1

3

COMP3411/9414/9814: Artificial Intelligence

Week 6: Perceptrons

Russell & Norvig: 18.6, 18.7

Outline

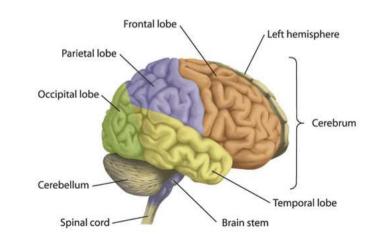
- Neurons Biological and Artificial
- Perceptron Learning
- Linear Separability
- Multi-Layer Networks

UNSW		© Alan Blair, 2013-18
COMP3411/9414/9814 18s1	Perceptrons	2

Sub-Symbolic Processing

UNSW ©Alan Blair, 2013-18 COMP3411/9414/9814 18s1 Perceptrons

Brain Regions



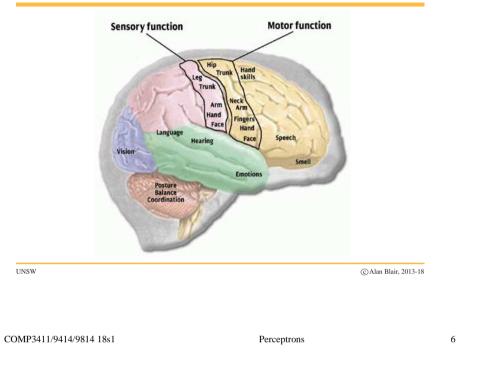
Perceptrons

© Alan Blair, 2013-18

5

7

Brain Functions



Biological Neurons

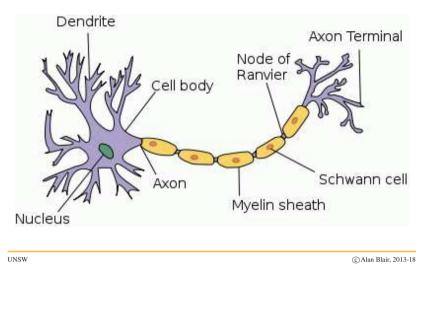
The brain is made up of neurons (nerve cells) which have

- a cell body (soma)
- dendrites (inputs)
- an axon (outputs)
- synapses (connections between cells)

Synapses can be exitatory or inhibitory and may change over time.

When the inputs reach some threshold an action potential (electrical pulse) is sent along the axon to the outputs.

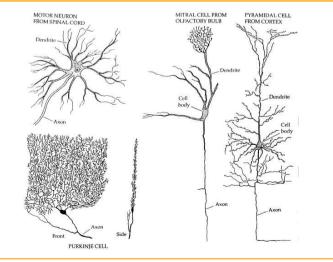
Structure of a Typical Neuron



COMP3411/9414/9814 18s1

Perceptrons

Variety of Neuron Types



Perceptrons

8

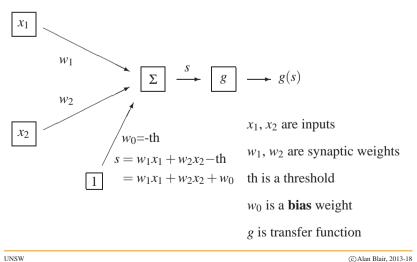
10

The Big Picture

- human brain has 100 billion neurons with an average of 10,000 synapses each
- latency is about 3-6 milliseconds
- therefore, at most a few hundred "steps" in any mental computation, but massively parallel

UNSW © Alan Blair, 2013-18 COMP3411/9414/9814 18s1 Perceptrons

McCulloch & Pitts Model of a Single Neuron



(Artificial) Neural Networks are made up of nodes which have

- inputs edges, each with some weight
- outputs edges (with weights)
- an activation level (a function of the inputs)

Weights can be positive or negative and may change over time (learning). The input function is the weighted sum of the activation levels of inputs. The activation level is a non-linear transfer function *g* of this input:

activation_i =
$$g(s_i) = g(\sum_j w_{ij}x_j)$$

Some nodes are inputs (sensing), some are outputs (action)

© Alan Blair, 2013-18

11

9

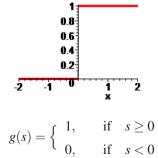
COMP3411/9414/9814 18s1

UNSW

Perceptrons

Transfer function

Originally, a (discontinuous) step function was used for the transfer function:



(Later, other transfer functions were introduced, which are continuous and smooth)

Linear Separability

Q: what kind of functions can a perceptron compute?

A: linearly separable functions

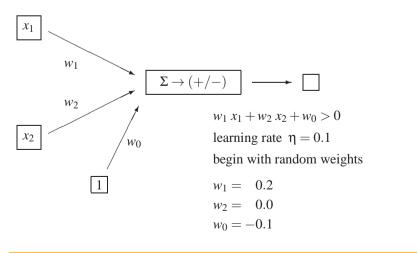
Examples include:

AND	$w_1 = w_2 = 1.0$	$w_0 = -1.5$
OR	$w_1 = w_2 = 1.0$	$w_0 = -0.5$
NOR	$w_1 = w_2 = -1.0$	$w_0 = 0.5$

Q: How can we train it to learn a new function?

UNSW		©Alan Blair, 2013-18	
COMP3411/9414/9814 18s1	Perceptrons		14

Perceptron Learning Example



Perceptron Learning Rule

Adjust the weights as each input is presented.

recall: $s = w_1 x_1 + w_2 x_2 + w_0$

if g(s) = 0 but should be 1, $w_k \leftarrow w_k + \eta x_k$ $w_0 \leftarrow w_0 + \eta$ so $s \leftarrow s + \eta (1 + \sum r_i^2)$ if g(s) = 1 but should be 0, $w_k \leftarrow w_k - \eta x_k$ $w_0 \leftarrow w_0 - \eta$ so $s \leftarrow s - \eta (1 + \sum r_i^2)$

so $s \leftarrow s + \eta \left(1 + \sum_{k} x_{k}^{2}\right)$ so $s \leftarrow s - \eta \left(1 + \sum_{k} x_{k}^{2}\right)$

otherwise, weights are unchanged. ($\eta > 0$ is called the **learning rate**)

Theorem: This will eventually learn to classify the data correctly, as long as they are **linearly separable**.

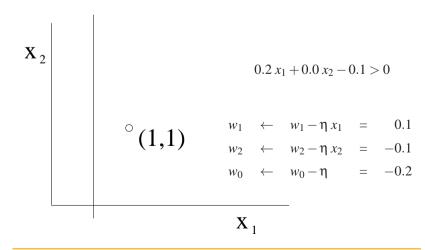
©Alan Blair, 2013-18

COMP3411/9414/9814 18s1

UNSW

Perceptrons

Training Step 1

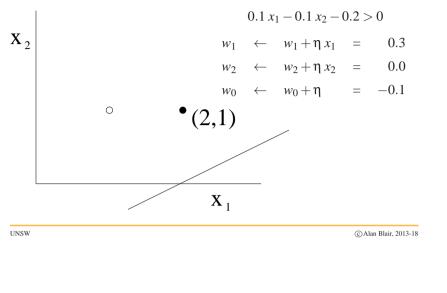


UNSW

UNSW

15

Training Step 2



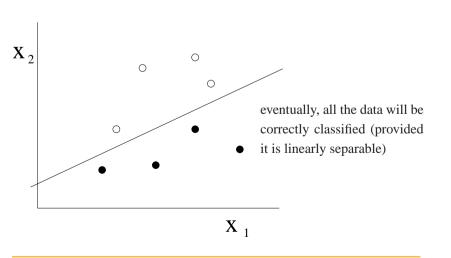
Perceptrons

COMP3411/9414/9814 18s1

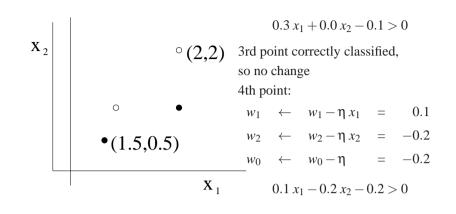
© Alan Blair, 2013-18

18

Final Outcome



Training Step 3



UNSW

©Alan Blair, 2013-18

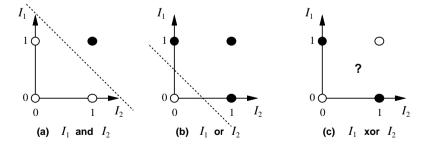
COMP3411/9414/9814 18s1

Perceptrons

19

Limitations of Perceptrons

Problem: many useful functions are not linearly separable (e.g. XOR)



Possible solution:

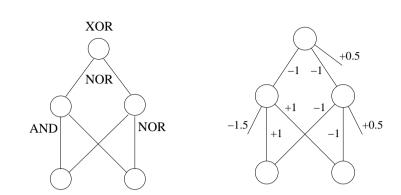
UNSW

 x_1 XOR x_2 can be written as: $(x_1 \text{ AND } x_2) \text{ NOR } (x_1 \text{ NOR } x_2)$

Recall that AND, OR and NOR can be implemented by perceptrons.

17

Multi-Layer Neural Networks



Problem: How can we train it to learn a new function? (credit assignment)

UNSW

©Alan Blair, 2013-18