COMP9414/9814/3411 18s1 Informed Search

COMP9414/9814/3411.: Artificial Intelligence Search Strategies

Week 4: Informed Search
General Search algorithm:

add initial state to queue
repeat:
Russell & Norvig, Chapter 3. take node from front of queue
testif it is a goal state; if so, terminate

“expand” it, i.e. generate successor nodes and
add them to the queue

Search strategies are distinguished by the order in whieshnogles are
added to the queue of nodes awaiting expansion.
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Search Strategies Romania Street Map

Straight-line distance
to Bucharest

BFS and DFS treat all new nodes the same way:

BFS add all new nodes to thackof the queue A e 308
DFS  add all new nodes to tfient of the queue EE)E%Z %Z%
(Seemingly)Best First Searclises an evaluation functiof() to ET%EE E
order the nodes in the queue; we have seen one example of this: 'Lafgoj 220
UCS  f(n) = costg(n) of path from root to node Mehadia 21
Informed or Heuristic search strategies incorporate irft) an . I Hirsova EE%:B:U Vilosa E%
estimate of distance to goal g S 253
Greedy Search f(n) = estimateh(n) of cost from noden to goal porren O o b \;,’;gﬁ?:i -

[] Giurgiu erin 374

A* Search  f(n) =g(n)+h(n)
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Heuristic Function

There is a whole family of Best First Search algorithms wiifffiedent
evaluation functiond (). A key component of these algorithms is a
heuristic function

Heuristic functiorh: {Set of nodes — R :

h(n) = estimated cost of the cheapest path from
current noden to goal node.

in the area of searchneuristic functionsare problem specific
functions that provide an estimate of solution cost.
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Straight Line Distance as a Heuristic

hsip(n) = straight-line distance betweenand the goal location
(Bucharest).

Assume that roads typically tend to approximate the
direct connection between two cities.

Need to know the map coordinates of the cities:
\/(Sbiuy — Bucharesty)2 + (Sbiuy, — Bucharesty )?
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Greedy Best-First Search

Greedy Best-First SearcBest-First Search that selects the next node
for expansion using the heuristic function for its evalaatfunction,
i.e. f(n) =h(n)

h(n) =0 <= nis a goal state

i.e. greedy search minimises the estimated cost to the igeapands
whichever noda is estimated to be closest to the goal.

Greedy: tries to “bite off” as big a chunk of the solution asgible,
without worrying about long-term consequences.
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Greedy Best-First Search Example
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Greedy Best-First Search Example
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Examples of Greedy Best-First Search

Try
lasi to Fagaras
Fagaras to lasi

Rimnicu Vilcea to Lugoj
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Greedy Best-First Search Example

SGEREL
RS

93
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Properties of Greedy Best-First Search

Complete:No! can get stuck in loops, e.g.,
lasi— Neamt— lasi— Neamt— ...
Complete in finite space with repeated-state checking

Time: O(b™), wheremis the maximum depth in search space.
SpaceO(b™) (retains all nodes in memory)

Optimal: No! e.g., the path Sibis~ Fagaras— Bucharest is 32 km
longer than Sibiu— Rimnicu Vilcea— Pitesti— Bucharest.

Therefore Greedy Search has the same deficits as DepthSemsth.
However, a good heuristic can reduce time and memory colstsamntially.
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Recall: Uniform-Cost Search

Expand root first, then expand least-cost unexpanded node

Implementation QUEUEINGFN = insert nodes in order of
increasing path cost.

Reduces to breadth-first search when all actions have sashe co

Finds the cheapest goal provided path cost is monotoniicelfgasing
along each path (i.e. no negative-cost steps)

UNSW (©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Informed Search

Uniform Cost Search
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Uniform Cost Search

SRS
553
et i
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Properties of Uniform Cost Search

Completees, if bis finite and step costs € with € > 0.
Optimal?Yes.

Guaranteed to find optimal solution, but does so by exhalgtiv
expanding all nodes closer to the initial state than the.goal

Q: can we still guarantee optimality but search more effityen
by giving priority to more “promising” nodes?
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A* Search

A* Search uses evaluation functiétn) = g(n) + h(n)
g(n) = cost from initial node to node
h(n) = estimated cost of cheapest path frano goal

f(n) = estimated total cost of cheapest solution through mode

Greedy Search minimizégn)

efficient but not optimal or complete

Uniform Cost Search minimizegn)
optimal and complete but not efficient
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A* Search Example
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A* Search

A* Search minimized (n) = g(n) +h(n)
idea: preserve efficiency of Greedy Search but
avoid expanding paths that are already expensive

Q: is A" Searchoptimalandcomplete?

A: Yes! providedh() is admissibldn the sense that it
never overestimates the cost to reach the goal.
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A* Search Example

ﬂﬁ%?ﬁi%
2

0303010020
QSRS

1 0
) &)
Fagaras Vilcea
646 526 417 413
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A* Search Example

IR R
P5RK2505N
e

WL Tm S
IR
RS AX3
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A* Search Example

75 140 118

AR RO
255KK28 X
449 XERIRB3

140 99 151 80

99 217 128
RIS
591 450 b6 XKL s 553
97 138 101
>
607 615 218

UNSW (©Alan Blair, 2013-18

20 COMP9414/9814/3411 18s1

Informed Search

A* Search Example

75 140 118

QR

LGN,

R

449 \XARET3 447
140 99 151 80

P

CLRRRRS
646 526 11783
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146 9 80
OB
OO
GCOR > AECD
526 XOSEEUES 553
97 138 101

>
607 615 418
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A* Search
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Heuristich() is calledadmissiblef
vnh(n) < h*(n) whereh*(n) is true cost fromn to goal

If his admissible therf (n) never overestimates the actual cost of the
best solution through.

Example:hs p() is admissible because the shortest path between any
two points is a line.

Theorem: A Search is optimal ifi() is admissible.
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Optimality of A * Search

Suppose a suboptimal goal no@e has been generated and is in the
queue. Len be the last unexpanded node on a shortest path to an optimal
goal nodeG. Sart

N

15) G,
f(G2) = 9(Gz) sinceh(Gy) =0
> g(G) sinceG; is suboptimal
> f(n) sinceh is admissible
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Properties of A * Search

Complete:Yes, unless there are infinitely many nodes with
f < cost of solution.

Time: Exponential in [relative error ihx length of solution]
SpaceKeeps all nodes is memory

Optimal: Yes (assumindp() is admissible).
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Optimality of A * Search

Sincef(G2) > f(n), A* will never selects; for expansion.

Note: suboptimal goal nod&, may begeneratedbut it will never be
expanded

In other words, even after a goal node has been generatedill&keep
searching so long as there is a possibility of finding a shadkition.

Once a goal node is selected fpansionwe know it must be optimal,
S0 we can terminate the search.
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Iterative Deepening A * Search

Iterative Deepening Ais a low-memory variant of Awhich
performs a series of depth-first searches, but cuts off ezaitls
when the sunf () = g() + h() exceeds some pre-defined threshold.

The threshold is steadily increased with each successiretse

IDA* is asymptotically as efficient as*Aor domains where the
number of states grows exponentially.
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Exercise Examples of Admissible Heuristics

e.g. for the 8-puzzle:

What sort of search will greedy search emulate if we run ibwit hu(n) = total number of misplaced tiles

h(n) = —g(n) ? ho(n) = total Manhattan distance y distance from goal position

() = g(n) 2
h(n) = number of steps from initial state to node E E

Start State Goal State

h1(S)
h2(S)

Why areh;, h, admissible?

?
?
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Examples of Admissible Heuristics Dominance

€.g. for the 8-puzzle: if ho(n) > ha () for all n (both admissible) theh, dominatesh; and

h1(n) = total number of misplaced tiles is better for search. So the aim is to make the heurfigli@s large as
ho(n) = total Manhattan distance § distance from goal position possible, but without exceedirg ().

typical search costs:
@ E 14-puzzle IDS = 3,473,941 nodes
A*(hy) =539 nodes

hl(S) = 6 Start State Goal State A*(hz) = 113 nOdeS
hz(S) = 4+0+3+3+1+0+2+1 = 14 24-puzzle IDS ~ 54 x 10° nodes
hy: every tile must be moved at least once. A*(hy) = 39,135 nodes
hy: each action can only move one tile one step closer to the goal A*(hp) = 1,641 nodes

UNSW (©Alan Blair, 2013-18 UNSW (©Alan Blair, 2013-18



COMP9414/9814/3411 18s1

COMP9414/9814/3411 18s1

Informed Search

How to Find Heuristic Functions ?

Admissible heuristics can often be derived from éxect
solution cost of a simplified or “relaxed” version of the plern.
(i.e. with some of the constraints weakened or removed)

If the rules of the 8-puzzle are relaxed so that a tile can move
anywherethenhy (n) gives the shortest solution.

If the rules are relaxed so that a tile can moveaty adjacent
squarethenhy(n) gives the shortest solution.
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Heuristics for Rubik’s Cube

3D Manhattan distance, but to be admissible need to dividg by
better to take 3D Manhattan distance for edges only, divinjed.

alternatively, max of 3D Manhattan distance for edges amders,
divided by 4 (but the corners slow down the computation witho
much additional benefit).

best approach is to pre-compuettern Databaseghich store the
minimum number of moves for every combination of the 8 casner
and for two sets of 6 edges.

to save memory, use IDA

“Finding Optimal Solutions to Rubik’s Cube using Patterrtéases” (Korf, 1997)
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Composite Heuristic Functions
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Lethy,hy,...,hy be admissible heuristics for a given task.

Define thecomposite heuristic
h(n) = max(hl(n)a hZ(n)a sy

h is admissible

hm(n))

h dominateshy, hy, ..., hy
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Summary of Informed Search

UNSW

Heuristics can be applied to reduce search cost.
Greedy Search tries to minimize cost from current notiethe goal.

A* combines the advantages of Uniform-Cost Search and Greedy
Search.

A* is complete, optimal and optimally efficient among all olm
search algorithms.

Memory usage is still a concern for"'AIDA* is a low-memory
variant.
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