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Extension 10. Deep Learning
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Image Processing Tasks
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image classification
object detection
object segmentation
style transfer
generating images

generating art

Deep Learning
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Learning Face Direction

left strt rght up Learned Weights
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Typical input images
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Deep Learning

Limitations of Two-Layer Neural Networks

Some functions cannot be learned with a 2-layer sigmoidal network.

For example, this Twin Spirals problem cannot be learned with a 2-layer

network, but it can be learned using a 3-layer network if we include

shortcut connections between non-consecutive layers.
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MNIST Handwritten Digit Dataset
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black and white, resolution 28 x 28

60,000 images

10 classes (0,1,2,3,4,5,6,7.8.,9)
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CIFAR Image Dataset

airplane automobile

bird
rse

color, resolution 32 x 32
50,000 images
10 classes
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ImageNet LSGVRC Dataset

color, resolution 227 x 227

1.2 million images
1000 classes
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Vanishing / Exploding Gradients

Training by backpropagation in networks with many layers is difficult.

When the weights are small, the differentials become smaller and smaller
as we backpropagate through the layers, and end up having no effect.

When the weights are large, the activations in the higher layers will
saturate to extreme values. As a result, the gradients at those layers will
become very small, and will not be propagated to the earlier layers.

When the weights have intermediate values, the differentials will
sometimes get multiplied many times is places where the transfer function
1s steep, causing them to blow up to large values.
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Deep Learning

Activation Functions (6.3)
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Hyperbolic Tangent

Rectified Linear Unit (ReLLU)

Scaled Exponential Linear Unit (SELU)
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Hubel and Weisel — Visual Cortex
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cells in the visual cortex respond to lines at different angles

cells in V2 respond to more sophisticated visual features
Convolutional Neural Networks are inspired by this neuroanatomy

CNN’s can now be simulated with massive parallelism, using GPU’s
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Convolutional Networks
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Suppose we want to classify an image as a bird, sunset, dog, cat, etc.

If we can identify features such as feather, eye, or beak which provide
useful information in one part of the image, then those features are likely
to also be relevant in another part of the image.

We can exploit this regularity by using a convolution layer which applies
the same weights to different parts of the image.
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Convolutional Neural Networks
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The same weights are applied to the next M x N block of inputs, to
compute the next hidden unit in the convolution layer (‘““‘weight sharing™).
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Convolutional Filters

First Layer Second Layer
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Third Layer
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LeNet trained on MNIST

C3: 1. maps 16&@10x10
C1: feature maps S4: 1. maps 16@5x5
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| | Ful connection | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

The 5 x 5 window of the first convolution layer extracts from the original
32 x 32 image a 28 x 28 array of features. Subsampling then halves this
size to 14 x 14. The second Convolution layer uses another 5 X 5 window
to extract a 10 x 10 array of features, which the second subsampling layer
reduces to 5 x 5. These activations then pass through two fully connected
layers into the 10 output units corresponding to the digits 0’ to ’9’.
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ImageNet Architectures
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LeNet, 5 layers (1998)
AlexNet, 8 layers (2012)
VGG, 19 layers (2014)
GoogleNet, 22 layers (2014)
ResNets, 152 layers (2015)
DenseNets, 160 layers (2017)

Deep Learning
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AlexNet Details
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Deep Learning
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650K neurons
630M connections

60M parameters
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more parameters that images — danger of overfitting
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Enhancements

Rectified Linear Units (ReLUs)

overlapping pooling (width = 3, stride = 2)

stochastic gradient descent with momentum and weight decay
data augmentation to reduce overfitting

50% dropout in the fully connected layers
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Deep Learning

Dropout (7.12)
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(b) After applying dropout.

(a) Standard Neural Net

Nodes are randomly chosen to not be used, with some fixed probability

(usually, one half).
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Residual Networks

xl X

weight layer weight layer
anytwo
stacked layers l relu F(X) l relu identity
weight layer weight layer X

lrelu
H(x) Hx)=F(x)+x

Idea: Take any two consecutive stacked layers in a deep network and add a
“skip” connection which bipasses these layers and is added to their output.
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Dense Networks
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Recently, good results have been achieved using networks with densely

Deep Learning
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connected blocks, within which each layer is connected by shortcut

connections to all the preceding layers.
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Neural Style Transfer
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Deep Learning
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Neural Style Transfer
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Deep Learning
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Object Detection
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Processing Temporal Sequences

There are many tasks which require a sequence of inputs to be processed
rather than a single input.

speech recognition

time series prediction
machine translation
handwriting recognition

image captioning

How can neural network models be adapted for these tasks?
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Simple Recurrent Network (Elman, 1990)
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at each time step, hidden layer activations are copied to “context” layer
hidden layer receives connections from input and context layers

the inputs are fed one at a time to the network, it uses the context layer
to “remember” whatever information is required for it to produce the

correct output
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Back Propagation Through Time

UNSW
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we can “unroll” a recurrent architecture into an equivalent feedforward
architecture, with shared weights
applying backpropagation to the unrolled architecture is reffered to as
“backpropagation through time”

we can backpropagate just one timestep, or a fixed number of
timesteps, or all the way back to beginning of the sequence
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Deep Learning

Oscillating Solution for 4"b"

HU2 Activation
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Hidden Unit Dynamics for 4"b"¢"
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SRN with 3 hidden units can learn to predict a”"b"c" by counting up and
down simultaneously in different directions, thus producing a star shape.
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Long Range Dependencies
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Simple Recurrent Networks (SRNs) can learn medium-range

dependencies but have difficulty learning long range dependencies

Long Short Term Memory (LSTM) and Gated Recurrent Units (GRU)
can learn long range dependencies better than SRN
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Long Short Term Memory
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LSTM - context layer 1s modulated by three gating mechanismes:
forget gate, input gate and output gate.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Statistical Language Processing

Synonyms for “elegant”

stylish, graceful, tasteful, discerning, refined, sophisticated,
dignified, cultivated, distinguished, classic, smart, fashionable,
modish, decorous, beautiful, artistic, aesthetic, lovely; charming,
polished, suave, urbane, cultured, dashing, debonair; luxurious,

sumptuous, opulent, grand, plush, high-class, exquisite

Synonyms, antonyms and taxonomy require human effort, may be
incomplete and require discrete choices. Nuances are lost. Words like
“king”, “queen” can be similar in some attributes but opposite in others.

9

Could we instead extract some statistical properties automatically, without

human involvement?
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word2vec 1-Word Context Model

Input layer Hidden layer Output layer
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The k™ row v, of W is a representation of word k.
The j™ column V;- of W’ is an (alternative) representation of word j.

If the (1-hot) input is k, the linear sum at each output will be u; = V’J-TVk
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Linguistic Regularities

King + Woman - Man ~ Queen

More generally,
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d = argmax,
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Capital Cities

Country and Capital Vectors Projected by PCA
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Word Relationships

Deep Learning

Relationship

Example 1

Example 2

Example 3

France - Paris
big - bigger
Miami - Florida
Einstein - scientist
Sarkozy - France
copper - Cu
Berlusconi - Silvio
Microsoft - Windows
Microsoft - Ballmer
Japan - sushi

Italy: Rome
small: larger
Baltimore: Maryland
Messi: midfielder
Berlusconi: Italy
zinc: Zn
Sarkozy: Nicolas
Google: Android
Google: Yahoo
Germany: bratwurst

Japan: Tokyo
cold: colder
Dallas: Texas
Mozart: violinist
Merkel: Germany
gold: Au
Putin: Medvedev
IBM: Linux
IBM: McNealy
France: tapas

Florida: Tallahassee
quick: quicker
Kona: Hawaii
Picasso: painter
Koizumi: Japan

uranium: plutonium
Obama: Barack
Apple: 1Phone

Apple: Jobs
USA: pizza
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Google Neural Machine Translation
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Captioning, with Attention

f=(a, man, is, jumping, into, a, lake, .)

Word
Ssample

Recurrent

State

Attention

weight

Attention
Mechanism

Adinotation

Vectors

h,

Convolutional Neural Network

UNSW

(© Alan Blair, 2017-8

37



COMP3411/9414/9814 18s1 Deep Learning 38

Reinforcement Learning Framework

UNSW

An agent interacts with its environment.
There 1s a set § of states and a set A4 of actions.

At each time step 7, the agent is in some state s;.
It must choose an action a;, whereupon it goes into state
s;+1 = O(s¢,a;) and receives reward r; = R (s;,a;)

Agent has a policy t: S — A. We aim to find an optimal policy ®*
which maximizes the cumulative reward.

In general, 0, R and 7 can be multi-valued, with a random element,
in which case we write them as probability distributions

O(sir1=s8|8r,ar) R(ry=rl|ssar) w(a, =als;)
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Q-Learning

For a deterministic environment, T, Q" and V* are related by

n"(s) = argmax, Q" (s,a)
Q" (s,a) = R(s,a) +YV*(d(s,a))
- V*i(s) = max Q" (s,b)

0" (5,a) = R(5,a) +Ymax 0" (8(s,4). )
This allows us to iteratively approximate Q by

O(ss,a;) <1y +Ym]§1X O(st+1,b)
If the environment is stochastic, we instead write

O(ss,ar) < Q(sr,a;) +M[r +'lef‘X O(st4+1,b) — O (s, a)]
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Deep Q-Learning for Atari Games

end-to-end learning of values Q(s,a) from pixels s

input state s 1s stack of raw pixels from last 4 frames
8-bit RGB images, 210 x 160 pixels

output is Q(s,a) for 18 joystick/button positions

reward 1s change 1n score for that timestep

32 4x4 filcers 256 hidden unics Fully-connected linear
output layer
16 8x8 filters
4x84x84
Stack of 4 previous ) Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

UNSW
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Deep Q-Network
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Asynchronous Advantage Actor Critic

UNSW

use policy network to choose actions
learn a parameterized Value function V, (s) by TD-Learning

estimate Q-value by n-step sample
O(sy,a;) =rpyp1 +Yrg2+ ...+ Yn_ll’t+n +Y"Viu(St4n)
update policy by
0 < 0+Mg[O(s:,a;) — Vu(s:)|Velogme(as | s;)
update Value function my minimizing

[O(s,ar) —Vu(St)]2
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Other Deep Learning Topics

Hopfield Networks
Restricted Boltzmann Machines
Autoencoders

Generative Adversarial Networks
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