
COMP9414/9814/3411: Artificial Intelligence

Week 3: Path Search

Russell & Norvig, Chapter 3.

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 1

Motivation

� ReactiveandModel-BasedAgents choose their actions based only on

what they currently perceive, or have perceived in the past.

� a Planning Agentcan useSearchtechniques toplan several steps

ahead in order to achieve its goal(s).

� two classes of search strategies:

◮ Uninformedsearch strategies can only distinguish goal states from

non-goal states

◮ Informedsearch strategies useheuristicsto try to get “closer” to

the goal

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 2

Romania Street Map

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 3

Example: Romania

On touring holiday in Romania; currently in Arad.

Flight leaves tomorrow from Bucharest; non-refundable ticket.

� Step 1Formulate goal: be in Bucharest on time

� Step 2Specify task:

◮ states: various cities

◮ operators or actions (= transitions between states): drive between

cities

� Step 3Find solution (= action sequences): sequence of cities, e.g.

Arad, Sibiu, Fagaras, Bucharest

� Step 4Execute: drive through all the cities given by the solution.

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 4

Single-State Task Specification

A taskis specified by states and actions:

� state space e.g. other cities

� initial state e.g. “at Arad”

� actionsor operators(or successor functionS(x))

e.g. Arad→ Zerind Arad→ Sibiu etc.

� goal test, check if a state is goal state

In this case, there is only one goal specified (“at Bucharest”)

� path coste.g. sum of distances, number of actions etc.

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 5

Choosing States and Actions

� Real world is absurdly complex

⇒ state space must beabstractedfor problem solving

� (abstract) state = set of real states

� (abstract) action = complex combination of real actions

◮ e.g. “Arad→ Zerind” represents a complex set of possible routes,

detours, rest stops, etc.

◮ for guaranteed realizability,anyreal state “in Arad” must get to

somereal state “in Zerind”

� (abstract) solution = set of real paths that are solutions inthe real

world

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 6

Example Problems

� Toy problems: concise exact description

� Real world problems: don’t have a single agreed desription

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 7

The 8-Puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

� states: ?

� operators: ?

� goal test: ?

� path cost: ?

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 8

The 8-Puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

� states: integer locations of tiles (ignore intermediate positions)

� operators: move blank left, right, up, down (ignore unjamming etc.)

� goal test: = goal state (given)

� path cost: 1 per move

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 9

Robotic Assembly

R

RR
P

R R

� states: ?

� operators: ?

� goal test: ?

� path cost: ?

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 10

Rubik’s Cube

� states: ?

� operators: ?

� goal test: ?

� path cost: ?

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 11

Path Search Algorithms

Search: Finding state-action sequences that lead to desirable states. Search

is a function

solution search(task)

Basic idea:

Offline, simulated exploration of state space by generatingsuccessors of

already-explored states (i.e. “expanding” them)

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 12

Generating Action Sequences

1. Start with a priority queue consisting of just the initialstate.

2. Choose a state from the queue of states which have been generated

but not yet expanded.

3. Check if the selected state is a Goal State. If it is, STOP (solution has

been found).

4. Otherwise, expand the chosen state by applying all possible transitions

and generating all its children.

5. If the queue is empty, Stop (no solution exists).

6. Otherwise, go back to Step 2.

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 13

General Search Example

Sibiu Bucharest

Arad Oradea Rimnicu
 VilceaFagaras

Zerind Sibiu Timisoara

Arad

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 14

Search Tree

� Search tree:superimposed over the state space.

� Root: search node corresponding to the initial state.

� Leaf nodes:correspond to states that have no successors in the tree

because they were not expanded or generated no new nodes.

� state space isnot the same as search tree

◮ there are 20 states = 20 cities in the route finding example

◮ but there are infinitely many paths!

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 15

Data Structures for a Node

One possibility is to have anodedata structure with five components:

1. Corresponding state

2. Parent node: the node which generated the current node.

3. Operator that was applied to generate the current node.

4. Depth: number of nodes from the root to the current node.

5. Path cost.

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 16

States vs. Nodes

astateis (a representation of) a physical configuration
anodeis a data structure constituting part of a search tree
includesparent, children, depth, path costg(x)
Statesdo not have parents, children, depth, or path cost!

1

23

45

6

7

81

23

45

6

7

8

State Node depth = 6

g = 6

state

parent, action

Note: two different nodes can contain the same state.

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 17

Data Structures for Search Trees

Frontier:collection of nodes waiting to be expanded

It can be implemented as a priority queue with the following operations:

� MAKE-QUEUE(ITEMS) creates queue with given items.

� BooleanEMPTY(QUEUE) returnsTRUE if no items in queue.

� REMOVE-FRONT(QUEUE) removes the item at the front of the queue

and returns it.

� QUEUEING-FUNCTION(ITEMS, QUEUE) inserts new items into the

queue.

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 18

Search Strategies

� A strategy is defined by picking theorder of node expansion

� Strategies are evaluated along the following dimensions:

◮ completeness– does it always find a solution if one exists?

◮ time complexity– number of nodes generated/expanded

◮ space complexity– maximum number of nodes in memory

◮ optimality– does it always find a least-cost solution?

� Time and space complexity are measured in terms of

◮ b – maximum branching factor of the search tree

◮ d – depth of the least-cost solution

◮ m – maximum depth of the state space (may be∞)

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 19

How Fast and How Much Memory ?

How to compare algorithms ? Two approaches:

1. Benchmarking:run both algorithms on a computer and measure

speed

2. Analysis of algorithms:mathematical analysis of the algorithm

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 20

Benchmarking

� Run two algorithms on a computer and measure speed.

� Depends on implementation, compiler, computer, data, network ...

� Measuring time

� Processor cycles

� Counting operations

� Statistical comparison, confidence intervals

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 21

Analysis of Algorithms

� T(n) isO(f (n)) means∃n0,k : ∀n > n0 T(n) ≤ k f (n)

◮ n = input size

◮ T(n) = total number of step of the algorithm

� Independent of the implementation, compiler, ...

� Asymptotic analysis: For largen, anO(n) algorithm is better than an

O(n2) algorithm.

� O() abstracts over constant factors

◮ e.g. T(100·n+1000) is better than T(n2+1) only for n > 110.

� O() notation is a good compromise between precision and ease of

analysis.

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 22

Uninformed search strategies

Uninformed(or “blind”) search strategies use only the information

available in the problem definition (can only distinguish a goal from a

non-goal state):

� Breadth First Search

� Uniform Cost Search

� Depth First Search

� Depth Limited Search

� Iterative Deepening Search

Strategies are distinguished by the order in which the nodesare expanded.

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 23

Informed search strategies

Informed(or “heuristic”) search strategies use task-specific knowledge.

� Example of task-specific knowledge: distance between cities on the

map.

� Informed search is more efficient than Uninformed search.

� Uninformed search systematically generates new states andtests them

against the goal.

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 24

Breadth-First Search

� All nodes are expanded at a given depth in the tree before any nodes

at the next level are expanded

� Expand root first, then all nodes generated by root, then All nodes

generated by those nodes, etc.

� Expand shallowest unexpanded node

� implementation: QUEUEING-FUNCTION = put newly generated

successors at end of queue

� Very systematic

� Finds the shallowest goal first

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 25

Breadth-First Search

Arad Oradea Rimnicu
 VilceaFagaras Arad LugojArad Oradea

Zerind Sibiu Timisoara

Arad

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 26

Properties of Breadth-First Search

� Complete?Yes (if b is finite the shallowest goal is at a fixed depthd

and will be found before any deeper nodes are generated)

� Time: 1+b+b2+b3+ . . .+bd = bd+1−1
b−1 = O(bd)

� Space:O(bd) (keeps every node in memory; generate all nodes up to

level d)

� Optimal?Yes, but only if all actions have the same cost

Spaceis the big problem for Breadth-First Search; it growsexponentially

with depth!

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 27

Romania with step costs in km

Breadth First Search assumes that all steps have equal cost.

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

However, we are often looking for the path with the shortest total distance

rather than the number of steps.

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 28

Uniform-Cost Search

� Expand root first, then expand least-cost unexpanded node

� Implementation: QUEUEINGFUNCTION = insert nodes in order of

increasing path cost.

� Reduces to Breadth First Search when all actions have same cost

� Finds the cheapest goal provided path cost is monotonicallyincreasing

along each path (i.e. no negative-cost steps)

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 29

Uniform-Cost Search

Arad Lugoj

118 111

Arad Oradea

75 71

Zerind Sibiu Timisoara

75 140 118

Arad

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 30

Properties of Uniform-Cost Search

� Complete?Yes, if b is finite and step cost≥ ε with ε > 0

� Time: O(b⌈C
∗/ε⌉) whereC∗ = cost of optimal solution, and assume

every action costs at leastε

� Space:O(b⌈C
∗/ε⌉) (b⌈C

∗/ε⌉ = bd if all step costs are equal)

� Optimal?Yes.

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 31

Depth First Search

� Expands one of the nodes at the deepest level of the tree

� Implementation:

◮ QUEUEINGFUNCTION = insert newly generated states at thefront

of the queue (thus making it astack)

◮ can alternatively be implemented byrecursivefunction calls

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 32

Depth First Search

Zerind Sibiu Timisoara

Arad Oradea

Zerind Sibiu Timisoara

Arad

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 33

Properties of Depth First Search

� Complete?No! fails in infinite-depth spaces, spaces with loops;

modify to avoid repeated states along path⇒ complete in finite

spaces

� Time: O(bm) (terrible if m is much larger thand but if solutions are

dense, may be much faster than breadth-first)

� Space:O(bm), i.e. linear space!

� Optimal?No, can find suboptimal solutions first.

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 34

Depth Limited Search

Expands nodes like Depth First Search but imposes a cutoff onthe

maximum depth of path.

� Complete?Yes (no infinite loops anymore)

� Time: O(bk), wherek is the depth limit

� Space:O(bk), i.e. linear space similar to DFS

� Optimal?No, can find suboptimal solutions first

Problem: How to pick a good limit ?

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 35

Iterative Deepening Search

� Tries to combine the benefits of depth-first (low memory) and

breadth-first (optimal and complete) by doing a series of depth-

limited searches to depth 1, 2, 3, etc.

� Early states will be expanded multiple times, but that mightnot matter

too much because most of the nodes are near the leaves.

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 36

Iterative Deepening Search

Zerind Sibiu Timisoara

Arad

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 37

Iterative Deepening Search

Arad LugojArad Oradea Rimnicu
 VilceaFagarasArad Oradea

Zerind Sibiu Timisoara

Arad

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 38

Properties of Iterative Deepening Search

� Complete?Yes.

� Time: nodes at the bottom level are expanded once, nodes at the next

level twice, and so on:

◮ depth-limited: 1+b1+b2+ . . .+bd−1+bd = O(bd)

◮ iterative deepening:

(d +1)b0+db1+(d−1)b2+ . . .+2·bd−1+1·bd = O(bd)

(We assumeb > 1)

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 39

Properties of Iterative Deepening Search

� Complete?Yes.

� Time: nodes at the bottom level are expanded once, nodes at the next
level twice, and so on:

◮ depth-limited: 1+b1+b2+ . . .+bd−1+bd = O(bd)

◮ iterative deepening:
(d +1)b0+db1+(d−1)b2+ . . .+2·bd−1+1·bd = O(bd)

◮ example b = 10, d = 5 :

• depth-limited: 1 + 10 + 100 + 1,000 + 10,000 + 100,000
= 111,111

• iterative-deepening: 6 + 50 + 400 + 3,000 + 20,000 + 100,000
= 123,456

• only about 11% more nodes (for b = 10).

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 40

Properties of Iterative Deepening Search

� Complete?Yes

� Time: O(bd)

� Space:O(bd)

� Optimal?Yes, if step costs are identical.

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 41

Bidirectional Search

GoalStart

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 42

Bidirectional Search

� Idea: Search both forward from the initial state and backward from

the goal, and stop when the two searches meet in the middle.

� We need an efficient way to check if a new node already appears in

the other half of the search. The complexity analysis assumes this can

be done in constant time, using a Hash Table.

� Assume branching factor =b in both directions and that there is a

solution at depth =d. Then bidirectional search finds a solution in

O(2bd/2) = O(bd/2) time steps.

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 43

Bidirectional Search – Issues

� searching backwards means generating predecessors starting from the

goal, which may be difficult

� there can be several goals – e.g. chekmate positions in chess

� space complexity:O(bd/2) because the nodes of at least one half must

be kept in memory.

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 44

Summary

� problem formulation usually requires abstracting away real-world

details to define a state space that can feasibly be explored.

� variety of Uninformed search strategies

� Iterative Deepening Search uses only linear space and not much more

time than other Uninformed algorithms.

UNSW c©Alan Blair, 2013-18

COMP9414/9814/3411 18s1 Search 45

Complexity Results for Uninformed Search

Breadth- Uniform- Depth- Depth- Iterative

Criterion First Cost First Limited Deepening

Time O(bd) O(b⌈C
∗/ε⌉) O(bm) O(bk) O(bd)

Space O(bd) O(b⌈C
∗/ε⌉) O(bm) O(bk) O(bd)

Complete? Yes1 Yes2 No No Yes1

Optimal ? Yes3 Yes No No Yes3

b = branching factor,d = depth of the shallowest solution,
m = maximum depth of the search tree,k = depth limit.
1 = complete ifb is finite.
2 = complete ifb is finite and step costs≥ ε with ε > 0.
3 = optimal if actions all have the same cost.

UNSW c©Alan Blair, 2013-18

