
COMP3411/9814 18s1 Reinforcement Learning 2

Learning Agents

Agent

Action

Reinforcement Learning

Perception

Inference Learning

Statistical Learning

World Model

Environment

Planning

Bayesian Learning

UNSW c©Alan Blair, 2013-18

COMP3411/9814: Artificial Intelligence

Extension 7: Reinforcement Learning

UNSW c©Alan Blair, 2013-18

COMP3411/9814 18s1 Reinforcement Learning 3

Supervised Learning

Recall: Supervised Learning

� We have a training set and a test set, each consisting of a set of

examples. For each example, a number of input attributes and a target

attribute are specified.

� The aim is to predict the target attribute, based on the input attributes.

� Various learning paradigms are available:

◮ Decision Trees

◮ Neural Networks

◮ .. others ..
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Outline

� Reinforcement Learning vs. Supervised Learning

� Models of Optimality

� Exploration vs. Exploitation

� Temporal Difference learning

� Q-Learning
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Learning of Actions

Supervised Learning can also be used to learn Actions, if we construct a

training set of situation-action pairs (called Behavioral Cloning).

However, there are many applications for which it is difficult, inappropri-

ate, or even impossible to provide a “training set”

� optimal control

◮ mobile robots, pole balancing, flying a helicopter

� resource allocation

◮ job shop scheduling, mobile phone channel allocation

� mix of allocation and control

◮ elevator control, backgammon
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Comparing Models of Optimality
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Reinforcement Learning Framework

� An agent interacts with its environment.

� There is a set S of states and a set A of actions.

� At each time step t, the agent is in some state st . It must choose an

action at , whereupon it goes into state st+1 = δ(st ,at) and receives

reward r(st ,at).

� In general, r() and δ() can be multi-valued, with a random element

� The aim is to find an optimal policy π : S→ A which will maximize

the cumulative reward.
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Value Function

For each state s ∈ S, let V ∗(s) be the maximum discounted reward

obtainable from s.
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Learning this Value Function can help to determine the optimal strategy.
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Models of optimality

Is a fast nickel worth a slow dime?

Finite horizon reward
h

∑
i=0

rt+i

Average reward lim
h→∞

1
h

h−1

∑
i=0

rt+i

Infinite discounted reward
∞

∑
i=0

γ irt+i, 0≤ γ < 1

� Finite horizon reward is simple computationally

� Infinite discounted reward is easier for proving theorems

� Average reward is hard to deal with, because can’t sensibly choose

between small reward soon and large reward very far in the future.
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Exploration / Exploitation Tradeoff

Most of the time we should choose what we think is the best action.

However, in order to ensure convergence to the optimal strategy, we must

occasionally choose something different from our preferred action, e.g.

� choose a random action 5% of the time, or

� use a Bolzmann distribution to choose the next action:

P(a) =
eV̂ (a)/T

∑
b∈A

eV̂ (b)/T
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Environment Types

Environments can be:

� passive and stochastic (as in previous slide)

� active and deterministic (chess)

� active and stochastic (backgammon)

UNSW c©Alan Blair, 2013-18

COMP3411/9814 18s1 Reinforcement Learning 15

Exploration / Exploitation Tradeoff

I was born to try...

But you’ve got to make choices

Be wrong or right

Sometimes you’ve got to sacrifice the things you like.

- Delta Goodrem
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K-Armed Bandit Problem

The special case of an active, stochastic environment with only one state

is called the K-armed Bandit Problem, because it is like being in a room

with several (friendly) slot machines, for a limited time, and trying to

collect as much money as possible.

Each action (slot machine) provides a different average reward.
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Q-Learning

For each s ∈ S, let V ∗(s) be the maximum discounted reward obtainable

from s, and let Q(s,a) be the discounted reward available by first doing

action a and then acting optimally.

Then the optimal policy is

π∗(s) = argmaxaQ(s,a)

where Q(s,a) = r(s,a)+ γV ∗(δ(s,a))

then V ∗(s) = max
a

Q(s,a),

so Q(s,a) = r(s,a)+ γmax
b

Q(δ(s,a),b)

which allows us to iteratively approximate Q by

Q̂(s,a)← r+ γmax
b

Q̂(δ(s,a),b)
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Delayed Reinforcement
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Theoretical Results

Theorem: Q-learning will eventually converge to the optimal policy, for

any deterministic Markov decision process, assuming an appropriately

randomized strategy.

(Watkins & Dayan 1992)

Theorem: TD-learning will also converge, with probability 1.

(Sutton 1988, Dayan 1992, Dayan & Sejnowski 1994)
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Temporal Difference Learning

TD(0) [also called AHC, or Widrow-Hoff Rule]

V̂ (s)← V̂ (s)+η [r(s,a)+ γV̂(δ(s,a))−V̂ (s) ]

(η = learning rate)

The (discounted) value of the next state, plus the immediate reward, is

used as the target value for the current state.

A more sophisticated version, called TD(λ), uses a weighted average of

future states.
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Limitations of Theoretical Results

� Delayed reinforcement

◮ reward resulting from an action may not be received until several

time steps later, which also slows down the learning

� Search space must be finite

◮ convergence is slow if the search space is large

◮ relies on visiting every state infinitely often

� For “real world” problems, we can’t rely on a lookup table

◮ need to have some kind of generalisation (e.g. TD-Gammon)

UNSW c©Alan Blair, 2013-18


