COMP9414/9814/3411.: Artificial Intelligence
Week 3. Path Search

Russell & Norvig, Chapter 3.

UNSW ©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search

Motivation

UNSW

ReactiveandModel-BasedAgents choose their actions based only on
what they currently perceive, or have perceived in the past.

a Planning Agentan useSearchtechniques tglan several steps
ahead in order to achieve its goal(s).

two classes of search strategies:
Uninformedsearch strategies can only distinguish goal states from
non-goal states
Informedsearch strategies useuristicsto try to get “closer” to
the goal

©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search

Romania Street Map

[] Oradea

Arad c g\

[] Vaslui

Timisoara

Pitesti

] Hirsova

[7] Mehadia Urziceni

2N
)

=Bucharest
Dobreta

H Craiova Eforie

[] Giurgiu

UNSW ©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search

Example: Romania

On touring holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest; non-refundablkdic

Step 1Formulate goalbe in Bucharest on time

Step 2Specify task
states various cities

operators or actions (= transitions between stath®Je between
cities
Step 3Find solution (= action sequencesequence of cities, e.g.
Arad, Sibiu, Fagaras, Bucharest

Step 4Execute drive through all the cities given by the solution.

UNSW ©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search

Single-State Task Specification

A taskis specified by states and actions:

state space e.g. other cities
Initial state e.g. “at Arad”

actionsor operatorgor successor functio§(x))
e.g. Arad— Zerind Arad— Sibiu etc.

goal testcheck if a state is goal state
In this case, there is only one goal specified (“at Buchayest”

path cose.g. sum of distances, number of actions etc.

UNSW ©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search

Choosing States and Actions

Real world is absurdly complex
= State space must ladstractedor problem solving

(abstract) state = set of real states

(abstract) action = complex combination of real actions

e.g. “Arad— Zerind” represents a complex set of possible routes,
detours, rest stops, etc.

for guaranteed realizabilityyny real state “in Arad” must get to
somereal state “in Zerind”

(abstract) solution = set of real paths that are solutiorthenreal
world

UNSW ©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search

Example Problems

Toy problems: concise exact description

Real world problems: don’t have a single agreed desription

UNSW ©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search

The 8-Puzzle
4 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8
Start State Goal State
states: ?

operators: ?
goal test: ?
path cost: ?

UNSW ©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search

The 8-Puzzle
4 2 4 1 2 3
5 6 4 5 6
8 3 1 I 8
Start State Goal State

states: integer locations of tiles (ignore intermediatsifpms)
operators: move blank left, right, up, down (ignore unjamgretc.)
goal test: = goal state (given)

path cost: 1 per move

UNSW ©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search

Robotic Assembly

|
Y

R/\“R

states: ?
operators: ?
goal test: ?

path cost: ?

UNSW ©Alan Blair, 2013-18

COMP9414/9814/3411 18s1

Rubik’s Cube

states: ?
operators: ?
goal test: ?

path cost: ?

UNSW

Search

©Alan Blair, 2013-18

10

COMP9414/9814/3411 18s1 Search

Path Search Algorithms

Search Finding state-action sequences that lead to desiraligsstaearch
Is a function

solution searclitask)

Basic idea:
Offline, simulated exploration of state space by generatumessors of
already-explored states (i.eeXpanding them)

UNSW ©Alan Blair, 2013-18

11

COMP9414/9814/3411 18s1 Search 12

Generating Action Sequences

UNSW

Start with a priority queue consisting of just the inistéte.

Choose a state from the queue of states which have beeratgzhe
but not yet expanded.

Check if the selected state is a Goal State. If it is, STORI(®N has
been found).

Otherwise, expand the chosen state by applying all peds#ansitions
and generating all its children.

If the queue is empty, Stop (no solution exists).

. Otherwise, go back to Step 2.

©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search

General Search Example

O TP
RHRY
CIRRERFERL —
XL

N RS?

G @

UNSW ©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search

Search Tree

UNSW

Search treesuperimposed over the state space.
Root: search node corresponding to the initial state.

Leaf nodes:correspond to states that have no successors in the tree
because they were not expanded or generated no new nodes.

state space isotthe same as search tree
there are 20 states = 20 cities in the route finding example

but there are infinitely many paths!

©Alan Blair, 2013-18

14

COMP9414/9814/3411 18s1 Search

Data Structures for a Node

One possibility is to have modedata structure with five components:

1.
2
3
4.
5

UNSW

Corresponding state

. Parent node: the node which generated the current node.

. Operator that was applied to generate the current node.

Depth: number of nodes from the root to the current node.

. Path cost.

©Alan Blair, 2013-18

15

COMP9414/9814/3411 18s1 Search

States vs. Nodes

astateis (a representation of) a physical configuration
anodeis a data structure constituting part of a search tree
iIncludesparent children depth path cosg(x)

Statedo not have parents, children, depth, or path cost!

parent, action
A

State || 5 ||| 4 Node depth =6
g==6
6 Ill 11|l s
= ale
71 3 |l 2 st

Note: two different nodes can contain the same state.

UNSW ©Alan Blair, 2013-18

16

COMP9414/9814/3411 18s1 Search

Data Structures for Search Trees

Frontier:collection of nodes waiting to be expanded
It can be implemented as a priority queue with the followipg@tions:

UNSW

MAKE-QUEUE(ITEMS) creates queue with given items.
BooleanEMPTY(QUEUE) returnsTRUE if no items in queue.

REMOVE-FRONT(QUEUE) removes the item at the front of the queue
and returns it.

QUEUEING-FUNCTION(ITEMS, QUEUE) Inserts new items into the
gueue.

©Alan Blair, 2013-18

17

COMP9414/9814/3411 18s1 Search

Search Strategies

A strategy Is defined by picking therder of node expansion

Strategies are evaluated along the following dimensions:
completeness does it always find a solution if one exists?
time complexity— number of nodes generated/expanded
space complexity maximum number of nodes in memory

optimality — does it always find a least-cost solution?

Time and space complexity are measured in terms of
b — maximum branching factor of the search tree

d — depth of the least-cost solution

m— maximum depth of the state space (mayd)e

UNSW ©Alan Blair, 2013-18

18

COMP9414/9814/3411 18s1 Search

How Fast and How Much Memory ?

How to compare algorithms ? Two approaches:

1. Benchmarking:run both algorithms on a computer and measure
speed

2. Analysis of algorithmsmathematical analysis of the algorithm

UNSW ©Alan Blair, 2013-18

19

COMP9414/9814/3411 18s1 Search

Benchmarking

Run two algorithms on a computer and measure speed.
Depends on implementation, compiler, computer, data, ontw.
Measuring time

Processor cycles

Counting operations

Statistical comparison, confidence intervals

UNSW ©Alan Blair, 2013-18

20

COMP9414/9814/3411 18s1 Search 21

Analysis of Algorithms

T(n) is O(f(n)) meansing,k: ¥Vn > ng T(n) <kf(n)
n=input size
T(n) = total number of step of the algorithm

Independent of the implementation, compiler, ...

Asymptotic analysis: For large an O(n) algorithm is better than an
O(n?) algorithm.

O() abstracts over constant factors
e.g. T(100 n+ 1000) is better than Ti€ + 1) only forn > 110.

O() notation is a good compromise between precision and ease of
analysis.

UNSW ©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 22

Uninformed search strategies

Uninformed (or “blind”) search strategies use only the information
available in the problem definition (can only distinguishaalgfrom a
non-goal state):

Breadth First Search
Uniform Cost Search
Depth First Search
Depth Limited Search

Iterative Deepening Search

Strategies are distinguished by the order in which the nackeexpanded.

UNSW ©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search

Informed search strategies

Informed(or “heuristi¢) search strategies use task-specific knowledge.

Example of task-specific knowledge: distance betweensatrethe
map.

Informed search is more efficient than Uninformed search.

Uninformed search systematically generates new stateteatsthem
against the goal.

UNSW ©Alan Blair, 2013-18

23

COMP9414/9814/3411 18s1 Search 24

Breadth-First Search

UNSW

All nodes are expanded at a given depth in the tree before @y
at the next level are expanded

Expand root first, then all nodes generated by root, then édles
generated by those nodes, etc.

Expand shallowest unexpanded node

Implementation QUEUEING-FUNCTION = put newly generated
successors at end of queue

Very systematic

Finds the shallowest goal first

©Alan Blair, 2013-18

25

Search

COMP9414/9814/3411 18s1

Breadth-First Search

Rimnicu
> D

©Alan Blair, 2013-18

UNSW

COMP9414/9814/3411 18s1 Search 26

Properties of Breadth-First Search

Complete?Yes (if b is finite the shallowest goal is at a fixed depith
and will be found before any deeper nodes are generated)

Time: 1+ b+ b2+ b3+ ...+ bd = 521 — o(b?)

Space:0(bY) (keeps every node in memory; generate all nodes up to
level d)

Optimal?Yes, but only if all actions have the same cost

Spacds the big problem for Breadth-First Search; it grosygonentially
with depth!

UNSW ©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search

Romania with step costs in km

Breadth First Search assumes that all steps have equal cost.

[] Oradea

Dobreta []
 Craiova Eforie

However, we are often looking for the path with the shortettltdistance
rather than the number of steps.

UNSW ©Alan Blair, 2013-18

27

COMP9414/9814/3411 18s1 Search 28

Uniform-Cost Search

UNSW

Expand root first, then expand least-cost unexpanded node

Implementation QUEUEINGFUNCTION = insert nodes in order of
Increasing path cost.

Reduces to Breadth First Search when all actions have sashe co

Finds the cheapest goal provided path cost is monotonicealigasing
along each path (i.e. no negative-cost steps)

©Alan Blair, 2013-18

29

111

118

©Alan Blair, 2013-18

Search

COMP9414/9814/3411 18s1

Uniform-Cost Search

118

140

75

71

75

Oradea

UNSW

COMP9414/9814/3411 18s1 Search 30

Properties of Uniform-Cost Search

UNSW

Complete?Yes, ifbis finite and step cost e withe >0

Time: O(b/®/¢) whereC* = cost of optimal solution, and assume
every action costs at least

Space:0(bl€ /el) (bl€ /el = bY if all step costs are equal)

Optimal?Yes.

©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search

Depth First Search

Expands one of the nodes at the deepest level of the tree

Implementation:

QUEUEINGFUNCTION = insert newly generated states at et
of the queue (thus making itsachk

can alternatively be implemented bgcursivefunction calls

UNSW ©Alan Blair, 2013-18

31

COMP9414/9814/3411 18s1

Depth First Search

UNSW

KR
L35%
s‘tgﬁg
SRR
ARy
RS
O 2% %%
R

Search

©Alan Blair, 2013-18

32

COMP9414/9814/3411 18s1 Search

Properties of Depth First Search

UNSW

Complete?No! fails in infinite-depth spaces, spaces with loops;
modify to avoid repeated states along pathcomplete in finite
spaces

Time: O(b™) (terrible if mis much larger thad but if solutions are
dense, may be much faster than breadth-first)

Space:O(bm), i.e. linear space!

Optimal?No, can find suboptimal solutions first.

©Alan Blair, 2013-18

33

COMP9414/9814/3411 18s1 Search

Depth Limited Search

Expands nodes like Depth First Search but imposes a cutadtiien
maximum depth of path.

Complete?Yes (no infinite loops anymore)
Time: O(b%), wherek is the depth limit
SpaceO(bk), i.e. linear space similar to DFS

Optimal?No, can find suboptimal solutions first

Problem: How to pick a good limit ?

UNSW ©Alan Blair, 2013-18

34

COMP9414/9814/3411 18s1 Search

35

Iterative Deepening Search

UNSW

Tries to combine the benefits of depth-first (low memory) and

breadth-first (optimal and complete) by doing a series otldep
limited searches to depth 1, 2, 3, etc.

Early states will be expanded multiple times, but that migttmatter
too much because most of the nodes are near the leaves.

©Alan Blair, 2013-18

COMP9414/9814/3411 18s1

Iterative Deepening Search

Search

UNSW

©Alan Blair, 2013-18

36

COMP9414/9814/3411 18s1 Search

Iterative Deepening Search

’ ’ SR
CARRRERL, XA RESK XIRRERK, KIRRIIRK . KA R XA KA
IR TRREIRN TRERIRK TBREIRK SRS SRR
LRRINS P AT AR HOBRPGI . ALTIOR N U t50SH
SREEEL N EIKLELw IOKKEER ¢ TRSKEER ¢ TRELLUEL TR
UNSW

©Alan Blair, 2013-18

37

COMP9414/9814/3411 18s1 Search 38

Properties of Iterative Deepening Search

Complete?¥es.

Time: nodes at the bottom level are expanded once, nodes at the next
level twice, and so on:

depth-limited: 1+-b!+b%+ ...+ b1 4 b4 = O(bY)
iterative deepening:

(d+1)b° +dot + (d—1)b*+...+2- b1+ 1-b% = O(b%)

(We assumé > 1)

UNSW ©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 39

Properties of Iterative Deepening Search

Complete?Yes.

Time: nodes at the bottom level are expanded once, nodes at the next
level twice, and so on:

depth-limited: 1+ b +b?+ ...+ b9 1+ bd = O(b%)
iterative deepening:
(d+21)b° +dbt+ (d—1)b?+ ... +2-b9" 1+ 1. 0% = O(bY)
example b=10,d=5:
depth-limited: 1 + 10 + 100 +,D00 + 10000 + 100000
=111,111
iterative-deepening: 6 + 50 + 400 +()0 + 20000 + 100000
= 123,456
only about 11% more nodes (for b = 10).

UNSW ©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search

Properties of Iterative Deepening Search

Complete?yes
Time: O(bY)
Space:O(bd)

Optimal?Yes, if step costs are identical.

UNSW ©Alan Blair, 2013-18

40

COMP9414/9814/3411 18s1 Search

Bidirectional Search

UNSW ©Alan Blair, 2013-18

41

COMP9414/9814/3411 18s1 Search

Bidirectional Search

UNSW

Idea: Search both forward from the initial state and backivivom
the goal, and stop when the two searches meet in the middle.

We need an efficient way to check if a new node already appears |
the other half of the search. The complexity analysis assume can
be done in constant time, using a Hash Table.

Assume branching factor ki in both directions and that there is a
solution at depth =l. Then bidirectional search finds a solution in
O(2b%2) = O(b%/?) time steps.

©Alan Blair, 2013-18

42

COMP9414/9814/3411 18s1 Search 43

Bidirectional Search — Issues

UNSW

searching backwards means generating predecessonsgtestn the
goal, which may be difficult

there can be several goals — e.g. chekmate positions in chess

space complexityO(b?%/?) because the nodes of at least one half must
be kept in memory.

©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search

Summary

UNSW

problem formulation usually requires abstracting away-weald
details to define a state space that can feasibly be explored.

variety of Uninformed search strategies

lterative Deepening Search uses only linear space and ndt mare
time than other Uninformed algorithms.

©Alan Blair, 2013-18

44

COMP9414/9814/3411 18s1

Search

Complexity Results for Uninformed Search

Criterion
Time
Space
Complete?

Optimal ?

Breadth-
First

O(b%)
O(b%)
Yest
Yes’

Uniform-
Cost

O(blC /el
O(blC /el
Yes

Yes

Depth-
First

O(b™)
O(bm)
No
No

Depth-
Limited
O(b¥)
O(bk)
No
No

lterative
Deepening

O(b%)
O(bd)
Yesh
Yes®

b = branching factord = depth of the shallowest solution,

m = maximum depth of the search trdées depth limit.

1 = complete ifb is finite.

2 = complete ifo is finite and step costs € with € > 0.
3 = optimal if actions all have the same cost.

UNSW

©Alan Blair, 2013-18

45

