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COMP3411/9414/9814: Artificial Intelligence

Week 6: Perceptrons

Russell & Norvig: 18.6, 18.7
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Brain Regions
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Outline

� Neurons – Biological and Artificial

� Perceptron Learning

� Linear Separability

� Multi-Layer Networks
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Biological Neurons

The brain is made up ofneurons(nerve cells) which have

� a cell body (soma)

� dendrites(inputs)

� anaxon(outputs)

� synapses(connections between cells)

Synapses can beexitatoryor inhibitory and may change over time.

When the inputs reach some threshhold anaction potential

(electrical pulse) is sent along the axon to the outputs.
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Brain Functions
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Variety of Neuron Types
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Structure of a Typical Neuron
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McCulloch & Pitts Model of a Single Neuron
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s = w1x1+w2x2−th
= w1x1+w2x2+w0

x1, x2 are inputs

w1, w2 are synaptic weights

th is a threshold

w0 is abias weight

g is transfer function
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The Big Picture

� human brain has 100 billion neurons with an average of 10,000

synapses each

� latency is about 3-6 milliseconds

� therefore, at most a few hundred “steps” in any mental computation,

but massively parallel
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Transfer function

Originally, a (discontinuous) step function was used for the transfer

function:

g(s) =
{ 1, if s≥ 0

0, if s < 0

(Later, other transfer functions were introduced, which are continuous and

smooth)
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Artificial Neural Networks

(Artificial) Neural Networks are made up of nodes which have

� inputs edges, each with someweight

� outputs edges (withweights)

� anactivation level(a function of the inputs)

Weights can be positive or negative and may change over time (learning).

Theinput functionis the weighted sum of the activation levels of inputs.

The activation level is a non-lineartransferfunctiong of this input:

activationi = g(si) = g(∑
j

wi jx j)

Some nodes are inputs (sensing), some are outputs (action)
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Perceptron Learning Example
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w1 x1+w2 x2+w0 > 0

learning rateη = 0.1

begin with random weights

w1 = 0.2

w2 = 0.0

w0 =−0.1
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Linear Separability

Q: what kind of functions can a perceptron compute?

A: linearly separable functions

Examples include:

AND w1 = w2 = 1.0, w0 =−1.5

OR w1 = w2 = 1.0, w0 =−0.5

NOR w1 = w2 =−1.0, w0 = 0.5

Q: How can we train it to learn a new function?
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Training Step 1

x
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(1,1)

0.2 x1+0.0 x2−0.1> 0

w1 ← w1−η x1 = 0.1

w2 ← w2−η x2 = −0.1

w0 ← w0−η = −0.2
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Perceptron Learning Rule

Adjust the weights as each input is presented.

recall: s = w1x1+w2x2+w0

if g(s) = 0 but should be 1,

wk ← wk +ηxk

w0 ← w0+η

so s ← s+η(1+∑
k

x2
k )

if g(s) = 1 but should be 0,

wk ← wk−ηxk

w0 ← w0−η

so s ← s−η(1+∑
k

x2
k )

otherwise, weights are unchanged. (η > 0 is called thelearning rate)

Theorem: This will eventually learn to classify the data correctly,

as long as they arelinearly separable.
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Final Outcome

x

x

1

2

eventually, all the data will be

correctly classified (provided

it is linearly separable)
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Training Step 2

x

2

1

x

(2,1)

0.1 x1−0.1 x2−0.2> 0

w1 ← w1+η x1 = 0.3

w2 ← w2+η x2 = 0.0

w0 ← w0+η = −0.1
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Limitations of Perceptrons

Problem: many useful functions are not linearly separable (e.g. XOR)

I 1

I 2

I 1

I 2

I 1

I 2

?

(a) (b) (c)and or xor

0 1

0

1

0

1 1

0

0 1 0 1

I 2I 1I 1 I 2I 1 I 2

Possible solution:

x1 XOR x2 can be written as: (x1 AND x2) NOR (x1 NOR x2)

Recall that AND, OR and NOR can be implemented by perceptrons.
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Training Step 3

x

2

1

x

(1.5,0.5)

(2,2)

0.3 x1+0.0 x2−0.1> 0

3rd point correctly classified,

so no change

4th point:

w1 ← w1−η x1 = 0.1

w2 ← w2−η x2 = −0.2

w0 ← w0−η = −0.2

0.1 x1−0.2 x2−0.2> 0
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Multi-Layer Neural Networks

XOR

NOR

AND NOR

−1

+1

+1 −1
−1.5

−1

−1

+0.5

+0.5

Problem: How can we train it to learn a new function? (credit assignment)
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