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Artificial Neural Networks

(Artificial) Neural Networks are made up of nodes which have

� inputs edges, each with some weight

� outputs edges (with weights)

� an activation level (a function of the inputs)

Weights can be positive or negative and may change over time (learning).

The input function is the weighted sum of the activation levels of inputs.

The activation level is a non-linear transfer function g of this input:

activationi = g(si) = g(∑
j

wi jx j)

Some nodes are inputs (sensing), some are outputs (action)
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McCulloch & Pitts Model of a Single Neuron
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s = w1x1 +w2x2−th

= w1x1 +w2x2 +w0

x1, x2 are inputs

w1, w2 are synaptic weights

th is a threshold

w0 is a bias weight

g is transfer function
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Transfer function

Originally, a (discontinuous) step function was used for the transfer

function:

g(s) =
{ 1, if s≥ 0

0, if s < 0
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Linear Separability

Q: what kind of functions can a perceptron compute?

A: linearly separable functions

Examples include:

AND w1 = w2 = 1.0, w0 =−1.5

OR w1 = w2 = 1.0, w0 =−0.5

NOR w1 = w2 =−1.0, w0 = 0.5

Q: How can we train it to learn a new function?
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Perceptron Learning Rule

Adjust the weights as each input is presented.

recall: s = w1x1 +w2x2 +w0

if g(s) = 0 but should be 1,

wk ← wk +ηxk

w0 ← w0 +η

so s ← s+η(1+∑
k

x2
k )

if g(s) = 1 but should be 0,

wk ← wk−ηxk

w0 ← w0−η

so s ← s−η(1+∑
k

x2
k )

otherwise, weights are unchanged. (η > 0 is called the learning rate)

Theorem: This will eventually learn to classify the data correctly,

as long as they are linearly separable.
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Limitations of Perceptrons

Problem: many useful functions are not linearly separable (e.g. XOR)
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Possible solution:

x1 XOR x2 can be written as: (x1 AND x2) NOR (x1 NOR x2)

Recall that AND, OR and NOR can be implemented by perceptrons.
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Multi-Layer Neural Networks
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Given an explicit logical function, we can design a multi-layer neural

network by hand to compute that function. But, if we are just given a set

of training data, can we train a multi-layer network to fit these data?
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Historical Context

In 1969, Minsky and Papert published a book highlighting the limitations

of Perceptrons, and lobbied various funding agencies to redirect funding

away from neural network research, preferring instead logic-based

methods such as expert systems.

It was known as far back as the 1960’s that any given logical function

could be implemented in a 2-layer neural network with step function

activations. But, the the question of how to learn the weights of a

multi-layer neural network based on training examples remained an open

problem. The solution, which we describe in the next section, was found

in 1976 by Paul Werbos, but did not become widely known until it was

rediscovered in 1986 by Rumelhart, Hinton and Williams.
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NN Training as Cost Minimization

We define an error function E to be (half) the sum over all input patterns

of the square of the difference between actual output and desired output

E =
1

2
∑(z− t)2

If we think of E as height, it defines an error landscape on the weight

space. The aim is to find a set of weights for which E is very low.
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Local Search in Weight Space

Problem: because of the step function, the landscape will not be

smooth but will instead consist almost entirely of flat local regions and

“shoulders”, with occasional discontinuous jumps.
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Key Idea

(a) Step function (b) Sign function
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−1

in i
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(c) Sigmoid function

+1

ai

in i

Replace the (discontinuous) step function with a differentiable function,

such as the sigmoid:

g(s) =
1

1+ e−s

or hyperbolic tangent

g(s) = tanh(s) =
es− e−s

es + e−s
= 2

( 1

1+ e−2s

)

−1

UNSW c©Alan Blair, 2013-18



COMP3411/9414/9814 18s1 Neural Networks 13

Gradient Descent

Recall that the error function E is (half) the sum over all input patterns

of the square of the difference between actual output and desired output

E =
1

2
∑(z− t)2

The aim is to find a set of weights for which E is very low.

If the functions involved are smooth, we can use multi-variable calculus

to adjust the weights in such a way as to take us in the steepest downhill

direction.

w← w−η
∂E

∂w

Parameter η is called the learning rate.
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Chain Rule

If, say

y = y(u)

u = u(x)
Then

∂y

∂x
=

∂y

∂u

∂u

∂x

This principle can be used to compute the partial derivatives in an

efficient and localized manner. Note that the transfer function must be

differentiable (usually sigmoid, or tanh).

Note: if z(s) =
1

1+ e−s
, z′(s) = z(1− z).

if z(s) = tanh(s), z′(s) = 1− z2
.
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Forward Pass

b
2

w
22

b
1

u
1

v
1

v
2

z

c

u
2

11
w

s

w
21

w
12

1
x

2
x

1
y 2

y

u1 = b1 +w11x1 +w12x2

y1 = g(u1)

s = c+ v1y1 + v2y2

z = g(s)

E =
1

2
∑(z− t)2
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Backpropagation

Partial Derivatives

∂E

∂z
= z− t

dz

ds
= g′(s) = z(1− z)

∂s

∂y1
= v1

dy1

du1
= y1(1− y1)

Useful notation

δout =
∂E

∂s
δ1 =

∂E

∂u1
δ2 =

∂E

∂u2

Then

δout = (z− t) z (1− z)

∂E

∂v1
= δout y1

δ1 = δout v1 y1 (1− y1)

∂E

∂w11
= δ1 x1

Partial derivatives can be calculated efficiently by packpropagating deltas

through the network.
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Neural Network – Applications

� Autonomous Driving

� Game Playing

� Credit Card Fraud Detection

� Handwriting Recognition

� Financial Prediction
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ALVINN
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ALVINN

� Autonomous Land Vehicle In a Neural Network

� later version included a sonar range finder

◮ 8×32 range finder input retina

◮ 29 hidden units

◮ 45 output units

� Supervised Learning, from human actions (Behavioral Cloning)

◮ additional “transformed” training items to cover emergency

situations

� drove autonomously from coast to coast
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Training Tips

� re-scale inputs and outputs to be in the range 0 to 1 or −1 to 1

� initialize weights to very small random values

� on-line or batch learning

� three different ways to prevent overfitting:

◮ limit the number of hidden nodes or connections

◮ limit the training time, using a validation set

◮ weight decay

� adjust learning rate (and momentum) to suit the particular task
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