = 6

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Wumpus models

KB = wumpus-world rules + observations

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Entailment in the wumpus world

Situation after detecting nothing in [1,1],

moving right, Breeze in [2,1]

Consider possible combinations for ?s

assuming only pits.
AA

B

?
?

?

3 Boolean choices⇒ 8 possible combinations.

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Wumpus models

KB = wumpus-world rules + observations

α1 = “[1,2] is safe”,KB |= α1, proved bymodel checking

UNSW c©AIMA, 2002, Alan Blair, 2010-8

COMP3411/9414/9814 18s1 Logic 13

Wumpus models

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Propositional logic: Semantics

Each model specifiesTRUE / FALSE for each proposition symbol. For

example, if there are Pits in (1,2) and (2,2) but not (3,1) we would have

the following assignments:

E.g. P1,2 P2,2 P3,1

TRUE TRUE FALSE

(With these symbols, 8 possible models, can be enumerated automatically.)

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Wumpus models

KB = wumpus-world rules + observations

α2 = “[2,2] is safe”,KB 6|= α2

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Propositional logic: Semantics

Rules for evaluating truth with respect to a modelm:

¬S is TRUE iff S is FALSE

S1∧S2 is TRUE iff S1 is TRUE and S2 is TRUE

S1∨S2 is TRUE iff S1 is TRUE or S2 is TRUE

S1 ⇒ S2 is TRUE iff S1 is FALSE or S2 is TRUE

i.e. isFALSE iff S1 is TRUE and S2 is FALSE

S1 ⇔ S2 is TRUE iff S1 ⇒ S2 is TRUE and S2 ⇒ S1 is TRUE

Simple recursive process evaluates an arbitrary sentence,e.g.

¬P1,2∧ (P2,2∨P3,1) = TRUE∧ (FALSE∨ TRUE) = TRUE∧ TRUE= TRUE

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Propositional Logic: Syntax

Propositional logic is the simplest logic—illustrates basic ideas.

The proposition symbolsP1, P2 etc are sentences.

If S is a sentence,¬S is a sentence (negation)

If S1 andS2 are sentences,S1∧S2 is a sentence (conjunction)

If S1 andS2 are sentences,S1∨S2 is a sentence (disjunction)

If S1 andS2 are sentences,S1 ⇒ S2 is a sentence (implication)

If S1 andS2 are sentences,S1 ⇔ S2 is a sentence (biconditional)

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Wumpus World Sentences

Let Pi, j be true if there is a pit in[i, j].

Let Bi, j be true if there is a breeze in[i, j].

¬P1,1

¬B1,1

B2,1

“Pits cause breezes in adjacent squares”

B1,1 ⇔ (P1,2∨P2,1)

B2,1 ⇔ (P1,1∨P2,2∨P3,1)

“A square is breezyif and only if there is an adjacent pit”

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Truth Tables

P Q ¬ P P∧ Q P∨ Q P⇒ Q

F F T F F T

F T T F T T

T F F F T F

T T F T T T

P “Fred is served alcohol”

Q “Fred is over 18 years old”

P⇒ Q “If Fred is served alcohol, then he must be over 18”

Implication is not a causal relationship, but a rule that needs to be checked.

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Logical Equivalence and Inference Rules

Inference Rules:

generalization: p ⇒ p∨q

specialization: p∧q ⇒ p

Two sentences arelogically equivalentiff true in same models:

α ≡ β if and only if α |= β andβ |= α

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Wumpus World Sentences

Let Pi, j be true if there is a pit in[i, j].

Let Bi, j be true if there is a breeze in[i, j].

¬P1,1

¬B1,1

B2,1

“Pits cause breezes in adjacent squares”

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Example

Prove that:

(A∧ (B ⇒C)) ⇔ (¬(A ⇒ B)∨ (A∧C))

(A∧ (B ⇒C)) ⇔ A∧ (¬B∨C) [implication]

⇔ (A∧¬B)∨ (A∧C) [distributivity]

⇔ ¬(¬A∨B)∨ (A∧C) [de Morgan]

⇔ ¬(A ⇒ B)∨ (A∧C) [implication]

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Logical Equivalence Rules

commutativity: p∧q ⇔ q∧ p p∨q ⇔ q∨ p

associativity: p∧ (q∧ r)⇔ (p∧q)∧ r p∨ (q∨ r)⇔ (p∨q)∨ r

distributivity: p∧ (q∨ r)⇔ (p∧q)∨ (p∧ r) p∨ (q∧ r)⇔ (p∨q)∧ (p∨ r)

implication: (p ⇒ q)⇔ (¬p∨q)

idempotent: p∧ p ⇔ p p∨ p ⇔ p

double negation: ¬¬p ⇔ p

contradiction: p∧¬p ⇔ FALSE

excluded middle: p∨¬p ⇔ TRUE

de Morgan: ¬(p∧q)⇔ (¬p∨¬q) ¬(p∨q)⇔ (¬p∧¬q)

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Inference

KB ⊢i α = sentenceα can be derived fromKB by procedurei

Soundness: i is sound if

wheneverKB ⊢i α, it is also true thatKB |= α

Completeness: i is complete if

wheneverKB |= α, it is also true thatKB ⊢i α

Consequences ofKB are a haystack;α is a needle.

Entailment = needle in haystack; inference = finding it.

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Validity and Satisfiability

A sentence isvalid if it is true in all models,
e.g.TRUE, A∨¬A, A ⇒ A, (A∧ (A ⇒ B))⇒ B

Validity is connected to inference via theDeduction Theorem:
KB |= α if and only if (KB ⇒ α) is valid

A sentence issatisfiableif it is true in somemodel
e.g. (A∨B)∧C

A sentence isunsatisfiableif it is true in nomodels
e.g.A∧¬A

Satisfiability is connected to inference via the following:
KB |= α if and only if (KB∧¬α) is unsatisfiable
i.e. proveα by reductio ad absurdum

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Resolution

Suppose we have two disjunctive clausesℓ1 ∨ . . .∨ ℓi ∨ . . .∨ ℓk and

m1∨ . . .∨m j ∨ . . .∨mn

We can then derive a new clause by eliminatingli, m j and combining all

the other literals, i.e.

ℓ1∨ . . .∨ ℓi ∨ . . .∨ ℓk, m1∨ . . .∨m j ∨ . . .∨mn

ℓ1∨ . . .∨ ℓi−1∨ ℓi+1∨ . . .∨ ℓk ∨m1∨ . . .∨m j−1∨m j+1∨ . . .∨mn

whereℓi andm j are complementary literals. e.g.

P1,3∨P2,2, ¬P2,2

P1,3

Resolution is sound and complete for propositional logic.

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Conjunctive Normal Form

In order to apply Resolution, we must first convert the KB intoConjunctive

Normal Form (CNF).

This means that the KB is a conjunction of clauses, and each clause is a

disjunction of (possibly negated) literals.

e.g.(A∨¬B)∧ (B∨¬C∨¬D)

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Wumpus World Example

Use resolution to prove that if there is a Breeze in (1,1), there must also be

a Breeze in (2,2), i.e. prove(¬B1,1∨B2,2), from this KB:

(¬B1,1∨P1,2∨P2,1)∧(¬P1,2∨B1,1)∧(¬P2,1∨B1,1)∧(¬P1,2∨B2,2)∧(¬P2,1∨B2,2)

Answer:
¬B1,1∨P1,2∨P2,1 , ¬P1,2∨B2,2

¬B1,1∨P2,1∨B2,2

¬B1,1∨P2,1∨B2,2 , ¬P2,1∨B2,2

¬B1,1∨B2,2∨B2,2

The last clause is equivalent to¬B1,1∨B2,2

UNSW c©AIMA, 2002, Alan Blair, 2010-8

COMP3411/9414/9814 18s1 Logic 29

Conversion to CNF

B1,1 ⇔ (P1,2∨P2,1)

1. Eliminate⇔ , replacingα ⇔ β with (α ⇒ β)∧ (β ⇒ α).

(B1,1 ⇒ (P1,2∨P2,1))∧ ((P1,2∨P2,1)⇒ B1,1)

2. Eliminate⇒ , replacingα ⇒ β with ¬α∨β.

(¬B1,1∨P1,2∨P2,1)∧ (¬(P1,2∨P2,1)∨B1,1)

3. Move¬ inwards using de Morgan’s rules and double-negation:

(¬B1,1∨P1,2∨P2,1)∧ ((¬P1,2∧¬P2,1)∨B1,1)

4. Apply distributivity law (∨ over∧) and flatten:

(¬B1,1∨P1,2∨P2,1)∧ (¬P1,2∨B1,1)∧ (¬P2,1∨B1,1)

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Forward chaining

Look for a rulep1∧ . . .∧ pn ⇒ q such that all the clauses on the left hand

side are already in the KB.

Apply this rule, and addq to the KB.

Repeat this process until the goal clauseα has been derived

(or we run out of rules to apply).

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Proof Methods

Resolution provides us an alternative proof method which isgenerally

somewhat faster than Truth Table Enumeration:

1. convert the into Conjunctive Normal Form,

2. add the negative of the clause you are trying to prove,

3. continually apply a series of resolutions until either

(a) you derive the empty clause, or

(b) no more pairs of clauses to which resolution can be applied

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Backward chaining

Backward Chaining instead maintains a list of subgoals thatit is trying to

prove. Initially, this list consists of the ultimate goalα.

Choose a clauseq from the list of subgoals.

� check ifq is known already

� otherwise, find a rule withq on the right side and add clauses from

the left side of this rule as new subgoals

� check to make sure each new subgoal is not on the list already,and

has not already been proved, or failed

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Horn Clauses

Model Checking can be done more efficiently if the clauses in the all
happen to be in a special form for example they may all be Horn Clauses.
Each Horn Clause is an implication involving only positive literals, in the
form:

(conjunction of symbols)⇒ symbol

e.g.C∧ (B ⇒ A)∧ (C∧D ⇒ B)

Deduction with Horn Clauses can be done by Modus Ponens:

p1, . . . , pn , p1∧ . . .∧ pn ⇒ q
q

Efficient Proof Methods, using Horn Clauses, can generally be divided
into Forward Chaining and Backward Chaining.

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Satisfiability as Constraint Satisfaction

Difficulty of finding a solution depends on the ratio(m/n) wherem is the

number of clauses andn is the number of distinct symbols.

Supposen = 50 and the KB is in 3-CNF.

� m/n < 4.3⇒ under-constrained

� m/n ≃ 4.3⇒ critically difficult

� m/n > 4.3⇒ over-constrained

Other CSPs like n-Queens are sometimes converted to 3-CNF, as a way of

measuring whether they are under- or over-constrained.

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Forward vs. Backward Chaining

Forward Chaining is data-driven automatic, unconscious processing e.g.

object recognition, routine decisions

� May do lots of work that is irrelevant to the goal

Backward Chaining is goal-driven, appropriate for problem-solving

� e.g. Where are my keys? How do I get into a PhD program?

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Summary

Logical agents applyinferenceto a knowledge baseto derive new

information and make decisions.

Basic concepts of logic:

� syntax: formal structure ofsentences

� semantics: truth of sentences wrtmodels

� entailment: necessary truth of one sentence given another

� inference: deriving sentences from other sentences

� soundness: derivations produce only entailed sentences

� completeness: derivations can produce all entailed sentences

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Satisfiability as Constraint Satisfaction

Suppose you are given a KB written in 3-CNF. (This means Conjunctive
Normal Form, with at most three literals in each clause.)

Does there exist any assignment of truth values to the symbols which will

make all of the clauses in the KBTRUE?

For example, is there an assignment of truth values toA,B,C,D,E which
will make the following TRUE?

(¬D∨¬B∨C)∧(B∨¬A∨¬C)∧(¬C∨¬B∨E)∧(E∨¬D∨B)∧(B∨E∨¬C)

This provides a classic example of a Constraint Satisfaction Problem, to
which methods such as Hill Climbing or Simulated Annealing can be

applied.

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Logics in General

Language Ontology Epistemology

Propositional logic facts true / false / unknown

First-order logic facts, objects, relations true / false / unknown

Temporal logic facts, objects, relations, timestrue / false / unknown

Probability theory facts degree of belief

Fuzzy logic facts + degree of truth known interval value

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Limitations of Propositional Logic

“A square is breezyif and only if there is an adjacent pit.”

This statement must be converted into a separate sentence for each square:

B1,1 ⇔ (P1,2∨P2,1)

B2,1 ⇔ (P1,1∨P2,2∨P3,1)

...

What we really want is a way to express such a statement in one sentence

for all squares, e.g.

Breezy(i, j)⇔ (Pit(i−1, j)∨Pit(i+1, j)∨Pit(i, j−1)∨Pit(i, j+1))

First-Order Logic will allow us to do this.

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Syntax of First Order Logic

Constants Gold,Wumpus, [1,2], [3,1], etc.

Predicates Ad jacent(),Smell(),Breeze(),At()

Functions Result()

Variables x, y, a, t, . . .

Connectives ∧ ∨ ¬ ⇒⇔

Equality =

Quantifiers ∀ ∃

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Syntax of First Order Logic

� Objects: people, houses, numbers, theories, colors, football games,

wars, centuries. . .

� Predicates: red, round, bogus, prime, multistoried,. . .

brother of, bigger than, inside, part of, has color, occurred after, owns,

comes between,. . .

� Functions: father of, best friend, third inning of, one more than,. . .

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Universal Quantification

Typically,⇒ is the main connective with∀

Common mistake: using∧ as the main connective with∀

∀x Glitter(x)∧At(Gold,x)

means “There is Glitter everywhere and Gold everywhere.”

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Sentences

Atomic sentence = predicate(term1, . . . , termn)

or term1 = term2

Term = f unction(term1, . . . , termn)

or constant or variable

e.g. At(Agent, [1,1],S0)

Holding(Gold,S5)

Complex sentences are made from atomic sentences using connectives

¬S, S1∧S2, S1∨S2, S1 ⇒ S2, S1 ⇔ S2

e.g.Pit(x)∧Ad jacent(x,y)

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Existential Quantification

∃〈variables〉〈sentence〉

Some sheep are black

∃x Sheep(x)∧Black(x)

∃x P is equivalent to thedisjunctionof instantiationsof P

Sheep(Dolly)∧Black(Dolly)

∨ Sheep(Lassie)∧Black(Lassie)

∨ Sheep(Skippy)∧Black(Skippy)

∨ . . .

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Universal Quantification

∀〈variables〉〈sentence〉

Where there’s glitter, there’s gold:

∀x Glitter(x)⇒ At(Gold,x)

∀x P is equivalent to theconjunctionof instantiationsof P

Glitter([1,1])⇒ At(Gold, [1,1])

∧ Glitter([1,2])⇒ At(Gold, [1,2])

∧ Glitter([1,3])⇒ At(Gold, [1,3])

∧ . . .

UNSW c©AIMA, 2002, Alan Blair, 2010-8



COMP3411/9414/9814 18s1 Logic 50

Fun with Sentences

Brothers are siblings

“Sibling” is symmetric

One’s mother is one’s female parent

A first cousin is a child of a parent’s sibling

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Existential Quantification

Typically,∧ is the main connective with∃

Common mistake: using⇒ as the main connective with∃

∃x Sheep(x)⇒ Black(x)

is true if there is anyone who is not at sheep!

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Fun with Sentences

Brothers are siblings

∀x,y Brother(x,y)⇒ Sibling(x,y)

“Sibling” is symmetric

∀x,y Sibling(x,y)⇔ Sibling(y,x)

One’s mother is one’s female parent

∀x,y Mother(x,y)⇔ (Female(x)∧Parent(x,y))

A first cousin is a child of a parent’s sibling

∀x,yFirstCousin(x,y)⇔∃p, ps Parent(p,x)∧Sibling(p,q)∧Parent(q,y)

UNSW c©AIMA, 2002, Alan Blair, 2010-8

COMP3411/9414/9814 18s1 Logic 49

Properties of Quantifiers

∀x∀y is the same as∀y∀x (Why?)

∃x∃y is the same as∃y∃x (Why?)

∃x∀y is not the same as∀y∃x

∃x∀y Loves(x,y)

“There is a person who loves everyone in the world”

∀y∃x Loves(x,y)

“Everyone in the world is loved by at least one person”

Quantifier duality: each can be expressed using the other

∀x Likes(x, IceCream) ¬∃x ¬Likes(x, IceCream)

∃x Likes(x,Broccoli) ¬∀x ¬Likes(x,Broccoli)

UNSW c©AIMA, 2002, Alan Blair, 2010-8
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Describing Actions

We can plan a series of actions in a logical domain in a manner analogous

to the Path Search algorithms discussed in Weeks 3 & 4. But, instead of

the successor state being explicitly specified, we instead need to deduce

what will be true and false in the state resulting from the previous state

and action:

Effect axiom describe changes due to action

∀s AtGold(s)⇒ Holding(Gold,Result(Grab,s))
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Deducing Hidden Properties

Properties of locations:

∀x, t At(Agent,x, t)∧Smell(t)⇒ Smelly(x)

∀x, t At(Agent,x, t)∧Breeze(t)⇒ Breezy(x)

∀x, t At(Agent,x, t)∧Glitter(t)⇒ AtGold(x)

Squares are breezy near a pit:

Causalrule – infer effect from cause

∀x,y Pit(x)∧Ad jacent(x,y)⇒ Breezy(y)

Diagnosticrule – infer cause from effect

∀y Breezy(y)⇒∃x Pit(x)∧Ad jacent(x,y)

Definition for theBreezy predicate (combines Causal and Diagnostic):

∀y Breezy(y)⇔ [∃x Pit(x)∧Ad jacent(x,y)]
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Describing Actions

Frame problem: Some facts will change as a result of an action, but many

more will stay as they were.

∀s HaveArrow(s)⇒ HaveArrow(Result(Grab,s))

However, adding too many of theseframe axiomscan make the process

unmanageable.

For example, if a cup is red, and you turn it upside down, it is still red.

But, if a cup is full of water, and you turn it upside down, it isno longer

full of water.

Large-scale expert systems of the 1980’s often failed because of their

inability to encode this kind of “commonsense” reasoning inexplicit rules.
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Keeping Track of Change

Facts hold only in certainsituations, not universally.

e.g.Holding(Gold,Now) rather than justHolding(Gold)

Situation calculusis one way to represent change:

� Adds a situation argument to each non-eternal predicate

� e.g.Now denotes a situation inHolding(Gold,Now)

Situations are connected by theResult function

Result(a,s) is the situation that results from doing

actiona is states
PIT

PIT

PIT

Gold

PIT

PIT

PIT

Gold

S0

Forward

S1
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Searching for a Plan of Actions

Representplansas action sequences[a1,a2, . . . ,an]

PlanResult(p,s) is the result of executingp in s

Then the queryAsk(KB,∃p Holding(Gold,PlanResult(p,S0)))

has the solutionp = [Forward,Grab]

Definition of PlanResult in terms ofResult:

∀s PlanResult([],s) = s

∀a, p,s PlanResult([a|p],s) = PlanResult(p,Result(a,s))

Planning systemsare special-purpose reasoners designed to do this type

of inference more efficiently than a general-purpose reasoner.
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Describing Actions

Qualification problem: Normally, we expect actions to have a certain

effect. But, in the real world there could be endless caveats. What happens

if the gold is slippery, or nailed down, or too heavy, or you can’t reach it,

etc.

Ramification problem: Real actions have many secondary consequences –

what about the dust on the gold, wear and tear on gloves, shoes, etc..

In general, we assume that a fact is true if a rule tells us thatan action

made it true, or if it was true before and no action made it false.
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Summary

� First Order Logic:

◮ objects and relations are semantic primitives

◮ syntax: constants, functions, predicates, equality, quantifiers

� Increased expressive power: sufficient to define Wumpus World

� Situation calculus:

◮ conventions for describing actions and change

◮ can formulate planning as inference on a knowledge base
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Searching for a Situation

Initial condition in KB (knowledge base):

At(Agent, [1,1],S0)

At(Gold, [1,2],S0)

Query:Ask(KB,∃s Holding(Gold,s))

i.e., in what situation will I be holding the gold?

Answer:s = Result(Grab,Result(Forward,S0))

i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at S0 and thatS0

is the only situation described in the KB.
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