
COMP9414/9814/3411: Artificial Intelligence

Week 3: Path Search

Russell & Norvig, Chapter 3.
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Motivation

� ReactiveandModel-BasedAgents choose their actions based only on

what they currently perceive, or have perceived in the past.

� a Planning Agentcan useSearchtechniques toplan several steps

ahead in order to achieve its goal(s).

� two classes of search strategies:

◮ Uninformedsearch strategies can only distinguish goal states from

non-goal states

◮ Informedsearch strategies useheuristicsto try to get “closer” to

the goal
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Romania Street Map

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Search 3

Example: Romania

On touring holiday in Romania; currently in Arad.

Flight leaves tomorrow from Bucharest; non-refundable ticket.

� Step 1Formulate goal: be in Bucharest on time

� Step 2Specify task:

◮ states: various cities

◮ operators or actions (= transitions between states): drive between

cities

� Step 3Find solution (= action sequences): sequence of cities, e.g.

Arad, Sibiu, Fagaras, Bucharest

� Step 4Execute: drive through all the cities given by the solution.
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Single-State Task Specification

A taskis specified by states and actions:

� state space e.g. other cities

� initial state e.g. “at Arad”

� actionsor operators(or successor functionS(x))

e.g. Arad→ Zerind Arad→ Sibiu etc.

� goal test, check if a state is goal state

In this case, there is only one goal specified (“at Bucharest”)

� path coste.g. sum of distances, number of actions etc.
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Choosing States and Actions

� Real world is absurdly complex

⇒ state space must beabstractedfor problem solving

� (abstract) state = set of real states

� (abstract) action = complex combination of real actions

◮ e.g. “Arad→ Zerind” represents a complex set of possible routes,

detours, rest stops, etc.

◮ for guaranteed realizability,anyreal state “in Arad” must get to

somereal state “in Zerind”

� (abstract) solution = set of real paths that are solutions inthe real

world
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Example Problems

� Toy problems: concise exact description

� Real world problems: don’t have a single agreed desription
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The 8-Puzzle
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� states: ?

� operators: ?

� goal test: ?

� path cost: ?
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The 8-Puzzle
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� states: integer locations of tiles (ignore intermediate positions)

� operators: move blank left, right, up, down (ignore unjamming etc.)

� goal test: = goal state (given)

� path cost: 1 per move
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Robotic Assembly

R

RR
P

R R

� states: ?

� operators: ?

� goal test: ?

� path cost: ?
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Rubik’s Cube

� states: ?

� operators: ?

� goal test: ?

� path cost: ?
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Path Search Algorithms

Search: Finding state-action sequences that lead to desirable states. Search

is a function

solution search(task)

Basic idea:

Offline, simulated exploration of state space by generatingsuccessors of

already-explored states (i.e. “expanding” them)
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Generating Action Sequences

1. Start with a priority queue consisting of just the initialstate.

2. Choose a state from the queue of states which have been generated

but not yet expanded.

3. Check if the selected state is a Goal State. If it is, STOP (solution has

been found).

4. Otherwise, expand the chosen state by applying all possible transitions

and generating all its children.

5. If the queue is empty, Stop (no solution exists).

6. Otherwise, go back to Step 2.
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General Search Example

Sibiu Bucharest

Arad Oradea Rimnicu
 VilceaFagaras

Zerind Sibiu Timisoara

Arad
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Search Tree

� Search tree:superimposed over the state space.

� Root: search node corresponding to the initial state.

� Leaf nodes:correspond to states that have no successors in the tree

because they were not expanded or generated no new nodes.

� state space isnot the same as search tree

◮ there are 20 states = 20 cities in the route finding example

◮ but there are infinitely many paths!
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Data Structures for a Node

One possibility is to have anodedata structure with five components:

1. Corresponding state

2. Parent node: the node which generated the current node.

3. Operator that was applied to generate the current node.

4. Depth: number of nodes from the root to the current node.

5. Path cost.
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States vs. Nodes

astateis (a representation of) a physical configuration
anodeis a data structure constituting part of a search tree
includesparent, children, depth, path costg(x)
Statesdo not have parents, children, depth, or path cost!
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State Node depth = 6

g = 6

state

parent, action

Note: two different nodes can contain the same state.
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Data Structures for Search Trees

Frontier:collection of nodes waiting to be expanded

It can be implemented as a priority queue with the following operations:

� MAKE-QUEUE(ITEMS) creates queue with given items.

� BooleanEMPTY(QUEUE) returnsTRUE if no items in queue.

� REMOVE-FRONT(QUEUE) removes the item at the front of the queue

and returns it.

� QUEUEING-FUNCTION(ITEMS, QUEUE) inserts new items into the

queue.
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Search Strategies

� A strategy is defined by picking theorder of node expansion

� Strategies are evaluated along the following dimensions:

◮ completeness– does it always find a solution if one exists?

◮ time complexity– number of nodes generated/expanded

◮ space complexity– maximum number of nodes in memory

◮ optimality– does it always find a least-cost solution?

� Time and space complexity are measured in terms of

◮ b – maximum branching factor of the search tree

◮ d – depth of the least-cost solution

◮ m – maximum depth of the state space (may be∞)
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How Fast and How Much Memory ?

How to compare algorithms ? Two approaches:

1. Benchmarking:run both algorithms on a computer and measure

speed

2. Analysis of algorithms:mathematical analysis of the algorithm
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Benchmarking

� Run two algorithms on a computer and measure speed.

� Depends on implementation, compiler, computer, data, network ...

� Measuring time

� Processor cycles

� Counting operations

� Statistical comparison, confidence intervals
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Analysis of Algorithms

� T(n) isO( f (n)) means∃n0,k : ∀n > n0 T(n) ≤ k f (n)

◮ n = input size

◮ T(n) = total number of step of the algorithm

� Independent of the implementation, compiler, ...

� Asymptotic analysis: For largen, anO(n) algorithm is better than an

O(n2) algorithm.

� O() abstracts over constant factors

◮ e.g. T(100·n+1000) is better than T(n2+1) only for n > 110.

� O() notation is a good compromise between precision and ease of

analysis.
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Uninformed search strategies

Uninformed(or “blind”) search strategies use only the information

available in the problem definition (can only distinguish a goal from a

non-goal state):

� Breadth First Search

� Uniform Cost Search

� Depth First Search

� Depth Limited Search

� Iterative Deepening Search

Strategies are distinguished by the order in which the nodesare expanded.
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Informed search strategies

Informed(or “heuristic”) search strategies use task-specific knowledge.

� Example of task-specific knowledge: distance between cities on the

map.

� Informed search is more efficient than Uninformed search.

� Uninformed search systematically generates new states andtests them

against the goal.
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Breadth-First Search

� All nodes are expanded at a given depth in the tree before any nodes

at the next level are expanded

� Expand root first, then all nodes generated by root, then All nodes

generated by those nodes, etc.

� Expand shallowest unexpanded node

� implementation: QUEUEING-FUNCTION = put newly generated

successors at end of queue

� Very systematic

� Finds the shallowest goal first
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Breadth-First Search

Arad Oradea Rimnicu
 VilceaFagaras Arad LugojArad Oradea

Zerind Sibiu Timisoara

Arad
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Properties of Breadth-First Search

� Complete?Yes (if b is finite the shallowest goal is at a fixed depthd

and will be found before any deeper nodes are generated)

� Time: 1+b+b2+b3+ . . .+bd = bd+1−1
b−1 = O(bd)

� Space:O(bd) (keeps every node in memory; generate all nodes up to

level d)

� Optimal?Yes, but only if all actions have the same cost

Spaceis the big problem for Breadth-First Search; it growsexponentially

with depth!

UNSW c©Alan Blair, 2013-18



COMP9414/9814/3411 18s1 Search 27

Romania with step costs in km

Breadth First Search assumes that all steps have equal cost.
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However, we are often looking for the path with the shortest total distance

rather than the number of steps.
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Uniform-Cost Search

� Expand root first, then expand least-cost unexpanded node

� Implementation: QUEUEINGFUNCTION = insert nodes in order of

increasing path cost.

� Reduces to Breadth First Search when all actions have same cost

� Finds the cheapest goal provided path cost is monotonicallyincreasing

along each path (i.e. no negative-cost steps)
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Uniform-Cost Search

Arad Lugoj

118 111

Arad Oradea

75 71

Zerind Sibiu Timisoara

75 140 118

Arad
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Properties of Uniform-Cost Search

� Complete?Yes, if b is finite and step cost≥ ε with ε > 0

� Time: O(b⌈C
∗/ε⌉) whereC∗ = cost of optimal solution, and assume

every action costs at leastε

� Space:O(b⌈C
∗/ε⌉) (b⌈C

∗/ε⌉ = bd if all step costs are equal)

� Optimal?Yes.
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Depth First Search

� Expands one of the nodes at the deepest level of the tree

� Implementation:

◮ QUEUEINGFUNCTION = insert newly generated states at thefront

of the queue (thus making it astack)

◮ can alternatively be implemented byrecursivefunction calls
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Depth First Search

Zerind Sibiu Timisoara

Arad Oradea

Zerind Sibiu Timisoara

Arad
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Properties of Depth First Search

� Complete?No! fails in infinite-depth spaces, spaces with loops;

modify to avoid repeated states along path⇒ complete in finite

spaces

� Time: O(bm) (terrible if m is much larger thand but if solutions are

dense, may be much faster than breadth-first)

� Space:O(bm), i.e. linear space!

� Optimal?No, can find suboptimal solutions first.
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Depth Limited Search

Expands nodes like Depth First Search but imposes a cutoff onthe

maximum depth of path.

� Complete?Yes (no infinite loops anymore)

� Time: O(bk), wherek is the depth limit

� Space:O(bk), i.e. linear space similar to DFS

� Optimal?No, can find suboptimal solutions first

Problem: How to pick a good limit ?
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Iterative Deepening Search

� Tries to combine the benefits of depth-first (low memory) and

breadth-first (optimal and complete) by doing a series of depth-

limited searches to depth 1, 2, 3, etc.

� Early states will be expanded multiple times, but that mightnot matter

too much because most of the nodes are near the leaves.
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Iterative Deepening Search

Zerind Sibiu Timisoara

Arad
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Iterative Deepening Search

Arad LugojArad Oradea Rimnicu
 VilceaFagarasArad Oradea

Zerind Sibiu Timisoara

Arad
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Properties of Iterative Deepening Search

� Complete?Yes.

� Time: nodes at the bottom level are expanded once, nodes at the next

level twice, and so on:

◮ depth-limited: 1+b1+b2+ . . .+bd−1+bd = O(bd)

◮ iterative deepening:

(d +1)b0+db1+(d−1)b2+ . . .+2·bd−1+1·bd = O(bd)

(We assumeb > 1)
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Properties of Iterative Deepening Search

� Complete?Yes.

� Time: nodes at the bottom level are expanded once, nodes at the next
level twice, and so on:

◮ depth-limited: 1+b1+b2+ . . .+bd−1+bd = O(bd)

◮ iterative deepening:
(d +1)b0+db1+(d−1)b2+ . . .+2·bd−1+1·bd = O(bd)

◮ example b = 10, d = 5 :

• depth-limited: 1 + 10 + 100 + 1,000 + 10,000 + 100,000
= 111,111

• iterative-deepening: 6 + 50 + 400 + 3,000 + 20,000 + 100,000
= 123,456

• only about 11% more nodes (for b = 10).
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Properties of Iterative Deepening Search

� Complete?Yes

� Time: O(bd)

� Space:O(bd)

� Optimal?Yes, if step costs are identical.
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Bidirectional Search

GoalStart
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Bidirectional Search

� Idea: Search both forward from the initial state and backward from

the goal, and stop when the two searches meet in the middle.

� We need an efficient way to check if a new node already appears in

the other half of the search. The complexity analysis assumes this can

be done in constant time, using a Hash Table.

� Assume branching factor =b in both directions and that there is a

solution at depth =d. Then bidirectional search finds a solution in

O(2bd/2) = O(bd/2) time steps.
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Bidirectional Search – Issues

� searching backwards means generating predecessors starting from the

goal, which may be difficult

� there can be several goals – e.g. chekmate positions in chess

� space complexity:O(bd/2) because the nodes of at least one half must

be kept in memory.
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Summary

� problem formulation usually requires abstracting away real-world

details to define a state space that can feasibly be explored.

� variety of Uninformed search strategies

� Iterative Deepening Search uses only linear space and not much more

time than other Uninformed algorithms.
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Complexity Results for Uninformed Search

Breadth- Uniform- Depth- Depth- Iterative

Criterion First Cost First Limited Deepening

Time O(bd) O(b⌈C
∗/ε⌉) O(bm) O(bk) O(bd)

Space O(bd) O(b⌈C
∗/ε⌉) O(bm) O(bk) O(bd)

Complete? Yes1 Yes2 No No Yes1

Optimal ? Yes3 Yes No No Yes3

b = branching factor,d = depth of the shallowest solution,
m = maximum depth of the search tree,k = depth limit.
1 = complete ifb is finite.
2 = complete ifb is finite and step costs≥ ε with ε > 0.
3 = optimal if actions all have the same cost.
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