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Outline

� Image Processing

I Convolutional Networks

� Language Processing

I Recurrent Networks

I Long Short Term Memory

I Word Embeddings

� Deep Reinforcement Learning

I Deep Q-Learning

I Policy Gradients

I Asynchronous Advantage Actor Critic
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Image Processing Tasks

� image classi�cation

� object detection

� object segmentation

� style transfer

� generating images

� generating art
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Learning Face Direction
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Limitations of Two-Layer Neural Networks

Some functions cannot be learned with a 2-layer sigmoidal network.
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For example, this Twin Spirals problem cannot be learned with a 2-layer
network, but it can be learned using a 3-layer network if we include
shortcut connections between non-consecutive layers.
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MNIST Handwritten Digit Dataset

� black and white, resolution 28� 28
� 60,000 images
� 10 classes (0;1;2;3;4;5;6;7;8;9)
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CIFAR Image Dataset

� color, resolution 32� 32
� 50,000 images
� 10 classes
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ImageNet LSVRC Dataset

� color, resolution 227� 227
� 1.2 million images
� 1000 classes
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Vanishing / Exploding Gradients

Training by backpropagation in networks with many layers isdif�cult.

When the weights are small, the differentials become smaller and smaller
as we backpropagate through the layers, and end up having no effect.

When the weights are large, the activations in the higher layers will
saturate to extreme values. As a result, the gradients at those layers will
become very small, and will not be propagated to the earlier layers.

When the weights have intermediate values, the differentials will
sometimes get multiplied many times is places where the transfer function
is steep, causing them to blow up to large values.
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Activation Functions (6.3)
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Sigmoid Recti�ed Linear Unit (ReLU)
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Hyperbolic Tangent Scaled Exponential Linear Unit (SELU)
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Hubel and Weisel – Visual Cortex

� cells in the visual cortex respond to lines at different angles

� cells in V2 respond to more sophisticated visual features

� Convolutional Neural Networks are inspired by this neuroanatomy

� CNN's can now be simulated with massive parallelism, using GPU's
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Convolutional Networks

Suppose we want to classify an image as a bird, sunset, dog, cat, etc.

If we can identify features such as feather, eye, or beak which provide
useful information in one part of the image, then those features are likely
to also be relevant in another part of the image.

We can exploit this regularity by using a convolution layer which applies
the same weights to different parts of the image.
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Convolutional Neural Networks
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The same weights are applied to the nextM � N block of inputs, to
compute the next hidden unit in the convolution layer (“weight sharing”).
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Convolutional Filters

First Layer Second Layer Third Layer
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LeNet trained on MNIST

The 5� 5 window of the �rst convolution layer extracts from the original
32� 32 image a 28� 28 array of features. Subsampling then halves this
size to 14� 14. The second Convolution layer uses another 5� 5 window
to extract a 10� 10 array of features, which the second subsampling layer
reduces to 5� 5. These activations then pass through two fully connected
layers into the 10 output units corresponding to the digits '0' to '9'.
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ImageNet Architectures

� LeNet, 5 layers (1998)

� AlexNet, 8 layers (2012)

� VGG, 19 layers (2014)

� GoogleNet, 22 layers (2014)

� ResNets, 152 layers (2015)

� DenseNets, 160 layers (2017)
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AlexNet Details

� 650K neurons

� 630M connections

� 60M parameters

� more parameters that images! danger of over�tting
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Enhancements

� Recti�ed Linear Units (ReLUs)

� overlapping pooling (width= 3, stride= 2)

� stochastic gradient descent with momentum and weight decay

� data augmentation to reduce over�tting

� 50% dropout in the fully connected layers
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Dropout (7.12)

Nodes are randomly chosen to not be used, with some �xed probability
(usually, one half).
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Residual Networks

Idea: Take any two consecutive stacked layers in a deep network and add a
“skip” connection which bipasses these layers and is added to their output.
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Dense Networks

Recently, good results have been achieved using networks with densely
connected blocks, within which each layer is connected by shortcut
connections to all the preceding layers.
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Neural Style Transfer

content + style ! new image
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Neural Style Transfer
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Object Detection
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Processing Temporal Sequences

There are many tasks which require a sequence of inputs to be processed
rather than a single input.

� speech recognition

� time series prediction

� machine translation

� handwriting recognition

� image captioning

How can neural network models be adapted for these tasks?
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Simple Recurrent Network (Elman, 1990)

� at each time step, hidden layer activations are copied to “context” layer
� hidden layer receives connections from input and context layers
� the inputs are fed one at a time to the network, it uses the context layer

to “remember” whatever information is required for it to produce the
correct output
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Back Propagation Through Time

� we can “unroll” a recurrent architecture into an equivalentfeedforward
architecture, with shared weights

� applying backpropagation to the unrolled architecture is reffered to as
“backpropagation through time”

� we can backpropagate just one timestep, or a �xed number of
timesteps, or all the way back to beginning of the sequence
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Oscillating Solution for anbn
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Hidden Unit Dynamics for anbncn

� SRN with 3 hidden units can learn to predictanbncn by counting up and
down simultaneously in different directions, thus producing a star shape.
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Long Range Dependencies

� Simple Recurrent Networks (SRNs) can learn medium-range
dependencies but have dif�culty learning long range dependencies

� Long Short Term Memory (LSTM) and Gated Recurrent Units (GRU)
can learn long range dependencies better than SRN
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Long Short Term Memory

LSTM – context layer is modulated by three gating mechanisms:
forget gate, input gate and output gate.

http://colah.github.io/posts/2015-08-Understanding- LSTMs/
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Statistical Language Processing

Synonyms for “elegant”

stylish, graceful, tasteful, discerning, re�ned, sophisticated,
digni�ed, cultivated, distinguished, classic, smart, fashionable,
modish, decorous, beautiful, artistic, aesthetic, lovely; charming,
polished, suave, urbane, cultured, dashing, debonair; luxurious,
sumptuous, opulent, grand, plush, high-class, exquisite

Synonyms, antonyms and taxonomy require human effort, may be
incomplete and require discrete choices. Nuances are lost.Words like
“king”, “queen” can be similar in some attributes but opposite in others.

Could we instead extract some statistical properties automatically, without
human involvement?
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word2vec 1-Word Context Model

Thekth row vk of W is a representation of wordk.
The j th columnv0

j of W0 is an (alternative) representation of wordj.

If the (1-hot) input isk, the linear sum at each output will beu j = v0
j
Tvk
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Linguistic Regularities

King + Woman - Man' Queen

More generally,

A is to B as C is to ??

d = argmaxx
(vc + vb � va)Tvx

jj vc + vb � vajj
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Capital Cities
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Word Relationships
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Google Neural Machine Translation
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Captioning, with Attention
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Reinforcement Learning Framework

� An agent interacts with its environment.

� There is a setSof statesand a setA of actions.

� At each time stept, the agent is in some statest .
It must choose an actionat , whereupon it goes into state
st+ 1 = d(st ;at) and receives rewardrt = R(st ;at)

� Agent has apolicy p : S ! A. We aim to �nd anoptimalpolicy p�

which maximizes the cumulative reward.

� In general,d, R andp can be multi-valued, with a random element,
in which case we write them as probability distributions

d(st+ 1 = sj st ;at ) R(rt = r j st ;at ) p(at = aj st )
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Q-Learning

For a deterministic environment,p� , Q� andV � are related by

p� (s) = argmaxaQ� (s;a)

Q� (s;a) = R(s;a) + gV � (d(s;a))

V � (s) = max
b

Q� (s;b)
So

Q� (s;a) = R(s;a) + gmax
b

Q� (d(s;a);b)

This allows us to iteratively approximateQ by

Q(st ;at )  rt + gmax
b

Q(st+ 1;b)

If the environment is stochastic, we instead write

Q(st ;at)  Q(st ;at ) + h [ rt + gmax
b

Q(st+ 1;b) � Q(st ;at)]
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Deep Q-Learning for Atari Games

� end-to-end learning of valuesQ(s;a) from pixels s

� input states is stack of raw pixels from last 4 frames

I 8-bit RGB images, 210� 160 pixels

� output isQ(s;a) for 18 joystick/button positions

� reward is change in score for that timestep
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Deep Q-Network
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Asynchronous Advantage Actor Critic

� use policy network to choose actions

� learn a parameterized Value functionVu(s) by TD-Learning

� estimate Q-value by n-step sample

Q(st ;at ) = rt+ 1 + grt+ 2 + : : :+ gn� 1rt+ n + gnVu(st+ n)

� update policy by

q  q+ hq [Q(st ;at ) � Vu(st )]Ñq logpq(at j st )

� update Value function my minimizing

[Q(st ;at) � Vu(st)]2
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Other Deep Learning Topics

� Hop�eld Networks

� Restricted Boltzmann Machines

� Autoencoders

� Generative Adversarial Networks
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