COMP3411/9814. Artificial Intelligence

Week 8 Extension: Variations on
Backpropagation

Russell & Norvig: 18.7
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Variations on Backprop

Cross Entropy

problem: least squares error function unsuitable for dlaation,

where target=0o0r 1

mathematical theory: maximum likelihood

solution: replace with cross entropy error function
Weight Decay

problem: weights “blow up”, and inhibit further learning

mathematical theory: Bayes’ rule

solution: add weight decay term to error function
Momentum

problem: weights oscillate in a “rain gutter”

solution: weighted average of gradient over time
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Gradient Descent (Backpropagation)

We define arerror function E to be (half) the sum over all input patterns
of the square of the difference between actual output andediesutput

E= % Z(z—t)2

If we think of E as height, it defines an errtandscape on the weight
space. The aim is to find a set of weights for whi€ks very low.
This is done by moving in the steepest downhill direction.
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Parameten is called thdearning rate
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Cross Entropy

For classification tasks, targeis either O or 1, so better to use
E=—tlog(z) — (1—t)log(1—-2)

This can be justified mathematically, and works well in picect
especially when negative examples vastly outweigh pesdies.
It also makes the backprop computations simpler
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Maximum Likelihood

H is a class of hypotheses
P(D|h) = probability of dataD being generated under hypothelsis H.
logP(D|h) is called thdikelihood.

ML Principle: Choosé € H which maximizes the likelihood,
i.e. maximize$(D|h) [or, maximizes log?(D|h)]
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Derivation of Least Squares

Suppose data generated by a linear functipplus Gaussian noise with
standard deviatioo.

m
PO = L oz ldne)?
1 v2no?
mo] ) 1
logP(DIh) = ' 5 5(d —(x))2~log(a) - 5 log(2m
1=
hue = argmaxy.y logP(Dlh)

m

= argminey Y (6 -hix)?

(Note: we do not need to knoa)
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Least Squares Line Fitting

(%)
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Derivation of Cross Entropy
For classification tasksl is either O or 1.
AssumeD generated by hypothedisas follows:

P(1lh(x)) = h(x)
POJh(x)) = (1—h(x))
ie.  P(dilh(x)) = hx)%(1—h(x))

then
0gP(DIY ~ 3 dlogh(x) + (1—d)log(1—h(x)
hue = argmaxey i dilogh(x) + (1—d;)log(1—h(x))

(Can be generalized to multiple classes.)
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Bayes Rule

H is a class of hypotheses
P(D|h) = probability of dataD being generated under hypothelsis H.
P(h|D) = probability thath is correct, given that data were observed.

Bayes’ Theorem:

P(hID)P(D) = P(Dh)P(h)
P(hiD) = P(DIJ?I)DI;(h)
P(h) is called theprior.
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Weight Decay

Assume that small weights are more likely to occur than largights, i.e.

1 s w2
P(w) = Ze 221"
(W) =3
whereZ is a normalizing constant. Then the cost function becomes:
1 5 A
A2

This can prevent the weights from “saturating” to very higitues.

Problem: need to determinefrom experience, or empirically.
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Example: Medical Diagnosis

Suppose we have a 98% accurate test for a type of cancer wttcinson
1% of patients. If a patient tests positive, what is the pbdig that they
have the cancer?
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Momentum

If landscape is shaped like a “rain gutter”, weights willdemo oscillate
without much improvement.

Solution: add a momentum factor

oW 06W+(1_G)ZTEV

W <~ w-—now

Hopefully, this will dampen sideways oscillations but aifyptiownhill
motion by 1.
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Conjugate Gradients

. . . 2E .
Compute matrix of second derlvatlvgéa—wj (called the Hessian).
Approximate the landscape with a quadratic function (paliad).

Jump to the minimum of this quadratic function.

Natural Gradients (Amari, 1995)

Use methods from information geometry to find a “natural’soaling of
the partial derivatives.
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