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Variations on Backprop

� Cross Entropy

◮ problem: least squares error function unsuitable for classification,

where target = 0 or 1
◮ mathematical theory: maximum likelihood
◮ solution: replace with cross entropy error function

� Weight Decay

◮ problem: weights “blow up”, and inhibit further learning
◮ mathematical theory: Bayes’ rule
◮ solution: add weight decay term to error function

� Momentum

◮ problem: weights oscillate in a “rain gutter”
◮ solution: weighted average of gradient over time
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Cross Entropy

For classification tasks, targett is either 0 or 1, so better to use

E =− t log(z)− (1− t) log(1− z)

This can be justified mathematically, and works well in practice –
especially when negative examples vastly outweigh positive ones.
It also makes the backprop computations simpler

∂E
∂z

=
z− t

z(1− z)

if z =
1

1+ e−s ,

∂E
∂s

=
∂E
∂z

∂z
∂s

= z− t
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Gradient Descent (Backpropagation)

We define anerror function E to be (half) the sum over all input patterns

of the square of the difference between actual output and desired output

E =
1
2 ∑(z− t)2

If we think of E as height, it defines an errorlandscape on the weight

space. The aim is to find a set of weights for whichE is very low.

This is done by moving in the steepest downhill direction.

w← w−η
∂E
∂w

Parameterη is called thelearning rate.
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Derivation of Least Squares

Suppose data generated by a linear functionh, plus Gaussian noise with

standard deviationσ.

P(D|h) =
m

∏
i=1

1√
2πσ2

e
− 1

2σ2 (di−h(xi))
2

logP(D|h) =
m

∑
i=1

− 1
2σ2 (di−h(xi))

2− log(σ)− 1
2

log(2π)

hML = argmaxh∈H logP(D|h)

= argminh∈H

m

∑
i=1

(di−h(xi))
2

(Note: we do not need to knowσ)
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Maximum Likelihood

H is a class of hypotheses

P(D|h) = probability of dataD being generated under hypothesish ∈ H.

logP(D|h) is called thelikelihood.

ML Principle: Chooseh ∈ H which maximizes the likelihood,

i.e. maximizesP(D|h) [or, maximizes logP(D|h)]
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Derivation of Cross Entropy

For classification tasks,d is either 0 or 1.
AssumeD generated by hypothesish as follows:

P(1|h(xi)) = h(xi)

P(0|h(xi)) = (1−h(xi))

i.e. P(di|h(xi)) = h(xi)
di(1−h(xi))

1−di

then

logP(D|h) =
m

∑
i=1

di logh(xi)+(1−di) log(1−h(xi))

hML = argmaxh∈H

m

∑
i=1

di logh(xi)+(1−di) log(1−h(xi))

(Can be generalized to multiple classes.)
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Least Squares Line Fitting

x

f(x)
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Weight Decay

Assume that small weights are more likely to occur than largeweights, i.e.

P(w) =
1
Z

e−
λ
2 ∑ j w2

j

whereZ is a normalizing constant. Then the cost function becomes:

E =
1
2 ∑

i
(zi− ti)

2+
λ
2 ∑

j
w2

j

This can prevent the weights from “saturating” to very high values.

Problem: need to determineλ from experience, or empirically.

UNSW c©Alan Blair, 2015-8

COMP3411/9814 18s1 Variations on Backpropagation 8

Bayes Rule

H is a class of hypotheses

P(D|h) = probability of dataD being generated under hypothesish ∈ H.

P(h|D) = probability thath is correct, given that dataD were observed.

Bayes’ Theorem:

P(h|D)P(D) = P(D|h)P(h)

P(h|D) =
P(D|h)P(h)

P(D)

P(h) is called theprior.
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Momentum

If landscape is shaped like a “rain gutter”, weights will tend to oscillate

without much improvement.

Solution: add a momentum factor

δw ← αδw+(1−α)
∂E
∂w

w ← w−ηδw

Hopefully, this will dampen sideways oscillations but amplify downhill

motion by 1
1−α .
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Example: Medical Diagnosis

Suppose we have a 98% accurate test for a type of cancer which occurs in

1% of patients. If a patient tests positive, what is the probability that they

have the cancer?
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Conjugate Gradients

Compute matrix of second derivatives∂
2E

∂wi∂w j
(called the Hessian).

Approximate the landscape with a quadratic function (paraboloid).

Jump to the minimum of this quadratic function.

Natural Gradients (Amari, 1995)

Use methods from information geometry to find a “natural” re-scaling of

the partial derivatives.
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