Week 8: Constraint Satisfaction Problems

[Russell & Norvig: 6.1,6.2,6.3,6.4,4.1]

UNSW (C) Alan Blair, 2013-8

COMP3411/9414/9814 18s1

Constraint Satisfaction Problems

2

Constraint Satisfaction Problems (CSPs)

Constraint Satisfaction Problems are defined by a set of variables X_i , each with a domain D_i of possible values, and a set of constraints C.

The aim is to find an assignment of the variables X_i from the domains D_i in such a way that none of the constraints C are violated.

COMP3411/9414/9814 18s1

Constraint Satisfaction Problems

Outline

- Constraint Satisfaction Problems
- CSP examples
- backtracking search and heuristics
- forward checking and arc consistency
- local search
 - ▶ hill climbing
 - simulated annealing

UNSW © Alan Blair, 2013-8

COMP3411/9414/9814 18s1

Constraint Satisfaction Problems

Tasmania

3

Example: Map-Coloring



Variables WA, NT, Q, NSW, V, SA, T

Domains $D_i = \{\text{red, green, blue}\}$

UNSW

Constraints: adjacent regions must have different colors e.g. $WA \neq NT$, etc.

Solution is an assignment that satisfies all the constraints, e.g.

{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}

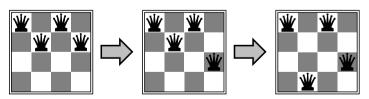
UNSW

© Alan Blair, 2013-8

COMP3411/9414/9814 18s1

Constraint Satisfaction Problems

Assume one queen in each column. Which row does each one go in?



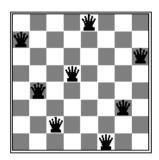
Variables: Q_1 , Q_2 , Q_3 , Q_4 Domains: $D_i = \{1, 2, 3, 4\}$

Constraints:

 $Q_i \neq Q_i$ (cannot be in same row)

 $|Q_i - Q_j| \neq |i - j|$ (or same diagonal)

Example: n-Queens Puzzle



Put n queens on an n-by-n chess board so that no two queens are attacking each other.

COMP3411/9414/9814 18s1

IINSW

Constraint Satisfaction Problems

© Alan Blair, 2013-8

Example: Cryptarithmetic

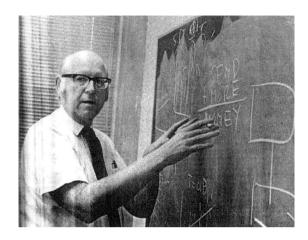
Variables: Constraints:

DEMNORSY $M \neq 0, S \neq 0$ (unary constraints) Domains: Y = D + E or Y = D + E - 10, etc.

 $\{0,1,2,3,4,5,6,7,8,9\}$ $D \neq E, D \neq M, D \neq N$, etc.

UNSW

Cryptarithmetic with Allen Newell



UNSW © Alan Blair, 2013-8

COMP3411/9414/9814 18s1

Example: Sudoku

Constraint Satisfaction Problems

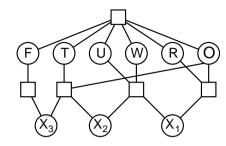
Constraint Satisfaction Problems

9				6				3
1		5		9	3	2		6
	4			5				9
8						4	7	1
		4	8	7				
7		2	6		1			8
2								
5				3	2		9	4
	8	7		1	6	3	5	

Cryptarithmetic with Hidden Variables

We can add "hidden" variables to simplify the constraints.

TWO



Variables: FTUWROX₁X₂X₃ Domains: {0,1,2,3,4,5,6,7,8,9} Constraints:

AllDifferent(F,T,U,W,R,O) $O + O = R + 10 \cdot X_1$, etc.

UNSW © Alan Blair, 2013-8

COMP3411/9414/9814 18s1

Constraint Satisfaction Problems

11

Real-world CSPs

- Assignment problems (e.g. who teaches what class)
- Timetabling problems (e.g. which class is offered when and where?)
- Hardware configuration
- Transport scheduling
- Factory scheduling

10

Varieties of constraints

- Unary constraints involve a single variable
 - $M \neq 0$
- Binary constraints involve pairs of variables
 - \triangleright SA \neq WA
- Higher-order constraints involve 3 or more variables
 - Y = D + E or Y = D + E 10
- Inequality constraints on Continuous variables
 - ightharpoonup EndJob₁ + 5 \leq StartJob₃
- Soft constraints (Preferences)
 - ▶ 11am lecture is better than 8am lecture!

UNSW

© Alan Blair, 2013-8

COMP3411/9414/9814 18s1

Constraint Satisfaction Problems

Constraint Satisfaction Problems

14

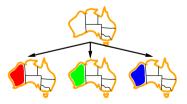
COMP3411/9414/9814 18s1

UNSW

Constraint Satisfaction Problems

15

Backtracking example



Backtracking Search

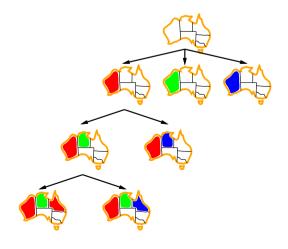
CSPs can be solved by assigning values to variables one by one, in different combinations. Whenever a constraint is violated, we go back to the most recently assigned variable and assign it a new value.

This can be achieved by a Depth First Search on a special kind of state space, where states are defined by the values assigned so far:

- Initial state: the empty assignment.
- Successor function: assign a value to an unassigned variable that does not conflict with previously assigned values of other variables. (If no legal values remain, the successor function fails.)
- Goal test: all variables have been assigned a value, and no constraints have been violated.

© Alan Blair, 2013-8

Backtracking example



Path Search vs. Constraint Satisfaction

Important difference between Path Search Problems and CSP's:

- Constraint Satisfaction Problems (e.g. n-Queens)
 - ▶ difficult part is knowing the final state
 - ▶ how to get there is easy
- Path Search Problems (e.g. Rubik's Cube)
 - ▶ knowing the final state is easy
 - ▶ difficult part is how to get there

UNSW © Alan Blair, 2013-8

COMP3411/9414/9814 18s1

Constraint Satisfaction Problems

Constraint Satisfaction Problems

COMP3411/9414/9814 18s1

IINSW

Constraint Satisfaction Problems

© Alan Blair, 2013-8

Improvements to Backtracking search

General-purpose heuristics can give huge gains in speed:

- 1. which variable should be assigned next?
- 2. in what order should its values be tried?
- 3. can we detect inevitable failure early?

Backtracking search

The search space for this Depth First Search has certain very specific properties:

- \blacksquare if there are *n* variables, every solution will occur at exactly depth *n*.
- variable assignments are commutative [WA = red then NT = green] same as [NT = green then WA = red]

Backtracking search can solve *n*-Queens for $n \approx 25$

19

Minimum Remaining Values

Minimum Remaining Values (MRV):

Choose the variable with the fewest legal values.

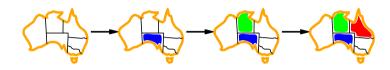
Degree Heuristic

Tie-breaker among MRV variables

Degree heuristic:

Choose the variable with the most constraints on remaining variables.

Constraint Satisfaction Problems



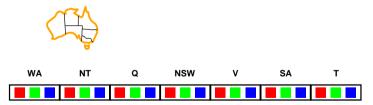
UNSW © Alan Blair, 2013-8

COMP3411/9414/9814 18s1

Constraint Satisfaction Problems

Forward checking

Idea: Keep track of remaining legal values for unassigned variables



Least Constraining Value

Given a variable, choose the least constraining value: the one that rules out the fewest values in the remaining variables

(More generally, 3 allowed values would be better than 2, etc.)

Combining these heuristics makes 1000 queens feasible.

UNSW © Alan Blair, 2013-8

COMP3411/9414/9814 18s1

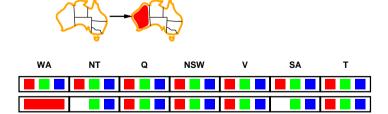
Constraint Satisfaction Problems

23

Forward checking

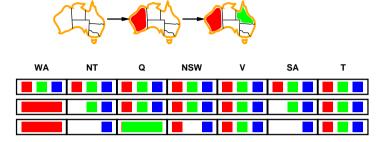
Idea: Keep track of remaining legal values for unassigned variables

Terminate search when any variable has no legal values



Forward checking

Idea: Keep track of remaining legal values for unassigned variables Terminate search when any variable has no legal values



UNSW © Alan Blair, 2013-8

COMP3411/9414/9814 18s1

Constraint Satisfaction Problems

Constraint Satisfaction Problems

COMP3411/9414/9814 18s1

26

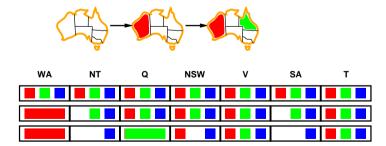
UNSW

Constraint Satisfaction Problems

© Alan Blair, 2013-8

Constraint propagation

Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

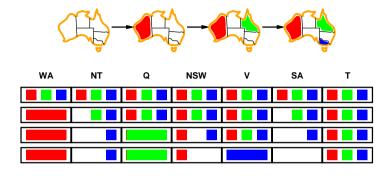


NT and SA cannot both be blue!

Constraint propagation repeatedly enforces constraints locally.

Forward checking

Idea: Keep track of remaining legal values for unassigned variables Terminate search when any variable has no legal values



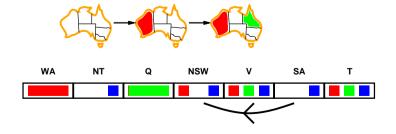
27

Arc consistency

Simplest form of constraint propagation makes each arc consistent

 $X \rightarrow Y$ is consistent if

for every value x of X there is some allowed y



UNSW

© Alan Blair, 2013-8

UNSW

© Alan Blair, 2013-8

COMP3411/9414/9814 18s1

Constraint Satisfaction Problems

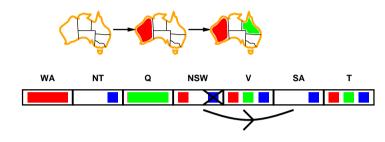
28

Arc consistency

Simplest form of propagation makes each arc consistent

 $X \rightarrow Y$ is consistent if

for every value x of X there is some allowed y



UNSW © Alan Blair, 2013-8

COMP3411/9414/9814 18s1

Constraint Satisfaction Problems

30

© Alan Blair, 2013-8

IINSW

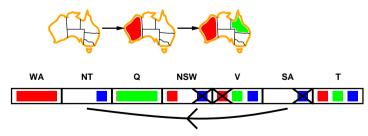
Constraint Satisfaction Problems

31

Arc consistency

 $X \rightarrow Y$ is consistent if

for every value x of X there is some allowed y

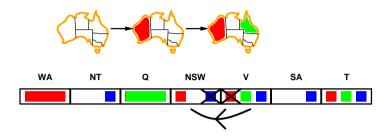


Arc consistency detects failure earlier than forward checking. For some problems, it can speed up the search enormously. For others, it may slow the search due to computational overheads.

Arc consistency

 $X \rightarrow Y$ is consistent if

for every value x of X there is some allowed y



If X loses a value, neighbors of X need to be rechecked.

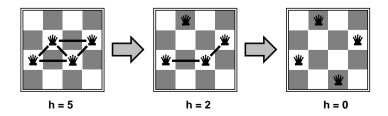
COMP3411/9414/9814 18s1

© Alan Blair, 2013-8

Local Search

There is another class of algorithms for solving CSP's, called "Iterative Improvement" or "Local Search".

These algorithms assign all variables randomly in the beginning (thus violating several constraints), and then change one variable at a time, trying to reduce the number of violations at each step.

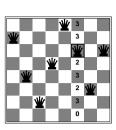


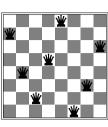
UNSW

UNSW

© Alan Blair, 2013-8

Hill-climbing by min-conflicts





- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic
 - ▶ choose value that violates the fewest constraints

UNSW

© Alan Blair, 2013-8

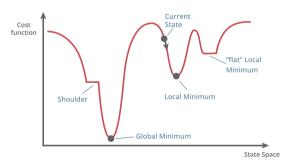
COMP3411/9414/9814 18s1

Constraint Satisfaction Problems

Constraint Satisfaction Problems

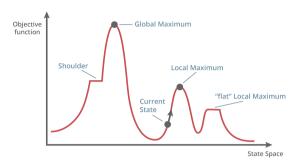
34

Inverted View



When we are minimizing violated constraints, it makes sense to think of starting at the top of a ridge and climbing down into the valleys.

Flat regions and local optima



Sometimes, have to go sideways or even backwards in order to make progress towards the actual solution.

UNSW © Alan Blair, 2013-8

COMP3411/9414/9814 18s1

Constraint Satisfaction Problems

35

Simulated Annealing

- stochastic hill climbing based on difference between evaluation of previous state (h_0) and new state (h_1) .
- if $h_1 < h_0$, definitely make the change
- otherwise, make the change with probability

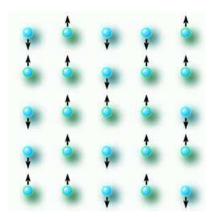
$$e^{-(h_1-h_0)/T}$$

where T is a "temperature" parameter.

- \blacksquare reduces to ordinary hill climbing when T = 0
- becomes totally random search as $T \rightarrow \infty$
- \blacksquare sometimes, we gradually decrease the value of T during the search

COMP3411/9414/9814 18s1 Constraint Satisfaction Problems 36 COMP3411/9414/9814 18s1 Constraint Satisfaction Problems

Ising Model of Ferromagnetism



UNSW © Alan Blair, 2013-8

COMP3411/9414/9814 18s1

Constraint Satisfaction Problems

38

Summary

- Much interest in CSP's for real-world applications
- Backtracking = depth-first search with one variable assigned per node
- Variable and Value ordering heuristics help significantly
- Forward Checking helps by detecting inevitable failure early
- Hill Climbing by min-conflicts often effective in practice
- Simulated Annealing can help to escape from local optima
- Which method(s) are best? It varies from one task to another!

UNSW © Alan Blair, 2013-8

Phase transition in CSP's

Given random initial state, hill climbing by min-conflicts with random restarts can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000).

In general, randomly-generated CSP's tend to be easy if there are very few or very many constraints. They become extra hard in a narrow range of the ratio

