COMP9414/9814/3411.: Artificial Intelligence

Week 4: Informed Search

Russell & Norvig, Chapter 3.

UNSW ©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Informed Search

Search Strategies

General Search algorithm:

add initial state to queue

repeat:
take node from front of queue

testif it is a goal state; if so, terminate

“expand” it, I.e. generate successor nodes and
add them to the queue

Search strategies are distinguished by the order in whishnogles are
added to the queue of nodes awaiting expansion.

UNSW ©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Informed Search

Search Strategies

UNSW

BFS and DFS treat all new nodes the same way:
BFS add all new nodes to tliackof the queue

DFS add all new nodes to tlfient of the queue

(Seemingly)Best First Searclises an evaluation functiof) to
order the nodes in the queue; we have seen one example of this:

UCS f(n) = costg(n) of path from root to node

Informed or Heuristic search strategies incorporate int@) an
estimate of distance to goal

Greedy Search f(n) = estimatéh(n) of cost from noden to goal
A* Search f(n) =g(n)+h(n)

©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Informed Search

Romania Street Map

Arad
118 .
[] Vaslui
Timisoara
11 Pitesti
98
] Hirsova
] Mehadia Urziceni
75 86
Dobreta []
Eforie
UNSW

Straight-line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagar as
Giurgiu
Hirsova
las

Lugoj

M ehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Ur ziceni
Vadui
Zerind

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Informed Search

Heuristic Function

There is a whole family of Best First Search algorithms witffiedent
evaluation functiond (). A key component of these algorithms is a
heuristic function

Heuristic functionh: {Set of nodes — R:

h(n) = estimated cost of the cheapest path from
current noden to goal node.

In the area of searclhneuristic functionsare problem specific
functions that provide an estimate of solution cost.

UNSW ©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Informed Search

Greedy Best-First Search

UNSW

Greedy Best-First SearcBest-First Search that selects the next node
for expansion using the heuristic function for its evaloatiunction,
l.e. f(n) =h(n)

h(n) =0 < nis a goal state

l.e. greedy search minimises the estimated cost to the eapands
whichever noden is estimated to be closest to the goal.

Greedy: tries to “bite off” as big a chunk of the solution asgible,
without worrying about long-term consequences.

©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Informed Search

Straight Line Distance as a Heuristic

UNSW

hs p(n) = straight-line distance betweenand the goal location
(Bucharest).

Assume that roads typically tend to approximate the
direct connection between two cities.

Need to know the map coordinates of the cities:
\/ (Sibiuy — Bucharesty)? + (Sibiuy — Bucharesty)?

©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Informed Search

Greedy Best-First Search Example

UNSW ©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Informed Search

Greedy Best-First Search Example

' AR '
P KX X XY
374 RIS 53 329

B~ o A

<
366 380 178 193

UNSW ©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Informed Search

Greedy Best-First Search Example

CSENES
Oradea ’{f%‘;’;’:\‘ Rimnicu
KISRLL Vilcea
366 380 XK X8 193
<>
253 0

UNSW ©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Informed Search

Examples of Greedy Best-First Search

Try
lasi to Fagaras
Fagaras to lasi

Rimnicu Vilcea to Lugoj

UNSW

©Alan Blair, 2013-18

10

COMP9414/9814/3411 18s1 Informed Search

Properties of Greedy Best-First Search

Complete:No! can get stuck in loops, e.g.,
lasi— Neamt— lasi— Neamt— ...
Complete in finite space with repeated-state checking

Time: O(b™), wheremis the maximum depth in search space.
Space:O(b™) (retains all nodes in memory)

Optimal: No! e.g., the path Sibiu» Fagaras— Bucharest is 32 km
longer than Sibiu— Rimnicu Vilcea— Pitesti— Bucharest.

Therefore Greedy Search has the same deficits as DepthSeiasth.
However, a good heuristic can reduce time and memory cosssasutially.

UNSW ©Alan Blair, 2013-18

11

COMP9414/9814/3411 18s1 Informed Search 12

Recall: Uniform-Cost Search

UNSW

Expand root first, then expand least-cost unexpanded node

Implementation QUEUEINGFN = insert nodes in order of
Increasing path cost.

Reduces to breadth-first search when all actions have sashe co

Finds the cheapest goal provided path cost is monotonicealigasing
along each path (i.e. no negative-cost steps)

©Alan Blair, 2013-18

COMP9414/9814/3411 18s1

Uniform Cost Search

Informed Search

UNSW

©Alan Blair, 2013-18

13

14

Informed Search

COMP9414/9814/3411 18s1

Uniform Cost Search

118

140

75

111

118

71

75

Oradea

©Alan Blair, 2013-18

UNSW

COMP9414/9814/3411 18s1 Informed Search 15

Properties of Uniform Cost Search

Complete?Yes, ifbis finite and step costs € with € > 0.
Optimal?Yes.

Guaranteed to find optimal solution, but does so by exhaalgtiv
expanding all nodes closer to the initial state than the.goal

Q: can we still guarantee optimality but search more effityen
by giving priority to more “promising” nodes?

UNSW ©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Informed Search

A* Search

A* Search uses evaluation functié(m) = g(n) + h(n)
g(n) = cost from initial node to node
h(n) = estimated cost of cheapest path fraro goal

f(n) = estimated total cost of cheapest solution through mode

Greedy Search minimizdgn)
efficient but not optimal or complete

Uniform Cost Search minimizegn)
optimal and complete but not efficient

UNSW ©Alan Blair, 2013-18

16

COMP9414/9814/3411 18s1 Informed Search

A* Search

A* Search minimized (n) = g(n) + h(n)
iIdea: preserve efficiency of Greedy Search but
avoid expanding paths that are already expensive

Q: is A* Searclhoptimalandcomplete?

A: Yes! providedh() is admissibldan the sense that it
never overestimates the cost to reach the goal.

UNSW ©Alan Blair, 2013-18

17

COMP9414/9814/3411 18s1

A* Search Example

UNSW

ol

O S VaVv 4
LK)

X]

NS

N
e e

v"‘ C

47

Informed Search

©Alan Blair, 2013-18

18

COMP9414/9814/3411 18s1

A* Search Example

75 140 118

T o 2

AV o AY,

140 99 151 80
Rimnicu
C
646 526 417 413

UNSW

Informed Search

©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Informed Search

A* Search Example

SEERILK
LRGGKRY

RRARXEE

OSSR 3B6
75 140 118
' AT '
LRSI
EIXLL
449 D83 447
140 99 151 80
CAERRES
Oradea Fagaras ""%@Q'%’Q\’
Keeecd
646 526 217, X3

146 9 80

UNSW ©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Informed Search

A* Search Example

AR
Oradea Fagaras ‘0"%{%@6’0\’
Keeesd
646 526 41 7R ENX3

I

f—

146 9 80

SRR

PR IXIY
COR 3 1D,
526 SO 553

RS

97 138 101
Rimnicu
G
607 615 418

UNSW ©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Informed Search

A* Search Example

CHAREZIN K AR
416 KRS PRI R 3

99 211 146 9 80
CRRIIIN
Bucharest ‘O:ch?z":’}t
SERXKAKK
591 450 526 ySISESZSIYLS
97 138

Rimnicu
<
607 615

©)
101
418

UNSW ©Alan Blair, 2013-18

22

COMP9414/9814/3411 18s1 Informed Search

A* Search

Heuristich() is calledadmissibldf
vn h(n) < h*(n) whereh*(n) is true cost fromn to goal

If his admissible therf(n) never overestimates the actual cost of the
best solution through.

Example:hs p() is admissible because the shortest path between any
two points is a line.

Theorem: A Search is optimal if() is admissible.

UNSW ©Alan Blair, 2013-18

23

COMP9414/9814/3411 18s1 Informed Search

Optimality of A * Search

Suppose a suboptimal goal no@e has been generated and is in the

gueue. Len be the last unexpanded node on a shortest path to an optimal

goal nodeG.

UNSW

Sart

N

GO G,

—h

/N

.
N

N——"
I

g(G2) sinceh(Gz) =0

g9(G) sinceG; is suboptimal

AVARRY,

f(n) sinceh is admissible

©Alan Blair, 2013-18

24

COMP9414/9814/3411 18s1 Informed Search

Optimality of A * Search

Sincef(Gz) > f(n), A* will never selects; for expansion.

Note: suboptimal goal nod&, may begeneratedbut it will never be
expanded

In other words, even after a goal node has been generatedillkeep
searching so long as there is a possibility of finding a shaedgition.

Once a goal node is selected pansionwe know it must be optimal,
SO we can terminate the search.

UNSW ©Alan Blair, 2013-18

25

COMP9414/9814/3411 18s1 Informed Search

Properties of A * Search

Complete:Yes, unless there are infinitely many nodes with
f < cost of solution.

Time: Exponential in [relative error ihx length of solution]
SpaceKeeps all nodes is memory

Optimal: Yes (assumindp() is admissible).

UNSW ©Alan Blair, 2013-18

26

COMP9414/9814/3411 18s1 Informed Search 27

lterative Deepening A * Search

UNSW

Iterative Deepening Ais a low-memory variant of A which
performs a series of depth-first searches, but cuts off eaaitis
when the sunf () = g() + h() exceeds some pre-defined threshold.

The threshold is steadily increased with each successarelse

IDA* is asymptotically as efficient as*Aor domains where the
number of states grows exponentially.

©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Informed Search

Exercise

What sort of search will greedy search emulate if we run ihwit
h(n) = —g(n) ?
h(n) = g(n) ?

h(n) = number of steps from initial state to nodé&

UNSW ©Alan Blair, 2013-18

28

COMP9414/9814/3411 18s1 Informed Search

Examples of Admissible Heuristics

e.g. for the 8-puzzle:

h1(n) = total number of misplaced tiles
h2(n) = total Manhattan distance Y distance from goal position

7 2 4 1 2 3

5 6 4 5 6

8 3 1 7 8
hl(S> — ’) Start State Goal State

hz(S) =7

Why arehy, ho admissible?

UNSW ©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Informed Search

Examples of Admissible Heuristics

e.g. for the 8-puzzle:

h1(n) = total number of misplaced tiles
h2(n) = total Manhattan distance Y distance from goal position

7 2 4 1 2 3

5 6 4 5 6

8 3 1 7 8
hl(S> =6 Start State Goal State

ho(S) = 4+0+3+3+1+0+2+1 = 14

hy: every tile must be moved at least once.
hy: each action can only move one tile one step closer to the goal

UNSW ©Alan Blair, 2013-18

30

COMP9414/9814/3411 18s1 Informed Search 31

Dominance

If ho(n) > hi(n) for all n (both admissible) theh, dominated; and
IS better for search. So the aim is to make the heurgli@s large as
possible, but without exceedirg().

typical search costs:

14-puzzle IDS = 3,473,941 nodes
A*(hyp) =539 nodes
A*(hy) = 113 nodes

24-puzzle IDS ~ 54 x 10° nodes
A*(hyp) = 39,135 nodes
A*(hy) = 1,641 nodes

UNSW ©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Informed Search

How to Find Heuristic Functions ?

Admissible heuristics can often be derived from #xact
solution cost of a simplified or “relaxed” version of the plep.
(i.e. with some of the constraints weakened or removed)

If the rules of the 8-puzzle are relaxed so that a tile can move
anywherethenhs(n) gives the shortest solution.

If the rules are relaxed so that a tile can moveuty adjacent
squarethenhy(n) gives the shortest solution.

UNSW ©Alan Blair, 2013-18

32

COMP9414/9814/3411 18s1 Informed Search

Composite Heuristic Functions

Let hy, ho, ..., hy be admissible heuristics for a given task.

Define thecomposite heuristic
h(n) = max(hy(n),h2(n), ..., hm(n))

h is admissible

h dominatedy, hy,....hy

UNSW ©Alan Blair, 2013-18

33

COMP9414/9814/3411 18s1 Informed Search

Heuristics for Rubik’s Cube

3D Manhattan distance, but to be admissible need to divid& by
better to take 3D Manhattan distance for edges only, divied.

alternatively, max of 3D Manhattan distance for edges amdess,
divided by 4 (but the corners slow down the computation witho
much additional benefit).

best approach is to pre-complRattern Databaseaghich store the
minimum number of moves for every combination of the 8 cagner
and for two sets of 6 edges.

to save memory, use IDA

“Finding Optimal Solutions to Rubik’s Cube using Patterntdbmses” (Korf, 1997)

UNSW ©Alan Blair, 2013-18

34

COMP9414/9814/3411 18s1 Informed Search

Summary of Informed Search

UNSW

Heuristics can be applied to reduce search cost.
Greedy Search tries to minimize cost from current not®the goal.

A* combines the advantages of Uniform-Cost Search and Greedy
Search.

A* is complete, optimal and optimally efficient among all o#Im
search algorithms.

Memory usage is still a concern for"AIDA* is a low-memory
variant.

©Alan Blair, 2013-18

35

