3

# COMP3411: Artificial Intelligence Extension 4. Evolutionary Robotics

- Darwinian Evolution
- Evolutionary Computation
- Simulated Hockey
- Evolutionary Robotics



#### **Charles Darwin**

- Darwin's theory of Natural Selection was largely inspired by what he observed on a visit to the Galapagos Islands
  - different species of finches from different islands
  - unusual adaptations such as the marine iguana
  - breeding habits of turtles
- Darwin was influenced by:
  - ► Charles Lyell's "Principles of Geology"
  - ▶ Thomas Malthus's "Essay on Population"
  - ▶ his grandfather Erasmus Darwin
  - ▶ his other grandfather, Josiah Wedgwood

#### **Human Genome**

- human genome consists of 3 billion DNA base pairs
- each base pair can be one of four nucleotides
  - ► A (Adenine)
  - ► G (Guanine)
  - ► C (Cytosine)
  - ► T (Thymine)

UNSW

- approximately 30,000 "genes", each coding for a specific protein
- 97% of genome does not code for proteins
  - ▶ once thought to be useless "junk" DNA
  - now thought to serve some other function(s)

#### **Evolutionary Computation**

- use principles of natural selection to evolve a computational mechanism which performs well at a specified task.
- start with randomly initialized population

**Continuous Parameters (ES)** 

reproduction = just copying

- repeated cycles of:
  - evaluation
  - selection
  - ▶ reproduction + mutation
- any computational paradigm can be used, with appropriately defined reproduction and mutation operators

mutation = add random noise to each weight (or parameter), from a

Gaussian distribution with specified standard deviation sometimes, the standard deviation evolves as well

#### **Evolutionary Computation Paradigms**

- Bit Strings (Holland "Genetic Algorithm")
- S-expression trees (Koza "Genetic Programming")
- set of continuous parameters (Swefel "Evolutionary Strategy")
- Lindenmeyer system (e.g. Sims "Evolving Virtual Creatures")

| UNSW                       | ©Alan Blair, 2013-18 |   | UNSW                    | ©Alan Blair, 2013-18  |
|----------------------------|----------------------|---|-------------------------|-----------------------|
|                            |                      |   |                         |                       |
|                            |                      |   |                         |                       |
| COMP3411/9414/9814 18s1 Ev | volutionary Robotics | 6 | COMP3411/9414/9814 18s1 | Evolutionary Robotics |

# **Case Study – Simulated Hockey**



5

7

9

# **Shock Physics**

- rectangular rink with rounded corners
- near-frictionless playing surface
- "spring" method of collision handling
- frictionless puck (never acquires any spin)

# **Shock Actuators**



a skate at each end of the vehicle with which it can push on the rink in two independent directions

| UNSW                    |                       | ©Alan Blair, 2013-18 |    | UNSW                    |                       | ©Alan Blair, 2013-18 |
|-------------------------|-----------------------|----------------------|----|-------------------------|-----------------------|----------------------|
|                         |                       |                      |    |                         |                       |                      |
| COMP3411/9414/9814 18s1 | Evolutionary Robotics |                      | 10 | COMP3411/9414/9814 18s1 | Evolutionary Robotics | 11                   |

# Shock Sensors



- 6 Braitenberg-style sensors equally spaced around the vehicle
- each sensor has an angular range of 90° with an overlap of 30° between neighbouring sensors

# **Shock Inputs**

- each of the 6 sensors responds to three different stimuli
  - ▶ ball / puck
  - ▶ own goal
  - opponent goal
- **3** additional inputs specify the current velocity of the vehicle
- total of  $3 \times 6 + 3 = 21$  inputs

13

15

# **Shock Agent**



# Shock Task

- each game begins with a random "game initial condition"
  - ▶ random position for puck
  - > random position and orientation for player
- each game ends with
  - ▶ +1 if puck  $\rightarrow$  enemy goal
  - ▶ -1 if puck  $\rightarrow$  own goal
  - ▶ 0 if time limit expires

# **Shock Agent**

- Perceptron with 21 inputs and 4 outputs
- total of  $4 \times (21+1) = 88$  weights
- our "genome" (for Evolutionary Computation) consists of a vector of these 88 parameters
- mutation = add Gaussian random noise to each parameter, with standard deviation 0.05

| UNSW                    |                       | ©Alan Blair, 2013-18 |
|-------------------------|-----------------------|----------------------|
|                         |                       |                      |
|                         |                       |                      |
|                         |                       |                      |
| COMP3411/9414/9814 18s1 | Evolutionary Robotics |                      |

# **Evolutionary Algorithm**

- $\blacksquare mutant \leftarrow champ + Gaussian noise$
- champ and mutant play up to 5 games with same game initial conditions
- if mutant does "better" than champ,
  - champ  $\leftarrow (1 \alpha) * champ + \alpha * mutant$
- "better" means the mutant must score higher than the champ in the first game, and at least as high as the champ in each subsequent game

19

#### **Evolved Behavior**

| UNSW                    |                       | ©Alan Blair, 2013-18 |    |
|-------------------------|-----------------------|----------------------|----|
| COMP3411/9414/9814 18s1 | Evolutionary Robotics |                      | 18 |

#### **Evolutionary/Variational Methods**

- initialize mean  $\mu = {\mu_i}_{1 \le i \le m}$  and standard deviation  $\sigma = {\sigma_i}_{1 \le i \le m}$
- for each trial, collect *k* samples from a Gaussian distribution

$$\theta_i = \mu_i + \eta_i \sigma_i$$
 where  $\eta_i \sim \mathcal{N}(0, 1)$ 

- sometimes include "mirrored" samples  $\overline{\theta}_i = \mu_i \eta_i \sigma_i$
- evaluate each sample  $\theta$  to compute score or "fitness"  $F(\theta)$
- update mean  $\mu$  by  $\mu \leftarrow \mu + \alpha(F(\theta) \overline{F})(\theta \mu)$ 
  - $\triangleright \alpha =$ learning rate,  $\overline{F} =$  baseline
- sometimes,  $\sigma$  is updated as well

# Wins and Losses



COMP3411/9414/9814 18s1

Evolutionary Robotics

# **OpenAl Evolution Strategies**

- Evolutionary Strategy with fixed  $\sigma$
- since only  $\mu$  is updated, computation can be distributed across many processors
- applied to Atari Pong, MuJoCo humanoid walking
- competitive with Deep Q-Learning on these tasks

# **Evolutionary Robotics**

- Aibo walk learning
- Humanoid walk learning
- Evolving body as well as controller
- Simulation to Reality

UNSW

| UNSW                   |                       | ©Alan Blair, 2013-18 |
|------------------------|-----------------------|----------------------|
|                        |                       |                      |
|                        |                       |                      |
| OMP3411/9414/9814 18s1 | Evolutionary Robotics |                      |

# **Guroo – Humanoid Walk Learning**



Learning done in simulator(s), then tested on actual robot.

# Aibo Walk Learning (Hornby)



Learning done on actual robot.

| UNSW | ©Alan Blair, 2013-18 |
|------|----------------------|
|      |                      |

COMP3411/9414/9814 18s1

21

# **Evolving Virtual Creatures (Sims)**



- Body evolves as a Lindenmeyer system
- Controller evolves as a neural network

Evolutionary Robotics

# Golem (Lipson)





Evolved in simulation, tested in reality.

# **Evolved Antenna**

One example of the use of Evolutionary Algorithms for a real world application is the antenna that was evolved by Hornby et al in 2006 for NASA's Space Technology 5 (ST5) mission.



UNSW

©Alan Blair, 2013-18

UNSW

©Alan Blair, 2013-18