
COMP3411/9414/9814: Artificial Intelligence

Week 10: Uncertainty

Russell & Norvig, Chapter 13.

UNSW c©AIMA, 2004, Alan Blair, 2013-18



COMP3411/9414/9814 18s1 Uncertainty 1
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� Inference
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Uncertainty

In many situations, an AI agent has to choose an action based on

incomplete information.

� stochastic environments (e.g. dice rolls in Backgammon)

� partial observability

◮ some aspects of environment hidden from agent

◮ robots can have noisy sensors, reporting quantities which differ

from the “true” values

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Uncertainty in the Wumpus World

A

B OK

OK OK

A

B

A

P?

P?

P?

P?

In this situation no action is completely safe, because the agent does not

know the location of the Pit(s).

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Plannnig under Uncertainty

Let action At = leave for airport t minutes before flight

Will At get me there on time? Problems:

� partial observability, noisy sensors

� uncertainty in action outcomes (flat tyre, etc.)

� immense complexity of modelling and predicting traffic

Hence a purely logical approach either

1) risks falsehood: “A30 will get me there on time”, or

2) leads to conclusions that are too weak for decision making:

“A30 will get me there on time if there’s no accident on the bridge

and it doesn’t rain and my tires remain intact etc etc.”

(A1440 might be safe but I’d have to stay overnight in the airport . . .)

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Methods for handling Uncertainty

Default or nonmonotonic logic:

Assume my car does not have a flat tire, etc.

Assume A30 works unless contradicted by evidence

Issues: What assumptions are reasonable? How to handle contradiction?

Probability

Given the available evidence,

A30 will get me there on time with probability 0.04

Mahaviracarya (9th C.), Cardamo (1565) theory of gambling

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Probability

Probabilistic assertions summarize effects of

Laziness: failure to enumerate exceptions, qualifications, etc.

Ignorance: lack of relevant facts, initial conditions, etc.

Subjective or Bayesian probability:

Probabilities relate propositions to one’s own state of knowledge

e.g. P(A30|no reported accidents) = 0.06

These are not claims of a “probabilistic tendency” in the current situation

(but might be learned from past experience of similar situations)

Probabilities of propositions change with new evidence:

e.g. P(A30|no reported accidents, 5 a.m.) = 0.15

(Analogous to logical entailment status KB |= α, not absolute truth)

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Making decisions under uncertainty

Suppose I believe the following:

P(A30 gets me there on time| . . .) = 0.04

P(A90 gets me there on time| . . .) = 0.70

P(A120 gets me there on time| . . .) = 0.95

P(A1440 gets me there on time| . . .) = 0.9999

Which action to choose?

Depends on my preferences for missing flight vs. airport cuisine, etc.

Utility theory is used to represent and infer preferences

Decision theory = utility theory + probability theory

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Probability basics

Begin with a set Ω – the sample space (e.g. 6 possible rolls of a die)

ω ∈ Ω is a sample point/possible world/atomic event

A probability space or probability model is a sample space

with an assignment P(ω) for every ω ∈ Ω s.t.

0 ≤ P(ω)≤ 1

∑ω P(ω) = 1

e.g. P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1
6
.

An event A is any subset of Ω

P(A) = ∑
{ω∈A}

P(ω)

e.g. P(die roll < 4) = P(1)+P(2)+P(3) = 1
6
+ 1

6
+ 1

6
= 1

2

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Random variables

A random variable (r.v.) is a function from sample points to some range

(e.g. the Reals or Booleans)

For example, Odd(3) = true.

P induces a probability distribution for any r.v. X :

P(X = xi) = ∑
{ω:X(ω)=xi}

P(ω)

e.g., P(Odd= true) = P(1)+P(3)+P(5) = 1
6
+ 1

6
+ 1

6
= 1

2

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Propositions

Think of a proposition as the event (set of sample points)

where the proposition is true

Given Boolean random variables A and B:

event a = set of sample points where A(ω) = true

event ¬a = set of sample points where A(ω) = false

event a∧b = points where A(ω) = true and B(ω) = true

With Boolean variables, sample point = propositional logic model

e.g., A = true, B = false, or a∧¬b.

Proposition = disjunction of atomic events in which it is true

e.g., (a∨b)≡ (¬a∧b)∨ (a∧¬b)∨ (a∧b)

→ P(a∨b) = P(¬a∧b)+P(a∧¬b)+P(a∧b)

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Why use probability?

The definitions imply that certain logically related events must have

related probabilities

For example, P(a∨b) = P(a)+P(b)−P(a∧b)
>A     B

True

A B

de Finetti (1931): an agent who bets according to probabilities that violate

these axioms can be forced to bet so as to lose money regardless of

outcome.

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Syntax for propositions

Propositional or Boolean random variables

e.g., Cavity (do I have a cavity?)

Cavity = true is a proposition, also written Cavity

Discrete random variables (finite or infinite)

e.g., Weather is one of 〈sunny,rain,cloudy,snow〉
Weather = rain is a proposition

Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded)

e.g. Temp = 21.6; also allow, e.g. Temp < 22.0

Arbitrary Boolean combinations of basic propositions.

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Prior probability

Prior or unconditional probabilities of propositions

e.g. P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72

correspond to belief prior to arrival of any (new) evidence.

Probability distribution gives values for all possible assignments:

P(Weather) = 〈0.72,0.1,0.08,0.1〉 (normalized, i.e., sums to 1)

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Joint probability

Joint probability distribution for a set of r.v.’s gives the

probability of every atomic event on those r.v’s (i.e., every sample point)

P(Weather,Cavity) is a 4×2 matrix of values:

Weather = sunny rain cloudy snow

Cavity = true 0.144 0.02 0.016 0.02

Cavity = false 0.576 0.08 0.064 0.08

Every question about a domain can be answered by the joint

distribution because every event is a sum of sample points.

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Probability for continuous variables

Express distribution as a parameterized function.

e.g. P(X = x) =U [18,26](x) = uniform density between 18 and 26

0.125

dx18 26

Here P is a density; integrates to 1.

P(X = 20.5) = 0.125 really means

lim
dx→0

P(20.5 ≤ X ≤ 20.5+dx)/dx = 0.125

UNSW c©AIMA, 2004, Alan Blair, 2013-18



COMP3411/9414/9814 18s1 Uncertainty 16

Gaussian density

P(x) = 1√
2πσ

e−(x−µ)2/2σ2

0

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Probabilistic Agents

We consider an Agent whose World Model consists not of a set of facts,

but rather a set of probabilities of certain facts being true, or certain

random variables taking particular values.

When the Agent makes an observation, it may update its World Model by

adjusting these probabilities, based on what it has observed.

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Example: Tooth Decay

Assume you live in a community where, at any given time, 20% of people

have a cavity in one of their teeth which needs a filling from the dentist.

P(cavity) = 0.2

If you have a toothache, suddenly you will think it is much more likely

that you have a cavity, perhaps as high as 60%. We say that the conditional

probability of cavity, given toothache, is 0.6, written as follows:

P(cavity |toothache) = 0.6

If you go to the dentist, they will use a small hook-shaped instrument

called a probe, and check whether this probe can catch on the back of your

tooth. If it does catch, this information will increase the probability that

you have a cavity.

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Joint Probability Distribution

We assume there is some underlying joint probability distribution over the

three random variables Toothache, Cavity and Catch, which we can write

in the form of a table:

cavity

L

toothache

cavity

catch catch

L

toothache

L

catch catch

L

.108 .012

.016 .064

.072

.144

.008

.576

Note that the sum of the entries in the table is 1.0.

For any proposition φ, sum the atomic events where it is true:

P(φ) = ∑ω:ω|=φ P(ω)

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Inference by Enumeration

Start with the joint distribution:

cavity

L

toothache

cavity

catch catch

L

toothache

L

catch catch
L

.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the atomic events where it is true:

P(φ) = ∑ω:ω|=φ P(ω)

P(toothache) = 0.108+0.012+0.016+0.064 = 0.2

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Inference by Enumeration

cavity

L

toothache

cavity

catch catch

L

toothache

L

catch catch

L
.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the atomic events where it is true:

P(φ) = ∑ω:ω|=φ P(ω)

P(cavity∨toothache)

= 0.108+0.012+0.072+0.008+0.016+0.064 = 0.28

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Conditional Probability

If we consider two random variables a and b, with P(b) 6= 0, then the

conditional probability of a given b is

P(a|b) = P(a∧b)

P(b)

Alternative formulation: P(a∧b) = P(a|b)P(b) = P(b|a)P(a)

When an agent considers a sequence of random variables at successive

time steps, they can be chained together using this formula repeatedly:

P(Xn, . . . ,X1) = P(Xn |Xn−1, . . . ,X1)P(Xn−1, . . . ,X1)

= P(Xn |Xn−1, . . . ,X1)P(Xn−1 |Xn−2, . . . ,X1)

= . . . =
n

∏
i=1

P(Xi |Xi−1, . . . ,X1)

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Conditional Probability by Enumeration

cavity

L

toothache

cavity

catch catch

L

toothache

L

catch catch

L

.108 .012

.016 .064

.072

.144

.008

.576

P(¬cavity |toothache) =
P(¬cavity∧toothache)

P(toothache)

=
0.016+0.064

0.108+0.012+0.016+0.064
= 0.4

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Independent Variables

Let’s consider the joint probability distribution for Cavity and Weather.

Weather = sunny rain cloudy snow

Cavity = true 0.144 0.02 0.016 0.02

Cavity = false 0.576 0.08 0.064 0.08

Note that:

P(cavity |Weather = sunny) =
0.144

0.144+0.576
= 0.2 = P(cavity)

In other words, learning that the Weather is sunny has no effect on the

probability of having a cavity (and the same for rain, cloudy and snow).

We say that Cavity and Weather are independent variables.

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Independence

A and B are independent iff

P(A|B) = P(A) or P(B|A) = P(B) or P(A,B) = P(A)P(B)

Weather

Toothache Catch

Cavity
decomposes into

Weather

Toothache Catch
Cavity

If variables not independent, would need 32 items in probability table.

Because Weather is independent of the other variables, only need two

smaller tables, with a total of 8+4=12 items.

P(Toothache,Catch,Cavity,Weather)=P(Toothache,Catch,Cavity)P(Weather)

(Note: the number of free parameters is slightly less, because the values in

each table must sum to 1).

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Conditional independence

The variables Toothache, Cavity and Catch are not independent.

But, they do exhibit conditional independence.

If you have a cavity, the probability that the probe will catch is 0.9,

no matter whether you have a toothache or not.

If you don’t have a cavity, the probability that the probe will catch is 0.2,

regardless of whether you have a toothache. In other words,

P(Catch |Toothache,Cavity) = P(Catch |Cavity)
We say that Catch is conditionally independent of Toothache given Cavity.

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Conditional independence

This conditional independence reduces the number of free parameters

from 7 down to 5.

For larger problems with many variables, deducing this kind of conditional

independence among the variables can reduce the number of free

parameters substantially, and allow the Agent to maintain a simpler World

Model.

Equivalent statements:

P(Toothache|Catch,Cavity) = P(Toothache|Cavity)
P(Toothache,Catch|Cavity)=P(Toothache|Cavity)P(Catch|Cavity)

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Bayes’ Rule

The formula for conditional probability can be manipulated to find a

relationship when the two variables are swapped:

P(a∧b) = P(a |b)P(b) = P(b |a)P(a)

→ Bayes’ rule P(a |b) = P(b |a)P(a)
P(b)

This is often useful for assessing the probability of an underlying cause

after an effect has been observed:

P(Cause|Effect) =
P(Effect|Cause)P(Cause)

P(Effect)

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Example: Medical Diagnosis

Question: Suppose we have a 98% accurate test for a type of cancer which

occurs in 1% of patients. If a patient tests positive, what is the probability

that they have the cancer?

Answer: There are two random variables: Cancer (true or false) and

Test (positive or negative). The probability is called a prior, because it

represents our estimate of the probability before we have done the test

(or made some other observation). We interpret the statement that the test

is 98% accurate to mean:

P(positive |cancer) = 0.98, and P(negative |¬cancer) = 0.98

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Bayes’ Rule and Conditional Independence

No

Yes

0.98

0.02

0.02

0.98

Pos

Pos

Neg

Neg

Test

Test

0.99

0.01
Cancer?

P(No ,Pos)  = 0.02

P(Yes,Neg) = 0.00

P(Yes,Pos) = 0.01

P(No ,Neg) = 0.97

P(cancer |positive) =
P(positive |cancer)P(cancer)

P(positive)

=
0.98∗0.01

0.98∗0.01+0.2∗0.99
=

0.01

0.01+0.02
=

1

3

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Bayes’ Rule and Conditional Independence

P(cavity,toothache,catch)

= P(toothache |catch,cavity)P(catch |cavity)P(cavity)
= P(toothache|cavity)P(catch|cavity)P(cavity)

This is an example of a naive Bayes model:

P(Cause,Effect1, . . . ,Effectn) = P(Cause)∏
i

P(Effecti|Cause)

Toothache

Cavity

Catch

Cause

Effect1 Effectn

Total number of parameters is linear in n

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Wumpus World

OK
 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4

OKOK

 3,4  4,4

B

B

What is the probability of a Pit in (1,3) ? What about (2,2) ?

To answer this, we need a “prior” assumption about the placement of Pits.

We will assume a 20% chance of a Pit in each square at the beginning of

the game (independent of what Pits are in the other squares).

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Specifying the Probability Model

We will use Bi, j to indicate a Breeze in square (i, j),

and Piti, j to indicate a Pit in square (i, j).

We use known to represent what we know, i.e.

B1,2 ∧B2,1 ∧¬B1,1 ∧¬Pit1,2 ∧¬Pit2,1 ∧¬Pit1,1

We use Unknown to represent the joint probability of Pits in all the other

squares, i.e.

P(Unknown) = P(Pit1,4, . . . ,Pit4,1)

We divide Unknown into Fringe and Other, where

P(Fringe) = P(Pit1,3,Pit2,2,Pit3,1)

and Other is all the other variables.

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Manipulating Probabilities

P(Pit1,3|known) = ∑
unknown

P(Pit1,3,unknown |known)

= ∑
fringe

∑
other

P(Pit1,3,fringe,other |known)

= ∑
fringe

∑
other

P(Pit1,3|fringe,other,known)P(fringe,other |known)

= ∑
fringe

P(Pit1,3|fringe) ∑
other

P(fringe,other |known)

= ∑
fringe

P(Pit1,3|fringe) ∑
other

P(known |fringe,other)P(fringe,other)
P(known)

Note: have used the fact that P1,3 is independent of other, given fringe.

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Fringe Models

Let’s denote by F the set of fringe models compatible with the known facts:

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

0.2 x 0.2 = 0.04 0.2 x 0.8 = 0.16 0.8 x 0.2 = 0.16

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

0.2 x 0.2 = 0.04 0.2 x 0.8 = 0.16

P(known |fringe,other) = 0 outside F , so P(Pit1,3|known) reduces to:

∑
fringe∈F

P(Pit1,3|fringe) ∑
other

P(known |fringe,other)P(fringe,other)

P(known)
Note also that

P(known) = ∑
fringe∈F

∑
other

P(known |fringe,other)P(fringe,other)

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Using the Prior

Because of the prior, other and fringe become independent, and known

becomes independent of other, given fringe.

P(known |fringe,other) =P(known |fringe) = 1, for fringe∈F , so

P(known) = ∑
fringe∈F

P(fringe) = (0.2)3 +3× (0.2)2(0.8)+(0.2)(0.8)2

= 0.008+0.032+0.032+0.032+0.128 = 0.232

The numerator includes only those models for which Pit1,3 is true, i.e.

P(Pit1,3 |known) =
0.008+0.032+0.032

0.232
=

9

29
≃ 0.310

In a similar way,

P(Pit2,2 |known) =
0.008+0.032+0.032+0.128

0.232
=

25

29
≃ 0.862

UNSW c©AIMA, 2004, Alan Blair, 2013-18
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Summary

Probability is a rigorous formalism for uncertain knowledge

Joint probability distribution specifies probability of every atomic event

Queries can be answered by summing over atomic events

For nontrivial domains, we must find a way to reduce the joint size

Independence and conditional independence provide the tools

UNSW c©AIMA, 2004, Alan Blair, 2013-18


