
COMP3411/9414/9814: Artificial Intelligence

Week 5: Games

Russell & Norvig, Chapter 5.

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 1

Outline

� origins

� motivation

� minimax search

� resource limits and heuristic evaluation

� α-β pruning

� stochastic games

� partially observable games

� continuous, embodied games

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 2

Origins

� 1769 Wolfgang von Kempelen (Mechanical Turk)

� 1846 Charles Babbage & Ada Lovelace (tic-tac-toe)

� 1952 Alan Turing (Chess algorithm)

� 1959 Arthur Samuel (Checkers)

� 1961 Donald Michie (MENACE machine learner)

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 3

Mechanical Turk

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 4

Mechanical Turk

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 5

Charles Babbage Difference Engine

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 6

Funding Problems

“What shall we do to get rid of Mr. Babbage and his calculatingmachine?”

(Prime Minister Robert Peel, 1842)

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 7

Ada Lovelace

“For the machine is not a thinking being,

but simply an automation which acts

according to the laws imposed upon it.”

(Ada Lovelace, 1843)

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 8

Babbage & Lovelace tic-tac-toe machine

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 9

Types of Games

� Discrete Games

◮ fully observable, deterministic (chess, checkers, go, othello)

◮ fully observable, stochastic (backgammon, monopoly)

◮ partially observable (bridge, poker, scrabble)

� Continuous, embodied games

◮ robocup soccer, pool (snooker)

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 10

Key Ideas

� Computer considers possible lines of play (Babbage, 1846)

� Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)

� Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948;

Shannon, 1950)

� First chess program (Turing, 1951)

� Machine learning to improve evaluation accuracy (Samuel, 1952-57)

� Pruning to allow deeper search (McCarthy, 1956)

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 11

Why Games ?

� “Unpredictable” opponent⇒ solution is astrategy

◮ must respond to every possible opponent reply

� Time limits⇒ must rely onapproximation

◮ tradeoff between speed and accuracy

� Games have been a key driver of new techniques in CS and AI

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 12

Samuel’s Checkers Program

“Elaborate table-lookup procedures, fast sorting and searching

procedures, and a variety of new programming tricks were

developed...”

Samuel’s 1959 paper contains groundbreaking ideas in theseareas:

� hash tables

� data compression

� parameter tuning via machine learning

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 13

Game Tree (2-player, deterministic)

XX
XX

X
X

X

XX

MAX (X)

MIN (O)

X X

O

O
OX O

O
O O

O OO

MAX (X)

X OX OX O X
X X

X
X

X X

MIN (O)

X O X X O X X O X

.

. . .

. . .

. . .

TERMINAL
XX

−1 0 +1Utility

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 14

Minimax

Perfect play for deterministic, perfect-information games

Idea: choose move to position with highestminimax value= best

achievable payoff against best play

MAX

3 12 8 642 14 5 2

MIN

3

A
1

A
3

A
2

A
13A

12
A

11
A

21 A
23

A
22

A
33A

32
A

31

3 2 2

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 15

Minimax algorithm

function minimax(node, depth)
if node is a terminal node or depth = 0

return heuristic value of node
if we are to play at node

let α =−∞
foreach child of node

let α = max(α, minimax(child, depth-1))
returnα

else // opponent is to play at node
let β =+∞
foreach child of node

let β = min(β, minimax(child, depth-1))
returnβ

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 16

Minimax and Negamax

The above formulation of Minimax assumes that all nodes are evaluated

with respect to afixed player(e.g. White in Chess).

If we instead assume that each node is evaluated with respectto the player

whose turn it is to move, we get a simpler formulation known asNegamax.

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 17

Negamax formulation of Minimax

function negamax(node, depth)

if node is terminal or depth = 0

return heuristic value of node

// from perspective of player whose turn it is to move

let α =−∞
foreach child of node

let α = max(α, -negamax(child, depth-1))

returnα

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 18

Properties of Minimax

� Complete?

� Optimal?

� Time complexity?

� Space complexity?

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 19

Reducing the Search Effort

For chess,b ≈ 35, m≈ 100 for “reasonable” games⇒ exact solution

completely infeasible

Two ways to make the search feasible:

� don’t search to final position; use heuristic evaluation at the leaves

� α-β pruning

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 20

Heuristic Evaluation for Chess

� material
◮ Queen = 9, Rook = 5, Knight = Bishop = 3, Pawn = 1

� position
◮ some (fractional) score for a particular piece on a particular square

� interaction
◮ some (fractional) score for one piece attacking another piece, etc.

� KnightCap used 2000 different features, but evaluation is rapid

because very few features are non-zero for any particular board state

(e.g. Queen can only be on one of the 64 squares at a time)

� the value of individual features can be determined by reinforcement

learning

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 21

Pruning – Motivation

Q1: Why would “Queen to G5” be a bad move for Black?
Q2: How many White “replies” did you need to consider in answering?

Once we have seen one reply scary enough to convince us the move is
really bad, we can abandon this move and continue searching elsewhere.

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 22

α-β pruning example

MAX

3 12 8

MIN 3

2

2

X X

3

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 23

α-β pruning example

MAX

3 12 8

MIN 3

2

2

X X
14

14

3

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 24

α-β pruning example

MAX

3 12 8

MIN 3

2

2

X X
14

14

5

5

3

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 25

α-β pruning example

MAX

3 12 8

MIN

3

3

2

2

X X
14

14

5

5

2

2

3

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 26

α-β search algorithm

function alphabeta(node, depth,α, β)

if node is terminal or depth = 0{ return heuristic value of node}

if we are to play at node

foreach child of node

let α = max(α, alphabeta(child, depth-1,α, β))

if α ≥ β { returnα }

returnα
else // opponent is to play at node

foreach child of node

let β = min(β, alphabeta(child, depth-1,α, β))

if β ≤ α { returnβ }

returnβ

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 27

Negamax formulation of α-β search

function minimax(node, depth)
return alphabeta(node, depth,−∞, ∞)

function alphabeta(node, depth,α, β)
if node is terminal or depth = 0

return heuristic value of node
// from perspective of player whose turn it is to move

foreach child of node
let α = max(α, -alphabeta(child, depth-1, -β, -α))
if α ≥ β

returnα
returnα

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 28

Why is it called α-β?

..

..

..

MAX

MIN

MAX

MIN V

α is the best value for usfound so far, off the current path
β is the best value for opponentfound so far, off the current path

If we find a move whose value exceedsα, pass this new value up the tree.

If the current node value exceedsβ, it is “too good to be true”, so we
“prune off” the remaining children.

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 29

Properties of α-β

α-β pruning is guaranteed to give the same result as minimax, butspeeds

up the computation substantially

Good move ordering improves effectiveness of pruning

With “perfect ordering,” time complexity =O(bm/2)

To prove that a “bad” move is bad, we only need to consider one (good) reply.

But to prove that a “good” move is good, we need to consider allreplies.

This meansα-β can search twice as deep as plain minimax.

An increase in search depth from 6 to 12 could change a very weak player

into a quite strong one.

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 30

Chess

Deep Blue defeated human world champion Gary Kasparov in a six-game
match in 1997.

Traditionally, computers played well in the opening (usinga database)
and in the endgame (by deep search) but humans could beat themin the
middle game by “opening up” the board to increase the branching factor.
Kasparov tried this, but because of its speed Deep Blue remained strong.

Some experts believe Kasparov should have been able to defeat Deep Blue
in 1997 if he hadn’t “lost his nerve”. However, chess programs stronger
than Deep Blue are now running on standard PCs and could definitely
defeat the strongest humans.

Modern chess programs rely on quiescent search, transposition tables and
pruning heuristics.

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 31

Checkers

Chinook failed to defeat human world champion Marion Tinsley prior to
his death in 1994, but has beaten all subsequent human champions.

Chinook used an endgame database defining perfect play for all positions
involving 8 or fewer pieces on the board – a total of 443,748,401,247
positions. This database has since been expanded to includeall positions
with 10 or fewer pieces (38 trillion positions).

In 2007, Jonathan Shaeffer released a new version of Chinookand
published a proof that it will never lose. His proof method fills out the
game tree incrementally, ignoring branches which are likely to be pruned.
After many months of computation, it eventually converges to a skeleton
of the real (pruned) tree which is comprehensive enough to complete the
proof.

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 32

Go

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 33

Go

The branching factor for Go is greater than 300, and static board evaluation
is difficult. Traditional Go programs broke the board into regions and used
pattern knowledge to explore each region.

Since 2006, new “Monte Carlo” players have been developed using UCB
search. A tree is built up stochastically. After a small number of moves,
the rest of the game is played out randomly, using fast pattern matching to
give preference to “urgent” moves.

In March 2016, AlphaGo defeated the human Go champion Lee Sedol in a
4-1 match. AlphaGo uses MCTS, with deep learning neural networks for
move selection and board evaluation. The networks are trained initially
on a database of thousands of human championship Go games, and then
refined with millions of games of self-play.

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 34

Stochastic games: backgammon

1 2 3 4 5 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 15 14 13

0

25

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 35

Stochastic games in general

In stochastic games, chance introduced by dice, card-shuffling, etc.

Expectimaxis an adaptation of Minimax which also handleschance

nodes.

...

if node is a chance node

return average of values of successor nodes

...

Adaptations ofα-β pruning are possible, provided the evaluation is

bounded.

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 36

Expectimax algorithm

MIN

MAX

2

CHANCE

4 7 4 6 0 5 −2

2 4 0 −2

0.5 0.5 0.5 0.5

3 −1

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 37

For Minimax, Exact values don’t matter

MIN

MAX

21

1

42

2

20

1

1 40020

20

Move choice is preserved under anymonotonictransformation of EVAL .

Only the order matters:

payoff in deterministic games acts as anordinal utility function.

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 38

For Expectimax, Exact values DO matter

DICE

MIN

MAX

2 2 3 3 1 1 4 4

2 3 1 4

.9 .1 .9 .1

2.1 1.3

20 20 30 30 1 1 400 400

20 30 1 400

.9 .1 .9 .1

21 40.9

Move choice only preserved by positive linear transformation of EVAL

Hence EVAL should be proportional to the expected payoff.

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 39

Partially Observable games

Card games are partially observable, because (some of) the opponents’

cards are unknown.

This makes the problem very difficult, because some information is known

to one player but not to another.

Typically we can calculate a probability for each possible deal.

Idea: compute the minimax value of each action in each deal,

then choose the action with highest expected value over all deals.

GIB, a strong and well-known bridge program, approximates this idea by

1) generating 100 deals consistent with bidding information

2) picking the action that wins most tricks on average

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 40

Infinite Mario

Currently best solution uses A*Search, after reverse engineering the world

model.

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 41

Pacman

Combines path planning, low-level control, reasoning under uncertainty

and (for ghosts) multi-agent coordination.

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 42

Robocup Soccer

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 43

Deep Green pool playing robot

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 44

Deep Green pool playing robot

Low level technical issues

� undistortion of overhead camera image

� ball appears “egg-shaped”, need to find centre accurately

High level strategy

� easy to sink current ball

� more complicated to “set up” for the next ball

� competition using physical simulator

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 45

MENACE

Machine Educable Noughts And Crosses Engine

Donald Michie, 1961

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 46

MENACE

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 47

Game Tree (2-player, deterministic)

XX
XX

X
X

X

XX

MAX (X)

MIN (O)

X X

O

O
OX O

O
O O

O OO

MAX (X)

X OX OX O X
X X

X
X

X X

MIN (O)

X O X X O X X O X

.

. . .

. . .

. . .

TERMINAL
XX

−1 0 +1Utility

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 48

Summary

� games are fun to work on!

� games continue to be a driver of new technology

� tradeoff between speed and accuracy

� probabilistic reasoning

� force us to build “whole systems” – chain is as strong as its weakest

link

UNSW c©Alan Blair, 2013-18

COMP3411/9414/9814 18s1 Games 49

References

Tom Standage, 2002. The Mechanical Turk, Penguin Books.

Arthur Samuel, 1959.Some studies in machine learning using the game

of checkers, IBM Journal on Research and Development, pages 210-229.

Chinook: www.cs.ualberta.ca/ ˜chinook

Robocup: www.robocup.org

[look for Infinite Mario and Deep Green on youtube]

UNSW c©Alan Blair, 2013-18

