COMP3411/9814.: Artificial Intelligence

Week 8 Extension: Variations on
Backpropagation

Russell & Norvig: 18.7
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Gradient Descent (Backpropagation)

We define arerror function E to be (half) the sum over all input patterns
of the square of the difference between actual output andediesutput

E= % S (z-1)°

If we think of E as height, it defines an errtandscape on the weight
space. The aim is to find a set of weights for whicls very low.
This is done by moving in the steepest downhill direction.

0E
W w1 =

Parameten is called thdearning rate
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Variations on Backprop

Cross Entropy
problem: least squares error function unsuitable for diaasion,
where target=0o0r 1
mathematical theory: maximum likelihood
solution: replace with cross entropy error function

Weight Decay
problem: weights “blow up”, and inhibit further learning
mathematical theory: Bayes’ rule
solution: add weight decay term to error function

Momentum
problem: weights oscillate in a “rain gutter”
solution: weighted average of gradient over time

UNSW ©Alan Blair, 2015-8



COMP3411/9814 18s1 Variations on Backpropagation

Cross Entropy

For classification tasks, targeis either O or 1, so better to use
E=—-tlog(z)— (1—t)log(1-2)

This can be justified mathematically, and works well in pieect
especially when negative examples vastly outweigh p@sdnes.
It also makes the backprop computations simpler

o  z-t
0z  z(1-2
: 1
If Z = 1res
£ _ oEZ_
0s  0zds
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Maximum Likelihood

H is a class of hypotheses
P(D|h) = probability of dataD being generated under hypothéesis H.
logP(D|h) is called thdikelihood.

ML Principle: Choosén € H which maximizes the likelihood,
l.e. maximize<P(D|h) [or, maximizes lodP(D|h)]
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Least Squares Line Fitting

f(X)
\
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Derivation of Least Squares

Suppose data generated by a linear funchipplus Gaussian noise with
standard deviation.

m
PO =[] L g an @)
1 v2no?
moo] , 1
logP(D|h) = —ﬁ(di—h(xi)) —log(o) — = log(2m)
- o) 2
hve = argmay,y logP(Dlh)

m

= argmin,cy Zl (di —h(x))?

(Note: we do not need to know)
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Derivation of Cross Entropy

For classification tasksl is either O or 1.
AssumeD generated by hypothednsas follows:

P(h(X) = hix)
PO[h(x)) = (1-h(x))
i.e. P(dilh(x)) = h(x)%(1—h(x))}

then
ogP(DIh) — 3 dlogh(x)+ (1~ log(L—hx)
hve = argmaXepy i dilogh(x) + (1 —di)log(1—h(x))

(Can be generalized to multiple classes.)
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Bayes Rule

H is a class of hypotheses
P(D|h) = probability of dateD being generated under hypothéesis H.
P(h|D) = probability thath is correct, given that data were observed.

Bayes’ Theorem:

P(hID)P(D) = P(DIh)P(h)
P(D) = P(DFIE‘%F)’(“)

P(h) is called theprior.
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Example: Medical Diagnosis

Suppose we have a 98% accurate test for a type of cancer wdtainsan
1% of patients. If a patient tests positive, what is the pbdig that they
have the cancer?
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Weight Decay

Assume that small weights are more likely to occur than largights, i.e.

1 ¢,
P(W) = Ze—éZJWJZ

whereZ is a normalizing constant. Then the cost function becomes:

22 z —t;)? ZZWZ

This can prevent the weights from “saturating” to very higiues.

Problem: need to determinefrom experience, or empirically.
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Momentum

If landscape is shaped like a “rain gutter”, weights willde oscillate
without much improvement.

Solution: add a momentum factor

oW <« 0(6W+(1—0()3—VEV

W <+~ w—now

Hopefully, this will dampen sideways oscillations but arfyptiownhill
motion by .
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Conjugate Gradients

Compute matrix of second derivativg%iza'%j (called the Hessian).

Approximate the landscape with a quadratic function (palicad).

Jump to the minimum of this quadratic function.

Natural Gradients (Amari, 1995)

Use methods from information geometry to find a “natural’soaling of
the partial derivatives.
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