
COMP3411/9414/9814: Artificial Intelligence

Week 11: Learning Games

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 1

Timeline

� 1959 Checkers (Arthur Samuel)

� 1961 MENACE tic-tac-toe (Donald Michie)

� 1989 TD-Gammon (Gerald Tesauro)

� 1997 TD-leaf (Baxter et al.)

� 2006 MoGo using MCTS (Gelly & Wang)

� 2009 TreeStrap (Veness et al.)

� 2016 AlphaGo

� 2018 Alpha Zero

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 2

MENACE

Machine Educable Noughts And Crosses Engine

Donald Michie, 1961

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 3

MENACE

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 4

Game Tree (2-player, deterministic)

XX

XX

X

X

X

XX

MAX (X)

MIN (O)

X X

O

O

OX O

O

O O

O OO

MAX (X)

X OX OX O X

X X

X

X

X X

MIN (O)

X O X X O X X O X

.

. . .

. . .

. . .

TERMINAL

XX

−1 0 +1Utility

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 5

Martin Gardner and HALO

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 6

Hexapawn Boxes

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 7

Reinforcement Learning with BOXES

This BOXES algorithm was later adapted to learn more general tasks such

as Pole Balancing, and helped lay the foundation for the modern field of

Reinforcement Learning.

� BOXES: An Experiment in Adaptive Control, D.Michie and

R.Chambers, Machine Intelligence, Oliver and Boyd, Edinburgh, UK,

(1968).

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 8

Historical Perspective

Artificial Intelligence in general, and Machine Learning in particular, came

under heavy criticism in the early 1970’s. Donald Michie’s Reinforcement

Learning research was deliberately excluded from the 1973 Lighthill

report because Lighthill wanted to focus attention on other areas which

could most easily be criticised. The field became largely dormant, until it

was revived in the late 1980’s, largely through the work of Richard Sutton.

Gerald Tesauro applied Sutton’s TD-Learning algorithm to the game of

Backgammon in 1989.

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 9

Computer Game Playing

Suppose we want a write a computer program to play a game like

Backgammon, Chess, Checkers or Go. This can be done using a tree

search algorithm (expectimax, MCTS, or minimax with alpha-beta

pruning). But we need:

(a) an appropriate way of encoding any board position as a set of

numbers, and

(b) a way to train a neural network or other learning system to compute a

board evaluation, based on those numbers

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 10

Backgammon

1 2 3 4 5 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 15 14 13

0

25

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 11

Backgammon Neural Network

Board encoding

� 4 units × 2 players × 24 points

� 2 units for the bar

� 2 units for off the board

Two layer neural network

� 196 input units

� 20 hidden units

� 1 output unit

The input s is the encoded board position (state),

the output V(s) is the value of this position (probability of winning).

At each move, roll the dice, find all possible “next board positions”,

convert them to the appropriate input format, feed them to the network,

and choose the one which produces the largest output.

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 12

Backpropagation

w← w+η(T −V)
∂V

∂w

V = actual output

T = target value

w = weight

η = learning rate

Q: How do we choose the target value T ?

In other words, how do we know what the value of the current position

“should have been”? or, how do we find a better estimate for the value

of the current position?

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 13

How to Choose the Target Value

� Behavioral Cloning (Supervised Learning)

◮ learn moves from human games (Expert Preferences)

� Temporal Difference Learning

◮ use subsequent positions to refine evaluation of current position

◮ general method, does not rely on knowing the “world model”

(rules of the game)

� methods which combine learning with tree search

(must know the “world model”)

◮ TD-Root (Samuel, 1959)

◮ TD-Leaf (Baxter et al., 1998)

◮ TreeStrap (Veness et al., 2009)

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 14

Temporal Difference Learning

We have a sequences of positions in the game, each with its own

(estimated) value:

(current estimate) Vk→Vk+1→ . . .→Vm→Vm+1 (final result)

TD(0): Use the value of the next state (Vk+1) as the training value for the

current state (Vk).

TD(λ): use Tk as the training value for Vk, where

Tk = (1−λ)
m

∑
t=k+1

λt−1−k
Vt +λm−k

Vm+1

Tk is a weighted average of future estimates,

λ = discount factor (0≤ λ < 1).

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 15

TD-Gammon

� Tesauro trained two networks:

◮ EP-network was trained on Expert Preferences (Supervised)

◮ TD-network was trained by self play (TD-Learning)

� TD-network outperformed the EP-network.

� With modifications such as 3-step lookahead (expectimax) and

additional hand-crafted input features, TD-Gammon became the best

Backgammon player in the world (Tesauro, 1995).

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 16

Why Did TD-Gammon Work?

� Random dice rolls in Backgammon force self-play to explore a much

larger part of the search space than in a deterministic game.

� Humans are good at reasoning about a small set of probabilistic

outcomes. But, playing Backgammon well requires aggregating a

large set of possibilities, each with a small likelihood, and balancing

them against each other. Neural Networks might be better at this than

humans.

� For deterministic games like Chess, direct TD-Learning performs

poorly. Methods which combine learning with tree search are more

effective.

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 17

Chess

Move selection is by alpha-beta search, using some function V(s) to

evaluate the leaves.

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 18

Heuristic Evaluation for Chess

� Material weights

◮ For example, Queen = 9, Rook = 5, Knight = Bishop = 3, Pawn = 1

� Piece-Square weights

◮ some (fractional) score for a particular piece on a particular square

� Attack/Defend weights

◮ some (fractional) score for one piece attacking or defending

another piece.

� Other features, such as Pawn structure, Mobility, etc.

� There are no hidden nodes. V(s) is a linear combination of input

features, composed with a sigmoid function, to produce a value

between 0 and 1 (probability of winning).

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 19

Learning and Tree Search

(λ)TD

� TD-Learning can be applied even if we do not know the world model.

But, in this case we do know the world model (rules of the game)

� Can we make use of the valuable information in the search tree?

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 20

Checkers Program (Arthur Samuel)

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 21

TD-Root

TD−Root

� TD(λ) (Sutton 1988, Tesauro 1992)

� TD-Root (Samuel 1959)

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 22

TD-Leaf

(λ)TD−Leaf

� TD(λ) (Sutton 1988, Tesauro 1992)

� TD-Root (Samuel 1959)

� TD-Leaf(λ) (Baxter et al. 1998)

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 23

TreeStrap

TreeStrap

� TD(λ) (Sutton 1988, Tesauro 1992)

� TD-Root (Samuel 1959)

� TD-Leaf(λ) (Baxter et al. 1998)

� TreeStrap (Veness et al. 2009)

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 24

TreeStrap algorithm

� all non-leaf positions are updated (including moves not selected)

� when alpha-beta causes a cutoff, we can still train towards the upper

or lower bound

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 25

ALVINN autonomous driver

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 26

TreeStrap for Chess

� showed for the first time that a Chess player could be trained to

Master level entirely by self-play, from random initial weights

� learning sometimes became unstable

◮ learning rate had to be carefully chosen

◮ had to put a limit on the size of individual weight updates

◮ we have since found that scaling the learning rate by depth of the

node makes learning more stable

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 27

The Game of Duchess

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 28

Duchess in Java

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 29

How Many Features?

Chess Duchess

material: 6 9

check/checkmate: 2 2×4 = 8

attack/defend: 6×2×6×2 = 144 9×4×9×4 = 1296

piece-square: 64×6×2 = 768 117×9×4 = 4212

total: 920 5525

branching factor 24 50

depth of search 14 5-9

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 30

Alpha-Beta Optimizations

Chess Duchess

iterative deepening Yes Yes

killer move heuristic Yes Yes

best reply heuristic Yes (Maybe)

history heuristic Yes (Maybe)

hash table Yes (Current Work)

quiescent search Yes No

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 31

Attack/Defend Weights

P1 P2 P3 P4

P1

P2

P3

P4

K
Q

F
R
D

B
W

N
P K

Q
F
R
D

B
W

N
P K

Q
F
R
D

B
W

N
P K

Q
F
R
D

B
W

N
P

KQ
F

R
DB
WN
P
KQ
F

R
DB
WN
P
KQ
F

R
DB
WN
P
KQ
F

R
DB
WN
P

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 32

Trained Weights: Piece-Square

P1P2

P3 P4

King
P1P2

P3 P4

Queen

P1P2

P3 P4

Fortress
P1P2

P3 P4

Rook

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 33

Trained Weights: Piece-Square

P1P2

P3 P4

King
P1P2

P3 P4

Queen

P1P2

P3 P4

Fortress
P1P2

P3 P4

Rook

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 34

Monte Carlo Tree Search

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 35

AlphaGo, Alpha Zero

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 36

Deep Q-Learning for Atari Games

UNSW c©Alan Blair, 2015-18

COMP3411/9414/9814 18s1 Learning Games 37

Summary

� Games can be learned from human expert preferences, or from

self-play (or a combination)

� TD-Learning is a general method, which does not rely on knowing

the world model

� TreeStrap is more powerful, because it also refines the value of moves

which were not chosen; but it relies on knowing the world model

� Monte Carlo tree search good for games with large branching factor

� Deep Learning for Go, Atari Games

� Starcraft?

UNSW c©Alan Blair, 2015-18

