COMP3411: Arti cial Intelligence

Extension 10. Deep Learning
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Image Processing
Convolutional Networks

Language Processing
Recurrent Networks
Long Short Term Memory
Word Embeddings

Deep Reinforcement Learning
Deep Q-Learning
Policy Gradients

Asynchronous Advantage Actor Critic
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Image Processing Tasks

UNSW

Image classi cation
object detection
object segmentation
style transfer
generating images

generating art

Deep Learning
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Learning Face Direction

left strt rght up Learned Weights
N7 | N

Typical input images
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Deep Learning

Limitations of Two-Layer Neural Networks

Some functions cannot be learned with a 2-layer sigmoidavorn.

For example, this Twin Spirals problem cannot be learned wi2-layer
network, but it can be learned using a 3-layer network if waude
shortcut connections between non-consecutive layers.

UNSW
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MNIST Handwritten Digit Dataset
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black and white, resolution 2828

60,000 images

10 classes (d;2;3;4,5;6;7;8;9)
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CIFAR Image Dataset

airplane automobile bird deer

color, resolution 32 32
50,000 images
10 classes
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ImageNet LSVRC Dataset

color, resolution 227 227
1.2 million images
1000 classes
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Vanishing / Exploding Gradients

Training by backpropagation in networks with many layerdiigult.

When the weights are small, the differentials become smaiid smaller
as we backpropagate through the layers, and end up havinffect e

When the weights are large, the activations in the highezriayvill
saturate to extreme values. As a result, the gradients s¢ tlagers will
become very small, and will not be propagated to the eadisrs.

When the weights have intermediate values, the differisntall
sometimes get multiplied many times is places where thefieafunction
IS steep, causing them to blow up to large values.
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Activation Functions (6.3)

-

Sigmoid Recti ed Linear Unit (ReLU)

b
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Hyperbolic Tangent Scaled Exponential Linear Unit (SELU)
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Hubel and Weisel — Visual Cortex

UNSW

T

4

cells in the visual cortex respond to lines at different asg|

cells in V2 respond to more sophisticated visual features
Convolutional Neural Networks are inspired by this neusdamy
CNN's can now be simulated with massive parallelism, usifjJs

¢ Alan Blair, 2017-8
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Convolutional Networks
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convolution + max pooling vec
nonlinearity |

convolution + pooling layers fully connected layers  Nx binary classification

Suppose we want to classify an image as a bird, sunset, dpgtca

If we can identify features such as feather, eye, or beakiwpirovide
useful information in one part of the image, then those featare likely
to also be relevant in another part of the image.

We can exploit this regularity by using a convolution laydrieh applies
the same weights to different parts of the image.
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Convolutional Neural Networks
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The same weights are applled to the niekt N block of inputs, to
compute the next hidden unit in the convolution layer (“vitigharing”).
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Convolutional Filters

First Layer Second Layer

UNSW

Third Layer
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LeNet trained on MNIST

C3: 1. maps 16&@10x10
INPUT C1: feature maps S4: 1. maps 16@5x5

6@28x28
32x32 52: . maps CS:layer pg. jayer OQUTPUT
84 10

S |T_ r'_r
i

| | Full mnAamian | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

The 5 5 window of the rst convolution layer extracts from the ongl

32 32 image a 28 28 array of features. Subsampling then halves this
size to 14 14. The second Convolution layer uses anothes5vindow

to extract a 10 10 array of features, which the second subsampling layer
reduces to 5 5. These activations then pass through two fully connected
layers into the 10 output units corresponding to the di@it$d '9".

UNSW ¢ Alan Blair, 2017-8
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ImageNet Architectures

UNSW

LeNet, 5 layers (1998)
AlexNet, 8 layers (2012)
VGG, 19 layers (2014)
GoogleNet, 22 layers (2014)
ResNets, 152 layers (2015)
DenseNets, 160 layers (2017)

Deep Learning

¢ Alan Blair, 2017-8
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AlexNet Detalls

224

UNSW

PFT: e \dense
i o 298
5
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) dense dense
1000
192 128 Max || |
; 2048
Max 178 Max pooling < 2048
pooling pooling
3 78

650K neurons

630M connections

60M parameters

more parameters that imagesdanger of over tting
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Enhancements

Recti ed Linear Units (ReLUSs)

overlapping pooling (widthks 3, stride= 2)

stochastic gradient descent with momentum and weight decay
data augmentation to reduce over tting

50% dropout in the fully connected layers

UNSW ¢ Alan Blair, 2017-8
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Deep Learning

Dropout (7.12)
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R
¢

(b) After applying dropout.

(a) Standard Neural Net

Nodes are randomly chosen to not be used, with some xed pillya

(usually, one half).
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Residual Networks

xl X

weight layer weight layer

anytwo
stacked layers l relu F(X) l relu

weight layer weight layer

identity
X

lrelu
H(x) Hx)=F(x)+x

Idea: Take any two consecutive stacked layers in a deep ricamad add a
“skip” connection which bipasses these layers and is adaléuetr output.
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Dense Networks

Input
Prediction
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Recently, good results have been achieved using netwotksdensely
connected blocks, within which each layer is connected loytsht

connections to all the preceding layers.

UNSW ¢ Alan Blair, 2017-8



COMP3411/9414/9814 18s1

Neural Style Transfer

content +

UNSW

style

Deep Learning

new image
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Neural Style Transfer

UNSW

Deep Learning
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Object Detection

UNSW

Deep Learning
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Processing Temporal Sequences

There are many tasks which require a sequence of inputs tobegsed
rather than a single input.

speech recognition
time series prediction
machine translation
handwriting recognition

Image captioning

How can neural network models be adapted for these tasks?

UNSW ¢ Alan Blair, 2017-8
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Simple Recurrent Network (Elman, 1990)

UNSW

at each time step, hidden layer activations are copied totéxt’ layer
hidden layer receives connections from input and contgrta

the inputs are fed one at a time to the network, it uses thegblatyer
to “remember” whatever information is required for it to guze the
correct output

¢ Alan Blair, 2017-8
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Back Propagation Through Time

UNSW

we can “unroll” a recurrent architecture into an equivafeetforward
architecture, with shared weights

applying backpropagation to the unrolled architectureffered to as
“backpropagation through time”

we can backpropagate just one timestep, or a xed number of

timesteps, or all the way back to beginning of the sequence

¢ Alan Blair, 2017-8
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Oscillating Solution for

UNSW

Deep Learning

a'p"

¢ Alan Blair, 2017-8
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Hidden Unit Dynamics for a"b"c"

SRN with 3 hidden units can learn to prediéb"c" by counting up and
down simultaneously in different directions, thus proaggca star shape.

UNSW ¢ Alan Blair, 2017-8
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Long Range Dependencies

UNSW

Simple Recurrent Networks (SRNs) can learn medium-range
dependencies but have dif culty learning long range dep®eiates

Long Short Term Memory (LSTM) and Gated Recurrent Units (3RU
can learn long range dependencies better than SRN

¢ Alan Blair, 2017-8
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Long Short Term Memory

LSTM — context layer is modulated by three gating mechartisms
forget gate, input gate and output gate.

http://colah.github.io/posts/2015-08-Understanding- LSTMs/

UNSW ¢ Alan Blair, 2017-8
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Statistical Language Processing

Synonyms for “elegant”

stylish, graceful, tasteful, discerning, re ned, sopiuasted,
digni ed, cultivated, distinguished, classic, smart,Hemable,
modish, decorous, beautiful, artistic, aesthetic, loveharming,
polished, suave, urbane, cultured, dashing, debonanuyils,
sumptuous, opulent, grand, plush, high-class, exquisite

Synonyms, antonyms and taxonomy require human effort, neay b
incomplete and require discrete choices. Nuances are\ldsitds like

“king”, “queen” can be similar in some attributes but oppesn others.

Could we instead extract some statistical properties aaticaily, without
human involvement?

UNSW ¢ Alan Blair, 2017-8
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word2vec 1-Word Context Model

Thek™ row vy of W is a representation of wotid
The j™ columnv? of WPis an (alternative) representation of wad

If the (1-hot) input isk, the linear sum at each output will log = V(J-)TVk

UNSW ¢ Alan Blair, 2017-8
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Linguistic Regularities

King + Woman - Man Queen

More generally,
AistoBas Cisto ??
(Ve+ Vp Va)TVx

d = argmax — —
Jma% JJVe+ Vb V3]
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Capital Cities

UNSW

Deep Learning
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Word Relationships

UNSW

Deep Learning

¢ Alan Blair, 2017-8

35



COMP3411/9414/9814 18s1 Deep Learning

Google Neural Machine Translation

UNSW
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Captioning, with Attention

UNSW

Deep Learning
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Reinforcement Learning Framework

UNSW

An agent interacts with its environment.
There is a seb of statesand a sefA of actions

At each time step, the agent is in some stade
It must choose an actiam, whereupon it goes into state
S+1 = d(s;a) and receives rewand = R(s; &)

Agent has olicyp: S! A. We aim to nd anoptimal policy p
which maximizes the cumulative reward.

In generald, R andp can be multi-valued, with a random element,
In which case we write them as probability distributions

ds+1=sissa) R(e=rjs;a) p(a=ajs)

¢ Alan Blair, 2017-8
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Q-Learning

For a deterministic environmem, , Q andV are related by
p (s)= argmaxQ (s;a)
Q (sa)= R(sa)+ gV (d(s a))

<o V (9= mbaxQ (s;b)

Q(sa)= R(sa)+ gmaxQ (d(s; a); b)
This allows us to iteratively approximat@ by

Q(s;a) re+ gmt?XQ(SH 1, b)

If the environment is stochastic, we instead write

Q(s;a) Qs a)+ hfrg+ gmbaXQ(SHl;b) Q(s; &)]

UNSW
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Deep Q-Learning for Atari Games

UNSW

end-to-end learning of valu€y(s,; a) from pixelss

Input states is stack of raw pixels from last 4 frames
8-bit RGB images, 210 160 pixels

output isQ(s; a) for 18 joystick/button positions

reward is change in score for that timestep

¢ Alan Blair, 2017-8
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Deep Q-Network

UNSW

Deep Learning
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Asynchronous Advantage Actor Critic

use policy network to choose actions
learn a parameterized Value functigg(s) by TD-Learning

estimate Q-value by n-step sample
Q(s;a) = st Greszt 1o+ @1 reent g™Vu(s4n)
update policy by
g g+ hg[Q(s;a) Vu(s)INglogpg(ajs)
update Value function my minimizing

[Qssa) Vu(e)]?
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Other Deep Learning Topics

Hop eld Networks
Restricted Boltzmann Machines
Autoencoders

Generative Adversarial Networks

UNSW

Deep Learning
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