COMP3411/9414/9814: Artificial Intelligence

Week 6: Perceptrons

Russell & Norvig: 18.6, 18.7
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Sub-Symbolic Processing
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Brain Regions
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Brain Functions

Sensory function Motor function
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Structure of a Typical Neuron
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Biological Neurons

The brain is made up afeurongnerve cells) which have

a cell body (soma)
dendriteqinputs)
anaxon(outputs)

synapsesgconnections between cells)
Synapses can bxitatoryor inhibitory and may change over time.

When the inputs reach some threshholchaton potential
(electrical pulse) is sent along the axon to the outputs.
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Variety of Neuron Types
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The Big Picture

human brain has 100 billion neurons with an average ¢0Q0
synapses each

latency is about 3-6 milliseconds

therefore, at most a few hundred “steps” in any mental coatjmun,
but massively parallel
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Artificial Neural Networks

(Artificial) Neural Networks are made up of nodes which have

Inputs edges, each with someight

outputs edges (witlveightg

anactivation levela function of the inputs)
Weights can be positive or negative and may change over team{ng).
Theinput functionis the weighted sum of the activation levels of inputs.

The activation level is a non-line&nansferfunctiong of this input:

activation = Z WijX;)

Some nodes are inputs (sensing), some are outputs (action)
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McCulloch & Pitts Model of a Single Neuron

X1
I
S
y
X1, Xo @re inputs
X2 Wp=-th

S = WiXq -+ WoXo—th w1, W are synaptic weights

1] =WiXg+WoXo+Wp this athreshold

Wp IS abias weight
g is transfer function
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Transfer function

Originally, a (discontinuous) step function was used far transfer
function:

15
0.8-
0.6
0.4-
0.2
2 1 v 49 2
X
g(s)—{ 1, if s>0
0, if s<O

(Later, other transfer functions were introduced, whiah@ntinuous and
smooth)
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Linear Separability

Q: what kind of functions can a perceptron compute?
A: linearly separable functions

Examples include:

AND W1 = Wo = 1.0, Wo = —1.5
OR W1 = Wo = 1.0, Wo = —0.5
NOR wi=w>=-10, wy= 05

Q: How can we train it to learn a new function?
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Perceptron Learning Rule

Adjust the weights as each input is presented.

recall: s = wj X1 + WoXo + W

If g(s) = 0 but should be 1, If g(s) =1 but should be 0,
Wi < Wi+ N Xk Wik < Wk —NX
Wo < Wo+1n Wo < Wo—1I
SO S <« s+n(1+%x§) SO S <+ s—n(1+gxﬁ)

otherwise, weights are unchanged.> O is called thdearning rate)

Theorem: This will eventually learn to classify the data correctly,
as long as they arenearly separable.
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Perceptron Learning Example

2= (+/-)

W2
W1 X1 +Wo Xo +Wp > 0

X2 Wo learning raten = 0.1
begin with random weights

1 W1 = 0.2
Wo = 0.0
Wo = —-0.1
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Training Step 1

X

(1,1)

Perceptrons 15

0.2X1+00%x—-0.1>0

Wi <« Wi—NXp = 0.1
Wo <+ W—nNx» = -01
Wo < Wp—nN = -0.2
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Training Step 2

0.1x1—0.1x—02>0

X2 Wy <« Wi+nNXp = 0.3
Wo <« Wo+NXp = 0.0
Wo < Wp+N = =01

- *(2.1)

X4
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Training Step 3

0.3%X1+00%x—-0.1>0
X O (2,2) 3rd point correctly classified,
S0 no change
4th point:
© ¢ Wi <~ Wi—NXg = 0.1
° (1 5 O 5) Wo — Wo—INXo - —-0.2
! Wo < Wp—1nN = -0.2
X1 0.1% —0.2% —0.2>0
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Final Outcome

X, .

eventually, all the data will be
O ° correctly classified (provided
e itislinearly separable)

X
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Limitations of Perceptrons

Problem: many useful functions are not linearly separabig (XOR)

Il\xx\‘ Ili Ili
10 ™. @ L1 o 1 O
?
00 O—=.. 00——@—> 00 o—
0 1 - 0 R P! 0 1
@@ I,and I, (b) 1, or x|2 € 1y xor |,

Possible solution:
X1 XOR x> can be written asxx¢g AND x2) NOR (x; NOR xo)
Recall that AND, OR and NOR can be implemented by perceptrons
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Multi-Layer Neural Networks

XOR
()
%IOR
@ (O
AND NOR -1.5 +0.5

Problem: How can we train it to learn a new function? (cresigignment)
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