COMP3411: Artificial Intelligence

Extension 4. Evolutionary Robotics
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Charles Darwin

Darwin’s theory of Natural Selection was largely inspirgavihat he
observed on a visit to the Galapagos Islands

different species of finches from different islands
unusual adaptations such as the marine iguana

breeding habits of turtles

Darwin was influenced by:
Charles Lyell's “Principles of Geology”
Thomas Malthus’s “Essay on Population”
his grandfather Erasmus Darwin

his other grandfather, Josiah Wedgwood
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Human Genome

human genome consists of 3 billion DNA base pairs
each base pair can be one of four nucleotides

A (Adenine)

G (Guanine)

C (Cytosine)

T (Thymine)

approximately 30,000 “genes”, each coding for a specifitgomno

97% of genome does not code for proteins
once thought to be useless “junk” DNA
now thought to serve some other function(s)
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Evolutionary Computation

use principles of natural selection to evolve a computation
mechanism which performs well at a specified task.

start with randomly initialized population

repeated cycles of:
evaluation

selection

reproduction + mutation

any computational paradigm can be used, with appropriateiyned
reproduction and mutation operators
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Evolutionary Computation Paradigms

UNSW

Bit Strings (Holland — “Genetic Algorithm”)
S-expression trees (Koza — “Genetic Programming”)
set of continuous parameters (Swefel — “Evolutionary 8gt)

Lindenmeyer system (e.g. Sims — “Evolving Virtual Creasliye
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Continuous Parameters (ES)

reproduction = just copying

mutation = add random noise to each weight (or parametermn) &
Gaussian distribution with specified standard deviation

sometimes, the standard deviation evolves as well
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Case Study — Simulated Hockey
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Shock Physics

UNSW

rectangular rink with rounded corners
near-frictionless playing surface
“spring” method of collision handling

frictionless puck (never acquires any spin)
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Shock Actuators

| eft skate ri ght skate

(XL, W) (Xgs Yr)

a skate at each end of the vehicle with which it can push onittke r
In two independent directions
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Shock Sensors

6 Braitenberg-style sensors equally spaced around thelgehi

each sensor has an angular range of @@dh an overlap of 30
between neighbouring sensors
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Shock Inputs

each of the 6 sensors responds to three different stimuli
ball / puck

own goal

opponent goal
3 additional inputs specify the current velocity of the \aii

total of 3x 64 3= 21 inputs
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Shock Agent

UNSW

puck O
enemy goal()
friendly goal O

sensor 1

puck O
sensor enemy goal()
friendly goal O

puck O
sensor 2 enemy goalO)
friendly goal O

puck O
enemy goal()
friendly goal O

1
{

sensor

sensor enemy goal(O)

friendly goal O

puck O
sensor enemy goal()
friendly goal O

_ longitudinal (left skate)O)
velocity 9 |ongitudinal (right skate)O

lateral O

N\ /S

Evolutionary Robotics

output
O Vector

O z
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Shock Agent

Perceptron with 21 inputs and 4 outputs

total of 4x (214 1) = 88 weights

our “genome” (for Evolutionary Computation) consists ofextor of
these 88 parameters

mutation = add Gaussian random noise to each parameter,
with standard deviation 0.05
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Shock Task

each game begins with a random “game initial condition”
random position for puck

random position and orientation for player

each game ends with
+1 if puck — enemy goal
-1 if puck — own goal

O if time limit expires
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Evolutionary Algorithm

UNSW

mutant<— champ + Gaussian noise

champ and mutant play up to 5 games with same game initial
conditions

If mutant does “better” than champ,
champ« (1— a) xchamp+ a « mutant

“better” means the mutant must score higher than the chartiein
first game, and at least as high as the champ in each subsegneat
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Evolved Behavior

Evolutionary Robotics

UNSW
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Wins and Losses

100

% Goal Boore

lind i - -
wins after 30 sec: linD — | - =-
losses after 15 sec: inD == lim - -

wins after 15 sec:

losses after 30 sec: inD == lim - -

T e
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300K, 400K, 500K,

generation
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Evolutionary/Variational Methods

initialize meanp = {|; }1<i<m and standard deviatioo = {0j }1<i<m

for each trial, colleck samples from a Gaussian distribution
6 =m+nioi where nj~ 2((0,1)

sometimes include “mirrored” sampl&s = | — n; O

evaluate each samp&to compute score or “fitnes<” (0)

update meam by . i+ a(F(6)—F)(0—p)

o = learning rateF = baseline

sometimesg is updated as well
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OpenAl Evolution Strategies

Evolutionary Strategy with fixed

since onlyu is updated, computation can be distributed across many
processors

applied to Atari Pong, MuJoCo humanoid walking

competitive with Deep Q-Learning on these tasks
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Evolutionary Robotics

UNSW

Aibo walk learning
Humanoid walk learning

Evolving body as well as controller

Simulation to Reality

Evolutionary Robotics
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Aibo Walk Learning (Hornby)

Learning done on actual robot.

UNSW
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Guroo — Humanoid Walk Learning

Learning done in simulator(s), then tested on actual robot.
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Evolving Virtual Creatures (Sims)

Body evolves as a Lindenmeyer system

Controller evolves as a neural network

UNSW
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Golem (Lipson)

Evolved in simulation, tested in reality.

UNSW
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Evolved Antenna

One example of the use of Evolu-
tionary Algorithms for a real world
application is the antenna that was
evolved by Hornby et al in 2006 for
NASAs Space Technology 5 (ST5)
mission.
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Evolutionary Robotics
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