
COMP9414/9814/3411: Artificial Intelligence

Week 4: Informed Search

Russell & Norvig, Chapter 3.

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 1

Search Strategies

General Search algorithm:

� add initial state to queue

� repeat:

◮ take node from front of queue

◮ test if it is a goal state; if so, terminate

◮ “expand” it, i.e. generate successor nodes and

add them to the queue

Search strategies are distinguished by the order in which new nodes are

added to the queue of nodes awaiting expansion.

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 2

Search Strategies

� BFS and DFS treat all new nodes the same way:

◮ BFS add all new nodes to thebackof the queue

◮ DFS add all new nodes to thefront of the queue

� (Seemingly)Best First Searchuses an evaluation functionf () to

order the nodes in the queue; we have seen one example of this:

◮ UCS f (n) = costg(n) of path from root to noden

� Informedor Heuristicsearch strategies incorporate intof () an

estimate of distance to goal

◮ Greedy Search f (n) = estimateh(n) of cost from noden to goal

◮ A∗ Search f (n) = g(n)+h(n)

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 3

Romania Street Map

Bucharest

Giurgiu

Urziceni

Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj
Mehadia

Dobreta
Craiova

Sibiu

Fagaras

Pitesti
Rimnicu Vilcea

Vaslui

Iasi

Straight−line distance
to Bucharest

 0
160
242
161

77
151

241

366

193

178

253
329
80

199

244

380

226

234

374

98

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 4

Heuristic Function

There is a whole family of Best First Search algorithms with different

evaluation functionsf (). A key component of these algorithms is a

heuristic function:

� Heuristic functionh: {Set of nodes} −→ R :

◮ h(n) = estimated cost of the cheapest path from

current noden to goal node.

◮ in the area of search,heuristic functionsare problem specific

functions that provide an estimate of solution cost.

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 5

Greedy Best-First Search

� Greedy Best-First Search:Best-First Search that selects the next node

for expansion using the heuristic function for its evaluation function,

i.e. f (n) = h(n)

� h(n) = 0 ⇐⇒ n is a goal state

� i.e. greedy search minimises the estimated cost to the goal;it expands

whichever noden is estimated to be closest to the goal.

� Greedy: tries to “bite off” as big a chunk of the solution as possible,

without worrying about long-term consequences.

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 6

Straight Line Distance as a Heuristic

� hSLD(n) = straight-line distance betweenn and the goal location

(Bucharest).

� Assume that roads typically tend to approximate the

direct connection between two cities.

� Need to know the map coordinates of the cities:

◮
√

(Sibiux −Bucharestx)2+(Sibiuy −Bucharesty)2

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 7

Greedy Best-First Search Example

Arad

366

Zerind Sibiu Timisoara

374 253 329

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 8

Greedy Best-First Search Example

Arad

366

Zerind Sibiu Timisoara

374 253 329

Arad Oradea Rimnicu
 VilceaFagaras

366 380 178 193

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 9

Greedy Best-First Search Example

Arad

366

Zerind Sibiu Timisoara

374 253 329

Arad Oradea Rimnicu
 VilceaFagaras

366 380 178 193

Sibiu Bucharest

253 0

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 10

Examples of Greedy Best-First Search

Try

� Iasi to Fagaras

� Fagaras to Iasi

� Rimnicu Vilcea to Lugoj

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 11

Properties of Greedy Best-First Search

� Complete:No! can get stuck in loops, e.g.,

Iasi→ Neamt→ Iasi→ Neamt→ ...

Complete in finite space with repeated-state checking

� Time: O(bm), wherem is the maximum depth in search space.

� Space:O(bm) (retains all nodes in memory)

� Optimal: No! e.g., the path Sibiu→ Fagaras→ Bucharest is 32 km

longer than Sibiu→ Rimnicu Vilcea→ Pitesti→ Bucharest.

Therefore Greedy Search has the same deficits as Depth-FirstSearch.

However, a good heuristic can reduce time and memory costs substantially.

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 12

Recall: Uniform-Cost Search

� Expand root first, then expand least-cost unexpanded node

� Implementation: QUEUEINGFN = insert nodes in order of

increasing path cost.

� Reduces to breadth-first search when all actions have same cost

� Finds the cheapest goal provided path cost is monotonicallyincreasing

along each path (i.e. no negative-cost steps)

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 13

Uniform Cost Search

Zerind Sibiu Timisoara

75 140 118

Arad

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 14

Uniform Cost Search

Arad Lugoj

118 111

Arad Oradea

75 71

Zerind Sibiu Timisoara

75 140 118

Arad

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 15

Properties of Uniform Cost Search

� Complete?Yes, if b is finite and step costs≥ ε with ε > 0.

� Optimal?Yes.

� Guaranteed to find optimal solution, but does so by exhaustively

expanding all nodes closer to the initial state than the goal.

Q: can we still guarantee optimality but search more efficiently,

by giving priority to more “promising” nodes?

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 16

A∗ Search

� A∗ Search uses evaluation functionf (n) = g(n)+h(n)

◮ g(n) = cost from initial node to noden

◮ h(n) = estimated cost of cheapest path fromn to goal

◮ f (n) = estimated total cost of cheapest solution through noden

� Greedy Search minimizesh(n)

◮ efficient but not optimal or complete

� Uniform Cost Search minimizesg(n)

◮ optimal and complete but not efficient

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 17

A∗ Search

� A* Search minimizesf (n) = g(n)+h(n)

◮ idea: preserve efficiency of Greedy Search but

avoid expanding paths that are already expensive

� Q: is A∗ Searchoptimalandcomplete?

� A: Yes! providedh() is admissiblein the sense that it

never overestimates the cost to reach the goal.

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 18

A∗ Search Example

Zerind Sibiu Timisoara

449 393 447

75 140 118

Arad

366

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 19

A∗ Search Example

151

Arad Oradea Rimnicu
 VilceaFagaras

646 526 417 413

140 99 80

Zerind Sibiu Timisoara

449 393 447

75 140 118

Arad

366

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 20

A∗ Search Example

151

Arad

366

Zerind Sibiu Timisoara

Arad Oradea Rimnicu
 VilceaFagaras

449 393 447

646 526 417 413

526 415 553
Craiova Pitesti Sibiu

75 140 118

140 99 80

146 97 80

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 21

A∗ Search Example

151

Arad

366

Zerind Sibiu Timisoara

Arad Oradea Rimnicu
 VilceaFagaras

449 393 447

646 526 417 413

526 415 553

607 615 418

Craiova Pitesti Sibiu

Rimnicu
 Vilcea Craiova Bucharest

75 140 118

140 99 80

146 97 80

97 138 101

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 22

A∗ Search Example

151

Arad

366

Zerind Sibiu Timisoara

Arad Oradea Rimnicu
 VilceaFagaras

Sibiu Bucharest

449 393 447

646 526 417 413

591 450 526 415 553

607 615 418

Craiova Pitesti Sibiu

Rimnicu
 Vilcea Craiova Bucharest

75 140 118

140 99 80

99 211 146 97 80

97 138 101

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 23

A∗ Search

� Heuristich() is calledadmissibleif

∀n h(n)≤ h∗(n) whereh∗(n) is truecost fromn to goal

� If h is admissible thenf (n) never overestimates the actual cost of the

best solution throughn.

� Example:hSLD() is admissible because the shortest path between any

two points is a line.

� Theorem: A∗ Search is optimal ifh() is admissible.

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 24

Optimality of A ∗ Search

Suppose a suboptimal goal nodeG2 has been generated and is in the

queue. Letn be the last unexpanded node on a shortest path to an optimal

goal nodeG.

G

n

G2

Start

f (G2) = g(G2) sinceh(G2) = 0

> g(G) sinceG2 is suboptimal

≥ f (n) sinceh is admissible.

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 25

Optimality of A ∗ Search

Since f (G2)> f (n), A∗ will never selectG2 for expansion.

Note: suboptimal goal nodeG2 may begenerated, but it will never be

expanded.

In other words, even after a goal node has been generated, A∗ will keep

searching so long as there is a possibility of finding a shorter solution.

Once a goal node is selected forexpansion, we know it must be optimal,

so we can terminate the search.

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 26

Properties of A ∗ Search

� Complete:Yes, unless there are infinitely many nodes with

f ≤ cost of solution.

� Time: Exponential in [relative error inh× length of solution]

� Space:Keeps all nodes is memory

� Optimal: Yes (assumingh() is admissible).

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 27

Iterative Deepening A ∗ Search

� Iterative Deepening A∗ is a low-memory variant of A∗ which

performs a series of depth-first searches, but cuts off each search

when the sumf () = g()+h() exceeds some pre-defined threshold.

� The threshold is steadily increased with each successive search.

� IDA∗ is asymptotically as efficient as A∗ for domains where the

number of states grows exponentially.

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 28

Exercise

What sort of search will greedy search emulate if we run it with:

� h(n) =−g(n) ?

� h(n) = g(n) ?

� h(n) = number of steps from initial state to noden ?

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 29

Examples of Admissible Heuristics

e.g. for the 8-puzzle:

h1(n) = total number of misplaced tiles

h2(n) = totalManhattan distance= ∑distance from goal position

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(S) = ?

h2(S) = ?

� Why areh1, h2 admissible?

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 30

Examples of Admissible Heuristics

e.g. for the 8-puzzle:

h1(n) = total number of misplaced tiles

h2(n) = totalManhattan distance= ∑distance from goal position

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(S) = 6

h2(S) = 4+0+3+3+1+0+2+1 = 14

� h1: every tile must be moved at least once.

� h2: each action can only move one tile one step closer to the goal.

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 31

Dominance

� if h2(n)≥ h1(n) for all n (both admissible) thenh2 dominatesh1 and

is better for search. So the aim is to make the heuristich() as large as

possible, but without exceedingh∗().

� typical search costs:

14-puzzle IDS = 3,473,941 nodes

A∗(h1) = 539 nodes

A∗(h2) = 113 nodes

24-puzzle IDS ≈ 54×109 nodes

A∗(h1) = 39,135 nodes

A∗(h2) = 1,641 nodes

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 32

How to Find Heuristic Functions ?

� Admissible heuristics can often be derived from theexact

solution cost of a simplified or “relaxed” version of the problem.

(i.e. with some of the constraints weakened or removed)

◮ If the rules of the 8-puzzle are relaxed so that a tile can move

anywhere, thenh1(n) gives the shortest solution.

◮ If the rules are relaxed so that a tile can move toany adjacent

square, thenh2(n) gives the shortest solution.

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 33

Composite Heuristic Functions

� Let h1,h2, ...,hm be admissible heuristics for a given task.

� Define thecomposite heuristic

h(n) = max(h1(n),h2(n), ...,hm(n))

� h is admissible

� h dominatesh1,h2, ...,hm

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 34

Heuristics for Rubik’s Cube

� 3D Manhattan distance, but to be admissible need to divide by8.

� better to take 3D Manhattan distance for edges only, dividedby 4.

� alternatively, max of 3D Manhattan distance for edges and corners,

divided by 4 (but the corners slow down the computation without

much additional benefit).

� best approach is to pre-computePattern Databaseswhich store the

minimum number of moves for every combination of the 8 corners,

and for two sets of 6 edges.

� to save memory, use IDA∗.

“Finding Optimal Solutions to Rubik’s Cube using Pattern Databases” (Korf, 1997)

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Informed Search 35

Summary of Informed Search

� Heuristics can be applied to reduce search cost.

� Greedy Search tries to minimize cost from current noden to the goal.

� A∗ combines the advantages of Uniform-Cost Search and Greedy

Search.

� A∗ is complete, optimal and optimally efficient among all optimal

search algorithms.

� Memory usage is still a concern for A∗. IDA∗ is a low-memory

variant.

UNSW c©Alan Blair, 2013-18


