COMP3411/COMP9414/9814: Atrtificial
Intelligence

Week 9: Logical Agents

Russell & Norvig, Chapters 7 & 8.
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Models and Planning

World Model Planning
-Transition table -State-based search
-Dynamical system -Simulation

4 . Y — i
-Parametric model -Goals/utility

-Knowledge base -Logical inference
Perception | —  Action |

We previously used a transition table for our World ModelthA®lanning
done by State-Based Search (BFS, DFS, UCS, IDS, Greedy&}, e
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Outline

Logic

Logic in general — models and entailment

Propositional Logic

Equivalence, Validity, Satisfiability

Inference Rules and Theorem Proving

Resolution and Conjunctive Normal Form

Forward and Backward Chaining
First Order Logic

Universal and Existential Quantifiers

Situation Calculus

UNSW
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Models and Planning

World Model
—_—

-Knowledge base .
and logical inference
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Logic

Planning

-Resolution
-Situation Calculus

i e
Perception I .

4

Action |

e

Some environments instead require a Knowledge Base ofdacts set
of Logical Inference Rules to reason about those facts.

UNSW
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Logical Reasoning for Wumpus World

P?

P

B OK

||OK S iOK

W= | W

Need to represent:

Facts: “Breeze in Square (1,2)", “Stench in Square (2,1)”

Inference Rules: “If there is a Breeze in Square (1,2) theretls a
Wumpus in Square (1,1), (2,2) or (1,3)".

Then try to deduce, for example, whether it is safe to moveQuuare (2,2)

UNSW
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Logical Reasoning for Wumpus World

P?

P’:’
A
||OK B OK

__ P?

If there is a Breeze in (1,2) and (2,1), then there are no saienes.

Assuming that pits are uniformly distributed, a pit is makely in
(2,2) than in (3,1). How much more likely?
UNSW
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Knowledge bases

Inference engine -«——— domain-independent algorithms

Knowledge base

-s————domain-specific content

A Knowledge Base is a set gkntencein aformal language. It takes a
Declarativeapproach to building an agent (or other system):

Tell the system what it needs to know, then it dssk itself what it
needs to do

Answers should follow from the KB.

UNSW
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Reasoning about Future States

If there is a Smell in (1,1), there is no safe square to mowe int
However, we can use logic to reason about future states.
Shoot straight ahead

Wumpus was there> dead=- safe

Wumpus wasn't there> safe

UNSW
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Knowledge Based Agent

The agent must be able to:

represent states, actions, etc.

incorporate new percepts

update internal representations of the world
deduce hidden properties of the world

determine appropriate actions

UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Entailment

Entailmentmeans that one thinigllows from another:

KB=a

Knowledge bas&B entails sentence if and only if
o is true in all worlds wher&B is true.

e.g. the KB containing “the Moon is full” and “the tide is high
entails “Either the Moon is full or the tide is high”.

e.g.x+y=4entails 4= x+y
Entailment is a relationship between sentencesgietay

that is based osemantics
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Logic in general

Logics are formal languages for representing information such tha
conclusions can be drawn.

Syntaxdefines the sentences in the language.

Semanticgdefine the “meaning” of sentences; i.e. defingh of a
sentence in a world.

For example, the language of arithmetic:
X+2>yis asentences2+y > is not a sentence
X+ 2 > yis true iff the numbex+ 2 is no less than the numbgr

X+2>yistrue in aworld wherea =7, y=1
X+ 2>yis false in a world wherg =0, y=6

UNSW (©AIMA, 2002, Alan Blair, 2010-8

COMP3411/9414/9814 18s1 Logic

Models

Logicians typically think in terms ofnodels which are formally
structured worlds with respect to which truth can be evaldiat

We saymis a model ofa sentence if a is true inm
M(a) is the set of all models af
ThenKB = a if and only if M(KB) C M(a)

UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Entailment in the wumpus world Wumpus models
Situation after detecting nothing in [1,1], I Y |
moving right, Breeze in [2,1] S
Consider possible combinations for ?s ' ' S =, e fl
. . B ! ? : 1 2 3
assuming only pits. Al @ ’) — A
3 Boolean choices> 8 possible combinations. T
UNSW ©AIMA, 2002, Alan Blair, 2010-8 UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Wumpus models Wumpus models
KB = wumpus-world rules + observations KB = wumpus-world rules + observations
a1 =“[1,2] is safe”,KB |= a1, proved bymodel checking
(©AIMA, 2002, Alan Blair, 2010-8
UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Wumpus models

KB = wumpus-world rules + observations
oy =“[2,2] is safe”,KB |~ o
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Propositional logic: Semantics

Each model specifiesRUE / FALSE for each proposition symbol. For
example, if there are Pits in (1,2) and (2,2) but not (3,1) veeileh have
the following assignments:

Eg. P2 P P31

TRUE TRUE FALSE

(With these symbols, 8 possible models, can be enumeratenhatically.)

UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Propositional Logic: Syntax

Propositional logic is the simplest logic—illustrates icadeas.
The proposition symbolBy, P, etc are sentences.

If Sis a sentence;Sis a sentencenggation

If S andS are sentence§ A S is a sentenceconjunctior)

If S andS, are sentence§ VS is a sentenced(sjunction)

If S, andS are sentence§ = S is a sentencarfiplication)

If S andS; are sentence§ < S is a sentencebfconditiona)

UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Propositional logic: Semantics

Rules for evaluating truth with respect to a model

=S IS TRUEIff S iS FALSE
SSAS isTRUEIff S is TRUE and S iS TRUE
SIVS  isTRUEIff S iS TRUE or S iS TRUE
S =S isTRUEIff S iS FALSE or S iS TRUE
i.e. ISFALSEIff S is TRUE and S iS FALSE
S¢S IsTRUEIff § =S IisTRUEand $ =S IiSTRUE

Simple recursive process evaluates an arbitrary sentergce,
“P12A(Po2VP31) = TRUEA (FALSEV TRUE) = TRUEA TRUE = TRUE

UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Truth Tables Wumpus World Sentences
P Q| ~P|PAQ|PVQ|P=Q Let P, j be true if there is a pit ifi, j].
FIF| T F F T Let B j be true if there is a breeze i j|.
F| T T F T T Py
T F|| F F T F By.
TIT| F | T T T Bys
P “Fred is served alcohol” “Pits cause breezes in adjacent squares”
Q “Fred is over 18 years old”
P=Q “If Fred is served alcohol, then he must be over 18"
Implication is not a causal relationship, but a rule thatdsde be checked.
UNSW ©AIMA, 2002, Alan Blair, 2010-8 UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Wumpus World Sentences Logical Equivalence and Inference Rules
Let R j be true if there is a pit ifi, j]. Inf Rules
LetBj j be true if there is a breeze jin j]. nrerence xufes.
b generalization: p=-pvq
b specialization: pAg=-p
—-Bi11
B21 Two sentences ailegically equivaleniff true in same models:

“Pits cause breezes in adjacent squares” a=pifandonlyifa =B andB = o

Bii1 & (Pi2VP21)
Bo1 & (PLiVPoVP31)

“A square is breezyf and only if there is an adjacent pit”

UNSW (©AIMA, 2002, Alan Blair, 2010-8 UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Logical Equivalence Rules

Logic 24

commutativity:  pAg< gAp

associativity: PA(QAT) < (PAQ) AT
implication: (p=0q) < (-pVvQ)
idempotent: PAP<S P

double negation: ——p<p
contradiction: PA—-p< FALSE

excluded middle:

de Morgan: -(pAQ) & (-pV—Q)

pvgeqyp
pVv(QVvr) & (pva)Vvr

distributivity: pA(QVT) < (PAQ)V(PAT) PV (QAT) < (pVa) A(pVr)

pvpep

pV-p< TRUE
=(pVvQ) < (—-pA—Q)

UNSW
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Example

Prove that:

(AA(B=C)) & (~(A=B)V(AAC))

(AN (B=C)) AN (-BVC)
(AA=B)V (AAC)
-(-AVB)V (AAC)

-(A=B)V(AAC)

r e e

UNSW
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[implication]
[distributivity]
[de Morgan]
[implication]

(©AIMA, 2002, Alan Blair, 2010-8
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Validity and Satisfiability

A sentence isalid if it is true in all models,
e.g.TRUE, AV-A A=A (AA(A=B))=B

Validity is connected to inference via tiieduction Theorem
KB = a ifand only if (KB = a) is valid

A sentence isatisfiabldf it is true in somemodel

e.g. AvB)AC

A sentence isinsatisfiabléf it is true in no models
e.g.AN-A

Satisfiability is connected to inference via the following:
KB k= a if and only if (KB A —a) is unsatisfiable
i.e. provea by reductio ad absurdum

UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Inference

KBH; a = sentence can be derived fronkKB by procedure

Soundness is sound if
whenevelKBF; q, it is also true thakB = o

Completenesd is complete if
whenevelKB = a, it is also true thakKB - a

Consequences ¢fB are a haystaclq is a needle.
Entailment = needle in haystack; inference = finding it.

UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Conjunctive Normal Form

In order to apply Resolution, we must first convert the KB i@tmjunctive
Normal Form (CNF).

This means that the KB is a conjunction of clauses, and eaalselis a
disjunction of (possibly negated) literals.

e.g.(Av-B)A (BV—-CV-D)

UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Resolution

Suppose we have two disjunctive clauges/ ...V 4 V...V ¥ and
mV...Vm V...V,

We can then derive a new clause by eliminatingn; and combining all
the other literals, i.e.

lAV ... V4GV ...V, M V...VMmjV...Vihy
El\/...\/éi,l\/éiﬂ\/...\/EKlev...\/mj,l\/mHl\/...\/mn

where/; andm; are complementary literals. e.g.

P13V P, —P
P13

Resolution is sound and complete for propositional logic.

UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Conversion to CNF

Bi1< (Pi2VP21)
1. Eliminate< , replacinga < B with (a = B) A (B=a).

(Bi1= (P12VP21)) A((PL2VP21) = Bra)
2. Eliminate=, replacinga = 3 with —a Vv 3.

(—B11VPL2VP 1) A(=(PL2VP21) VB11)
3. Move - inwards using de Morgan’s rules and double-negation:

(wB1,1 VP2 VP 1) A((=Pr2aA=Po1) VB 1)
4. Apply distributivity law (v over A) and flatten:

(7B1,1VPL2V P2 1) A(=P12VB11) A(=P21VB11)

UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Wumpus World Example

Use resolution to prove that if there is a Breeze in (1,1)gmeust also be
aBreeze in (2,2), i.e. prove-By 1V B3>), from this KB:

29

31

(mB11VPL2VP2 1) A(=PL2VB11) A(=P21VB1 1) A (=P 2 VB2 2) A (—P21 VB2 2)

Answer:
“B11VPi2VP1, —PioVByo

—B11VP1VBoo

“B11VP1VBy, —Po1VByp
—B11VB22VByo

The last clause is equivalent td1 1V By 2

UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Proof Methods Horn Clauses

Model Checking can be done more efficiently if the clauseshiadll

Resolution provides us an alternative proof method whidleiserally happen to be in a special form for example they may all be Héanses.
somewhat faster than Truth Table Enumeration: Each Horn Clause is an implication involving only positiitedals, in the
form:
1. convert the into Conjunctive Normal Form, (conjunction of symbols}- symbol
2. add the negative of the clause you are trying to prove, e.g.CA(B=A)A(CAD = B)
3. continually apply a series of resolutions until either Deduction with Horn Clauses can be done by Modus Ponens:
(a) you derive the empty clause, or DL, Pn, PLA...APn=
(b) no more pairs of clauses to which resolution can be agplie q

Efficient Proof Methods, using Horn Clauses, can generadlgikided
into Forward Chaining and Backward Chaining.

UNSW ©AIMA, 2002, Alan Blair, 2010-8 UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Forward chaining Backward chaining

Look for aruleps A... A pn = g such that all the clauses on the left hand Backward Chaining instead maintains a list of subgoalsithistrying to

side are already in the KB. prove. Initially, this list consists of the ultimate gaal

Apply this rule, and addg to the KB. Choose a clausgfrom the list of subgoals.

Repeat this process until the goal claaseas been derived check ifqis known already

(orwe run out of rules to apply). otherwise, find a rule witlg on the right side and add clauses from

the left side of this rule as new subgoals

check to make sure each new subgoal is not on the list alraady,
has not already been proved, or failed

UNSW (©AIMA, 2002, Alan Blair, 2010-8 UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Forward vs. Backward Chaining

Forward Chaining is data-driven automatic, unconscioosgssing e.g.
object recognition, routine decisions

May do lots of work that is irrelevant to the goal
Backward Chaining is goal-driven, appropriate for probieniving

e.g. Where are my keys? How do | get into a PhD program?

UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Satisfiability as Constraint Satisfaction

Difficulty of finding a solution depends on the ratim/n) wheremis the
number of clauses amis the number of distinct symbols.

Supposer = 50 and the KB is in 3-CNF.
m/n < 4.3 = under-constrained
m/n ~ 4.3 = critically difficult
m/n > 4.3 = over-constrained

Other CSPs like n-Queens are sometimes converted to 3-GNFyay of
measuring whether they are under- or over-constrained.

UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Satisfiability as Constraint Satisfaction

Suppose you are given a KB written in 3-CNF. (This means Gutjue
Normal Form, with at most three literals in each clause.)

Does there exist any assignment of truth values to the syswidaich will
make all of the clauses in the KBRUE?

For example, is there an assignment of truth values BYC, D, E which
will make the following TRUE?

(-DV-BVC) A (BV—-AV-C)A(-CV-BVE)A(EV-DVB)A(BVEV-C)

This provides a classic example of a Constraint Satisfad®imblem, to
which methods such as Hill Climbing or Simulated Annealiag dbe
applied.

UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Summary

Logical agents applynferenceto a knowledge bas¢o derive new
information and make decisions.

Basic concepts of logic:
syntax formal structure ofentences
semanticstruth of sentences wrnodels
entailment necessary truth of one sentence given another
inference deriving sentences from other sentences
soundnessderivations produce only entailed sentences

completenesgerivations can produce all entailed sentences

UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Logic

Limitations of Propositional Logic

“A square is breezjf and only if there is an adjacent pit.”

This statement must be converted into a separate sentereactfo square:

B11
B21

& (P172 V P2’1)

=

(PL1VPo2VPs1)

What we really want is a way to express such a statement inentersce

for all squares, e.g.

Breezyi, j) < (Pit(i — 1, j) V Pit(i + 1, j) V Pit(i, j — 1) V Pit(i, j + 1))

First-Order Logic will allow us to do this.

UNSW
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Logics in General

(©AIMA, 2002, Alan Blair, 2010-8

Logic

Language Ontology

Epistemology

Propositional logic| facts

First-order logic facts, objects, relations
Temporal logic facts, objects, relations

Probability theory | facts

Fuzzy logic facts + degree of truth

, timgstrue / false / unknown

true / false / unknown

true / false / unknown

degree of belief

known interval value

UNSW
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Syntax of First Order Logic

a1

Objects people, houses, numbers, theories, colors, football game

wars, centuries..

Predicatesred, round, bogus, prime, multistoried,
brother of, bigger than, inside, part of, has color, ocaiefer, owns,

comes between, .

Functions father of, best friend, third inning of, one more than,

UNSW
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Syntax of First Order Logic

Constants  Gold,Wumpus, [1,2],[3,1], etc.
Predicates Adjacent(),Smell(),Breeze(), At()
Functions  Result()

Variables XY at,...

Connectives AV - = &
Equality =

Quantifiers Vv 3

UNSW
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Sentences
Atomic sentence = predicate(termy,...,term,)

orterm; =termp

Term = function(termy,...termy)
or constant or variable

e.g. At(Agent,[1,1],S)
Holding(Gold, )
Complex sentences are made from atomic sentences usingatives

S SN, SVS S=9% S

e.g. Pit(x) A Adjacent(x, y)

UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Universal Quantification

Typically, = is the main connective witt

Common mistake: using as the main connective with
vx Glitter (x) A At(Gold, x)

means “There is Glitter everywhere and Gold everywhere.”

UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Universal Quantification

V(variable$(sentence

Where there’s glitter, there’s gold:
Vx Glitter (x) = At(Gold, X)

VxP is equivalent to theonjunctionof instantiationsf P
Glitter([1,1]) = At(Gold, [1,1])
A Glitter([1,2]) = At(Gold,[1,2])
A Glitter([1,3]) = At(Gold, [1,3])
A

UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Existential Quantification

J(variables(sentencg

Some sheep are black
x Sheep(x) A Black(x)

Ix P is equivalent to thelisjunctionof instantiationof P
Sheep(Dolly) A Black(Dolly)
Vv Sheep(Lassie) A Black(Lassie)
Vv Sheep(Skippy) A Black(Skippy)
v

UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Existential Quantification

Typically, A is the main connective with

Common mistake: using- as the main connective with
3x Sheep(x) = Black(x)

is true if there is anyone who is not at sheep!

UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Fun with Sentences

Brothers are siblings

“Sibling” is symmetric

One’s mother is one’s female parent

A first cousin is a child of a parent’s sibling

UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Properties of Quantifiers

VXVy is the same agyvx (Why?)
Jx3y is the same asy3ix (Why?)
Jxvy is notthe same agydx

dxvy Loves(x,y)
“There is a person who loves everyone in the world”

Vy3x Loves(x,y)
“Everyone in the world is loved by at least one person”

Quantifier duality each can be expressed using the other

Vx Likes(x, | ceCream) —3x —Likes(x, | ceCream)

3x Likes(x, Broccoli) VX —Likes(x, Broccoli)
UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Fun with Sentences

Brothers are siblings

X,y Brother (x,y) = Shling(x,y)

“Sibling” is symmetric

VX, y Shling(x,y) < Sbling(y,X)

One’s mother is one’s female parent

X,y Mother (x,y) < (Female(x) A Parent(x,y))
A first cousin is a child of a parent’s sibling

VX, yFirstCousin(x,y) < 3p, ps Parent(p,x) A Shling(p,q) A Parent(q,y)

UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Deducing Hidden Properties

Properties of locations:

Vx,t At(Agent,x,t) A Smell(t) = Smelly(x)
Vx,t At(Agent,x,t) A Breeze(t) = Breezy(x)
Vx,t At(Agent,x,t) A Glitter (t) = AtGold(x)
Squares are breezy near a pit:
Causarule — infer effect from cause

VX, y Pit(x) A Ad jacent (x,y) = Breezy(y)
Diagnosticrule — infer cause from effect
vy Breezy(y) = 3x Pit(x) A Ad jacent (X, y)
Definition for the Breezy predicate (combines Causal and Diagnostic):
Vy Breezy(y) < [3x Pit(x) A Adjacent(x,y)]

UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Describing Actions

We can plan a series of actions in a logical domain in a manmdogous
to the Path Search algorithms discussed in Weeks 3 & 4. Bstead of
the successor state being explicitly specified, we instead to deduce
what will be true and false in the state resulting from thevjmnes state
and action:

Effect axiom describe changes due to action
VsAtGold(s) = Holding(Gold, Result(Grab, s))

UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Keeping Track of Change

Facts hold only in certaigituations not universally.
e.g.Holding(Gold, Now) rather than jusHolding(Gold)

Situation calculuss one way to represent change:

Adds a situation argument to each non-eternal predicate
e.g.Now denotes a situation iH ol ding(Gol d, Now)

Situations are connected by tResult function
Result(a,s) is the situation that results from doing
actiona s states

UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Describing Actions

Frame problemSome facts will change as a result of an action, but many

more will stay as they were.
Vs HaveArrow(s) = HaveArrow(Result(Grab, s))

However, adding too many of thefame axiomsan make the process
unmanageable.

For example, if a cup is red, and you turn it upside down, itilsred.
But, if a cup is full of water, and you turn it upside down, itrie longer
full of water.

Large-scale expert systems of the 1980’s often failed sxafitheir
inability to encode this kind of “commonsense” reasoningxplicit rules.

UNSW (©AIMA, 2002, Alan Blair, 2010-8

53

55



COMP3411/9414/9814 18s1 Logic

Describing Actions

Qualification problem Normally, we expect actions to have a certain
effect. But, in the real world there could be endless cav&dtsgat happens
if the gold is slippery, or nailed down, or too heavy, or yom'taeach it,
etc.

56

Ramification problemReal actions have many secondary consequences —

what about the dust on the gold, wear and tear on gloves, skiwes

In general, we assume that a fact is true if a rule tells usahaiction
made it true, or if it was true before and no action made iefals

UNSW (©AIMA, 2002, Alan Blair, 2010-8
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Searching for a Plan of Actions

Represenplansas action sequencés, ay, . . ., an)
PlanResult(p, s) is the result of executing in s

Then the quenpsk(KB, 3p Holding(Gold, PlanResult(p, S)))
has the solutionp = [Forward, Grab]

Definition of PlanResult in terms ofResult:
VsPlanResult([],s) =s
Va, p,s PlanResult([a| p|,s) = PlanResult(p, Result(a,s))

Planning systemare special-purpose reasoners designed to do this type
of inference more efficiently than a general-purpose reatson
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Searching for a Situation

Initial condition in KB (knowledge base):
At(Gold,[1,2], )

Query: Ask(KB,3sHolding(Gold, s))
i.e., in what situation will I be holding the gold?

Answer:s = Result(Grab, Result(Forward, &))
i.e., go forward and then grab the gold

This assumes that the agent is interested in plans statt®gead thatS
is the only situation described in the KB.
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Summary

First Order Logic:

objects and relations are semantic primitives

syntax: constants, functions, predicates, equality, tifiens
Increased expressive power: sufficient to define Wumpusdhorl
Situation calculus:

conventions for describing actions and change

can formulate planning as inference on a knowledge base
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