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Charles Darwin

� Darwin’s theory of Natural Selection was largely inspired by what he

observed on a visit to the Galapagos Islands

◮ different species of finches from different islands

◮ unusual adaptations such as the marine iguana

◮ breeding habits of turtles

� Darwin was influenced by:

◮ Charles Lyell’s “Principles of Geology”

◮ Thomas Malthus’s “Essay on Population”

◮ his grandfather Erasmus Darwin

◮ his other grandfather, Josiah Wedgwood
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Human Genome

� human genome consists of 3 billion DNA base pairs

� each base pair can be one of four nucleotides

◮ A (Adenine)

◮ G (Guanine)

◮ C (Cytosine)

◮ T (Thymine)

� approximately 30,000 “genes”, each coding for a specific protein

� 97% of genome does not code for proteins

◮ once thought to be useless “junk” DNA

◮ now thought to serve some other function(s)
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Outline

� Darwinian Evolution

� Evolutionary Computation

� Simulated Hockey

� Evolutionary Robotics
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Continuous Parameters (ES)

� reproduction = just copying

� mutation = add random noise to each weight (or parameter), from a

Gaussian distribution with specified standard deviation

◮ sometimes, the standard deviation evolves as well
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Evolutionary Computation

� use principles of natural selection to evolve a computational

mechanism which performs well at a specified task.

� start with randomly initialized population

� repeated cycles of:

◮ evaluation

◮ selection

◮ reproduction + mutation

� any computational paradigm can be used, with appropriatelydefined

reproduction and mutation operators
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Case Study – Simulated Hockey
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Evolutionary Computation Paradigms

� Bit Strings (Holland – “Genetic Algorithm”)

� S-expression trees (Koza – “Genetic Programming”)

� set of continuous parameters (Swefel – “Evolutionary Strategy”)

� Lindenmeyer system (e.g. Sims – “Evolving Virtual Creatures”)
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Shock Sensors

� 6 Braitenberg-style sensors equally spaced around the vehicle

� each sensor has an angular range of 90◦ with an overlap of 30◦

between neighbouring sensors
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Shock Physics

� rectangular rink with rounded corners

� near-frictionless playing surface

� “spring” method of collision handling

� frictionless puck (never acquires any spin)
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Shock Inputs

� each of the 6 sensors responds to three different stimuli

◮ ball / puck

◮ own goal

◮ opponent goal

� 3 additional inputs specify the current velocity of the vehicle

� total of 3×6+3= 21 inputs
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Shock Actuators

L(x ,y )L (x ,y )R R

right skateleft skate

� a skate at each end of the vehicle with which it can push on the rink

in two independent directions
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Shock Task

� each game begins with a random “game initial condition”

◮ random position for puck

◮ random position and orientation for player

� each game ends with

◮ +1 if puck→ enemy goal

◮ -1 if puck→ own goal

◮ 0 if time limit expires
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Shock Agent
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Evolutionary Algorithm

� mutant← champ + Gaussian noise

� champ and mutant play up to 5 games with same game initial

conditions

� if mutant does “better” than champ,

champ← (1−α)∗champ+α∗mutant

� “better” means the mutant must score higher than the champ inthe

first game, and at least as high as the champ in each subsequentgame
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Shock Agent

� Perceptron with 21 inputs and 4 outputs

� total of 4× (21+1) = 88 weights

� our “genome” (for Evolutionary Computation) consists of a vector of

these 88 parameters

� mutation = add Gaussian random noise to each parameter,

with standard deviation 0.05
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Evolutionary /Variational Methods

� initialize meanµ= {µi}1≤i≤m and standard deviationσ = {σi}1≤i≤m

� for each trial, collectk samples from a Gaussian distribution

θi = µi +ηi σi where ηi ∼N (0,1)

� sometimes include “mirrored” samplesθi = µi−ηi σi

� evaluate each sampleθ to compute score or “fitness”F(θ)

� update meanµ by µ← µ+α(F(θ)−F)(θ−µ)

◮ α = learning rate,F = baseline

� sometimes,σ is updated as well
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Evolved Behavior
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OpenAI Evolution Strategies

� Evolutionary Strategy with fixedσ

� since onlyµ is updated, computation can be distributed across many

processors

� applied to Atari Pong, MuJoCo humanoid walking

� competitive with Deep Q-Learning on these tasks
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Wins and Losses
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Guroo – Humanoid Walk Learning

� Learning done in simulator(s), then tested on actual robot.
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Evolutionary Robotics

� Aibo walk learning

� Humanoid walk learning

� Evolving body as well as controller

� Simulation to Reality
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Evolving Virtual Creatures (Sims)

� Body evolves as a Lindenmeyer system

� Controller evolves as a neural network
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Aibo Walk Learning (Hornby)

� Learning done on actual robot.
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Golem (Lipson)

� Evolved in simulation, tested in reality.
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Evolved Antenna

One example of the use of Evolu-

tionary Algorithms for a real world

application is the antenna that was

evolved by Hornby et al in 2006 for

NASA’s Space Technology 5 (ST5)

mission.
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