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Learning Outcomes

• Understanding the concept of a microkernel
• Understanding of the advantages and drawbacks
• Awareness of historic performance issues and the 

importance of minimality
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Remember from Week 7: 3 OSes

• Ultrix – DEC’s version of Unix
• Traditional OS design
• Kernel data physically addressed (i.e. not in virtual memory)
• Virtual linear array page table

• OSF/1: New commercial system
• Most kernel data virtually addressed
• 3-level page table

•Mach 3.0: “Microkernel” OS
• Small kernel, most OS services in user-mode Unix server
• Server data virtually addressed (obviously)
• 3-level page table
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Why?
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The Origin: Brinch Hansen’s Nucleus
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P. Brinch Hansen: “The Nucleus of a Multiprogramming System”.
Communications of the ACM, 13, p238–250, 1970.

Approach:
• Stable “nucleus” with minimal abstractions
• Hierarchy of processes provide services & apps

Motivation:
• OS policies difficult to adapt
• System should be extensible!

“Internal processes” 
– System services

“External processes” 
– Device drivers
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OS Structure (In Modern Terminology)
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Hardware: CPU, Peripherals

Nucleus (kernel)
Privileged
Mode

Unprivileged
Mode

Minimal interface:
• Synchronisation
• Communication
• Naming

DriverDriverServerServer ……

Policy-free!

I/O

User services, 
resource policies

IPC

OS API
App

App
App…

IPC

4,800 instr.
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Nucleus IPC: Asynchronous Message Passing
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send_msg (dest, msg, &session);

wait_msg (&sender, &msg, &session);

Nucleus has message buffer pool
• On send_msg, picks free buffer
• Copies data to this buffer
• Returns buffer # as session ID

int send_rply (msg, session);

int wait_rply (&msg, session);

• On wait_msg copies data from buffer
• Returns buffer # as session ID

IRQs are delivered to 
drivers as messages

IPC Cost/message: 
100–150 cycles
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Process Hierarchy – Abstraction Hierarchy
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Hardware: CPU, Peripherals

Nucleus (kernel)
Privileged
Mode

Unprivileged
Mode

OS Server

Minimal OS Server

OS API 2

App
App

App

OS API 1

OS Server

OS API 3

OS Server

OS API 4

Process management : 
• Create:      750 cycles
• Start:      6,500 cycles
• Stop:      1,000 cycles
• Delete:  7,500 cycles
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From Nucleus to 1st–Gen Microkernels (1980s)
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Kernel

DriverServer

App

… …

App App

Nucleus Chorus/QNX
Minix

Kernel

Proc.

App

File …

App App

…NW

Mach

Kernel

Unix Server

App

File …

App App

…

Paging

Coarse-grained 
servers

Monolithic 
server

35k  SLoC

IPC Cost: 500 cycles

IPC Cost: 2,300 cycles
IPC Cost: 150 cycles

4,800 instr.
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Microkernel Debacle (1990s)
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IBM’s Grand Plan: Workplace OS (Jan’91):
• “Improved” Mach microkernel
• Run multiple OSes concurrently
• Scale from handhelds to supercomputers

Brett D. Fleisch and Mark Allan A. Co.:
"Workplace microkernel and OS: a case study." 
Software: Practice and Experience 28.6 (1998): 569-591.
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Workplace OS: Plan
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Workplace OS: Delivered
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Abandoned late ’95
after spending $2G!
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Mach Problems
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Kernel

Unix Server

App

File …

App App

…

Paging

Mach was slow, despite: 
• Moving functionality 

back into the kernel
• Running a monolithic 

Unix server

2,300 cycles IPC

J. Bradley Chen and Brian N. Bershad:
"The Impact of Operating System Structure 
on Memory System Performance." 
ACM Symposium on Operating System 
Principles, 1993, p120–133.
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Mach-Unix vs Ultrix Performance Analysis
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tl S-MCPI

■ Emulator

❑ IPC

❑ Microkemel

❑ UNIX service

❑ Block Ops

❑ VM-mi

❑ VM-md

❑ KTLB

❑ UTLB

❑ Trap

Figure 3-1: Relative system overheads forprograms running on Ultrix and Mach.

This fi~ure shows the relative system instruction and system memory overheads for programs running on Ultrix (+U) and Mach (+M).
Ultrixin&ruction counts arenorrnalized to one. Thetopcomponent ofeachbar refle&s ~hesystem MCF’1, which isanaggregate of the
klCPI for the instruction components. The number at the top of each bar is the percentage of total (instruction and memory) cycles that are
due to the system. For programs where thesystem isresponsible forasmall percentage of total cycles, system overheads are relatively
unimportant.

than the user’s. Even so, in only five of the cache behavior between Ultrix and Mach is small. As
workloadlsystem combinations does the system contribute Mach incurs a larger number of cache misses than Ultrix,
more than 90% of data misses, and only twelve if the and as nearly every additional cache miss is due to the
threshold is lowered to 50%. Although the system’s con- system, the percentage of misses due to the system is
tribution of instruction and data references are com- larger.
parable, the percentage of misses is not. Instruction
references miss more often than data references for both
Mach and Ultrix. From this, we conclude that instruction 4.2. System instruction locality
locality is worse than data locality during sys{em execu- Percentages are useful for comparing system and user
tion. behavior, but thev cloud overall performance effects. For

The percentage of instruction and data misses due to the
example, although 97% of instruction cache misses for

system is generally larger under Mach than Ultrix. Figure
eqntott under Mach are due to the system, the system in-

2-1 and Table 2-4 together show that the difference in user
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Relative system overheads for programs running on Ultix and Mach

Chen & Bershad Conclusions:
• “Self-interference”, poor locality of systems code
• Blame microkernel-based design
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Reality Check: Liedtke’s L3/L4 Microkernel
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Jochen Liedtke: "Improving IPC by Kernel Design." 
ACM Symposium on Operating System Principles, 1993, p175–188.
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Cache footprint 
[Liedtke’95]
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Liedtke’s Microkernel Principle: Minimality
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Jochen Liedtke: "On µ-Kernel Construction." 
ACM Symposium on Operating System Principles, 1995, p237–250.

Minimality Principle:
A concept is tolerated inside the microkernel only if moving it 
outside the kernel, i.e. permitting competing implementations, 
would prevent the implementation of the system’s required 
functionality.

Implications:
• Kernel provides mechanisms, not policies
• Minimal mechanisms enable simple 

implementation, aggressive optimisation

Size comparison:
• Mach: 35 kSLoC
• IBM:    70 kSLoC
• L4:         6 kSLoC

15
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L4 vs Mach: Monolithic Linux Server
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MkLinux user

Mach

Linux Server

App

MkLinux kernel

Mach

Linux

App

L4Linux
L4

Linux Server

App

System Time Cycles

Linux 1.68 µs 223

L4Linux 3.95 µs 526

MkLinux kernel 15.41 µs 2,050

MkLinux user 110.60 µs 14,710

Cost of 
getpid()

Hermann Härtig and Michael Hohmuth and Jochen Liedtke and 
Sebastian Schönberg and Jean Wolter: "The Performance of µ-
Kernel-Based Systems." 
ACM Symposium on Operating System Principles, 1997, p66–77.

macOS similar!
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Microkernels Are Widely Deployed Today

… especially in safety/security-critical systems:
• QNX [Hildebrand 1992]:

• Widely used in transport systems (trains, cars)
• INTEGRITY-178 (circa 2000):

• Avionics: military and civilian aircraft
• PikeOS (née P4, an L4 clone, ca 1999):

• Avionics, defence systems
• Fiasco.OC/L4Re (TU Dresden, from 1998)

• National security systems
• L4-embedded (UNSW fork of Karlsruhe L4-Pistachio, 2005)

• Qualcomm modem chips, iOS secure enclave
• seL4 (NICTA/UNSW, 2009)

• Defence systems, electric cars
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Implications of Minimality
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• Challenging to get minimal API right
• But dramatically reduced trusted computing base (TCB)

Can we prove 
it correct?

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David 
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, 
Michael Norrish, Thomas Sewell, Harvey Tuch, Simon Winwood: 
"seL4: Formal verification of an OS kernel." 
ACM Symposium on Operating System Principles, 2009, p207–220.


