COMP3411/9814: Artificial Intelligence

Extension 3. Motion Planning

Motion Planning Approaches

- **Partially Observable Environments (on-board sensors only)**
	- ▶ Occupancy Grid
	- ▶ Potential Field
	- \blacktriangleright Vector Field Histogram
- **Fully Observable Environments (overhead cameras)**
	- ▶ Delaunay Triangulation
	- ▶ Parameterized Cubic Splines

Occupancy Grid

- divide environment into a Cartesian grid
- \blacksquare for each square in the grid, maintain an estimate of the probability of an obstacle in that square

UNSW

^c Alan Blair, 2014-18

Robots

COMP3411 18s1 Motion Planning

Potential Field

Using an occupancy grid for its map, an agen^t can plan ^a path using ^a Potential Field.

- \blacksquare treat robot's configuration as a point in a potential field that combines attraction to the goal, and repulsion from obstacles
- very rapid computation, but can ge^t stuck in local optima, thus failing to find ^a path

Delaunay Triangulation

Problem - Local Optima

- **a** applicable in situations where the environment is well mapped by overhead cameras (museums, shopping centres, robocup small league)
- add line segments between (closest points of) obstacles, sorted according to length (shortest segments first)
- do not add any segment that crosses an existing segment

UNSW

Vector Field Histogram

A more sophisticated approach - less likely to ge^t stuck in local optima is ^a Vector Field Histogram

COMP3411 18s1 6

- Cartesian histogram grid, continuously updated
- **Polar histogram, based on current position/orientation of robot**
- **candidate valleys (contiguous sectors with low obstacle density)**
- select candidate valleys, based on proximity to target direction

^c Alan Blair, 2014-18

Delaunay Triangulation

Voronoi Diagram

- dual of the Delaunay triangulation is called a Voronoi diagram
- **prune arcs that are too small for the robot to traverse**
- A^{*}Search can then be applied on the resulting graph
- **path can be converted to a trajectory for the robot**

Delaunay Triangulation

Minimizing Time instead of Distance

- For the problem of a soccer robot getting to the ball, or a wheeled robot navigating ^a maze, the "shortest distance" path might not be the same as the "shortest time" path.
- By speeding up and then slowing down, the robot could traverse a path with long straight stretches faster than ^a shorter path with lots of twists and turns.

Minimizing Time instead of Distance

How can we approach the problem of finding the "shortest time" path?

Parameterized Cubic Splines

Assume each path segmen^t is of the form

$$
P(t) = \left(\frac{P_x(t)}{P_y(t)}\right) = \left(\frac{a_x}{a_y}\right)t^3 + \left(\frac{b_x}{b_y}\right)t^2 + \left(\frac{c_x}{c_y}\right)t + \left(\frac{d_x}{d_y}\right)t
$$

Solve these equations for ^a specified position and velocity at the beginning $(t = 0)$ and the end $(t = s)$ of the segment. Traditional method was to set $s = 1$. We instead try to minimize *s* (total time for segment) while satisfying the kinematic constraints:

$$
\left|\frac{P''(t)}{A} + \frac{P'(t)}{V}\right|^2 \le 1, \quad \text{for } 0 \le t \le s,
$$

where *A* and *V* are the maximal acceleration and velocity of the robot.

Optimal Trajectory Planning

Steps in the Algorithm:

- **Delaunay Triangulation**
- A[∗]Search, using paths composed of Parametric Cubic Splines
- Smooth entire curve with Waypoint Tuning by Gradient Descent

A [∗]**Search With and Without Smoothing**

Waypoint Tuning by Gradient Descent

Robocup

This system has been successfully deployed in the Robocup F180 League.

Various Paths Explored

COMP3411 18s1 Motion Planning 19

References

- S. Thrun, W. Burgard & D. Fox, Probabilistic Robotics, MIT Press, 2005.
- J. Thomas, A. Blair & N. Barnes, "Towards an Efficient Optimal Trajectory Planner for Multiple Mobile Robots", 2003 International Conference on Robotics and Systems (IROS'03), 2291–2296.