
© Gernot Heiser 2025 – CC BY 4.0

School of Computer Science & Engineering
COMP3891/9283 Extended Operating Systems

2025 T2 Week 10

Microkernels
Gernot Heiser

© Gernot Heiser 2025 – CC BY 4.0

Copyright Notice

These slides are distributed under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License

• You are free:
• to share—to copy, distribute and transmit the work
• to remix—to adapt the work

• under the following conditions:
• Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/4.0/legalcode

COMP3891/9283 2025T2 W10: Microkernels1

© Gernot Heiser 2025 – CC BY 4.0

Learning Outcomes

• Understanding the concept of a microkernel
• Understanding of the advantages and drawbacks
• Awareness of historic performance issues and the

importance of minimality

COMP3891/9283 2025T2 W10: Microkernels2

© Gernot Heiser 2025 – CC BY 4.0

Remember from Week 7: 3 OSes

• Ultrix – DEC’s version of Unix
• Traditional OS design
• Kernel data physically addressed (i.e. not in virtual memory)
• Virtual linear array page table

• OSF/1: New commercial system
• Most kernel data virtually addressed
• 3-level page table

•Mach 3.0: “Microkernel” OS
• Small kernel, most OS services in user-mode Unix server
• Server data virtually addressed (obviously)
• 3-level page table

COMP3891/9283 2025T2 W10: Microkernels3

Why?

© Gernot Heiser 2025 – CC BY 4.0

The Origin: Brinch Hansen’s Nucleus

4 COMP3891/9283 2025T2 W10: Microkernels

P. Brinch Hansen: “The Nucleus of a Multiprogramming System”.
Communications of the ACM, 13, p238–250, 1970.

Approach:
• Stable “nucleus” with minimal abstractions
• Hierarchy of processes provide services & apps

Motivation:
• OS policies difficult to adapt
• System should be extensible!

“Internal processes”
– System services

“External processes”
– Device drivers

© Gernot Heiser 2025 – CC BY 4.0

OS Structure (In Modern Terminology)

5 COMP3891/9283 2025T2 W10: Microkernels

Hardware: CPU, Peripherals

Nucleus (kernel)
Privileged
Mode

Unprivileged
Mode

Minimal interface:
• Synchronisation
• Communication
• Naming

DriverDriverServerServer ……

Policy-free!

I/O

User services,
resource policies

IPC

OS API
App

App
App…

IPC

4,800 instr.

© Gernot Heiser 2025 – CC BY 4.0

Nucleus IPC: Asynchronous Message Passing

6 COMP3891/9283 2025T2 W10: Microkernels

send_msg (dest, msg, &session);

wait_msg (&sender, &msg, &session);

Nucleus has message buffer pool
• On send_msg, picks free buffer
• Copies data to this buffer
• Returns buffer # as session ID

int send_rply (msg, session);

int wait_rply (&msg, session);

• On wait_msg copies data from buffer
• Returns buffer # as session ID

IRQs are delivered to
drivers as messages

IPC Cost/message:
100–150 cycles

© Gernot Heiser 2025 – CC BY 4.0

Process Hierarchy – Abstraction Hierarchy

7 COMP3891/9283 2025T2 W10: Microkernels

Hardware: CPU, Peripherals

Nucleus (kernel)
Privileged
Mode

Unprivileged
Mode

OS Server

Minimal OS Server

OS API 2

App
App

App

OS API 1

OS Server

OS API 3

OS Server

OS API 4

Process management :
• Create: 750 cycles
• Start: 6,500 cycles
• Stop: 1,000 cycles
• Delete: 7,500 cycles

© Gernot Heiser 2025 – CC BY 4.0

From Nucleus to 1st–Gen Microkernels (1980s)

8 COMP3891/9283 2025T2 W10: Microkernels

Kernel

DriverServer

App

… …

App App

Nucleus Chorus/QNX
Minix

Kernel

Proc.

App

File …

App App

…NW

Mach

Kernel

Unix Server

App

File …

App App

…

Paging

Coarse-grained
servers

Monolithic
server

35k SLoC

IPC Cost: 500 cycles

IPC Cost: 2,300 cycles
IPC Cost: 150 cycles

4,800 instr.

© Gernot Heiser 2025 – CC BY 4.0

Microkernel Debacle (1990s)

9 COMP3891/9283 2025T2 W10: Microkernels

IBM’s Grand Plan: Workplace OS (Jan’91):
• “Improved” Mach microkernel
• Run multiple OSes concurrently
• Scale from handhelds to supercomputers

Brett D. Fleisch and Mark Allan A. Co.:
"Workplace microkernel and OS: a case study."
Software: Practice and Experience 28.6 (1998): 569-591.

© Gernot Heiser 2025 – CC BY 4.0

Workplace OS: Plan

10 COMP3891/9283 2025T2 W10: Microkernels

Machine-
Independent
Code

Device-
Dependent
Code

Machine-
Dependent
Code

Intelx86TM PowerPCTM ARM TM

Task Manager

* Initialization
* Loader
 Services

Name
Services

Default
Pager

Device
Configuration

Services

Device
Drivers

ApplicationOPERATING SYSTEM

ApplicationApplication

Machine Device
Independent
Code

Dependent
Code

Enhanced Mach 3.0 Microkernel

Additional PlatformsPowerPC TMIntel 386 CPU
Intel 486 CPU

Pentium Processor

TM

TM

TM

Interrupts

Virtual
Memory

Host and
Processor

Sets

I/O Support
and

Dominant Personality
Applications

Alternate Personality
Applications

Dominant Personality Alternate Personality

Dominant
Personality

Server

Other

Services
Personality
Dominant

Alternate
Personality

Server Personality
Alternate

Other

Services

Multiple
Personality

Support
* Master Server
* Initialization
* Naming

Default
Pager

Device
Support

* Multiple
Personality
Support

* Device
Drivers

Other PNS
Products

* File Server
* Network

Services
* Database

Engines
* Security

(B)(A)

IBM MICROKERNEL

IBM MICROKERNEL SERVICES

Dependent
Machine

Code

Manager
Power

Virtu
al

Tasks
and

Threads
IPC

Faci
lity

Trac
e

Threa
dsTask

s an
d

Managem
ent

Mem
ory

Inter
proces

s

Communica
tio

n
and

Interr
uptsI/O

 Suuport

Sets

Host a
nd

Proces
sor

Multiple
ISAs

Enhanced
Mach

Core OS
services

Multiple OS
“personalities”

“Dominant”
OS apps

“Alternate”
OS apps

© Gernot Heiser 2025 – CC BY 4.0

Workplace OS: Delivered

11 COMP3891/9283 2025T2 W10: Microkernels

Machine-
Independent
Code

Device-
Dependent
Code

Machine-
Dependent
Code

Intelx86TM PowerPCTM ARM TM

Task Manager

* Initialization
* Loader
 Services

Name
Services

Default
Pager

Device
Configuration

Services

Device
Drivers

ApplicationOPERATING SYSTEM

ApplicationApplication

Machine Device
Independent
Code

Dependent
Code

Enhanced Mach 3.0 Microkernel

Additional PlatformsPowerPC TMIntel 386 CPU
Intel 486 CPU

Pentium Processor

TM

TM

TM

Interrupts

Virtual
Memory

Host and
Processor

Sets

I/O Support
and

Dominant Personality
Applications

Alternate Personality
Applications

Dominant Personality Alternate Personality

Dominant
Personality

Server

Other

Services
Personality
Dominant

Alternate
Personality

Server Personality
Alternate

Other

Services

Multiple
Personality

Support
* Master Server
* Initialization
* Naming

Default
Pager

Device
Support

* Multiple
Personality
Support

* Device
Drivers

Other PNS
Products

* File Server
* Network

Services
* Database

Engines
* Security

(B)(A)

IBM MICROKERNEL

IBM MICROKERNEL SERVICES

Dependent
Machine

Code

Manager
Power

Virtu
al

Tasks
and

Threads
IPC

Faci
lity

Trac
e

Threa
dsTask

s an
d

Managem
ent

Mem
ory

Inter
proces

s

Communica
tio

n
and

Interr
uptsI/O

 Suuport

Sets

Host a
nd

Proces
sor

Multiple
ISAs

Enhanced
Mach

Core OS
services

Single OS
personality

70k SLoC

Abandoned late ’95
after spending $2G!

© Gernot Heiser 2025 – CC BY 4.0

Mach Problems

12 COMP3891/9283 2025T2 W10: Microkernels

Kernel

Unix Server

App

File …

App App

…

Paging

Mach was slow, despite:
• Moving functionality

back into the kernel
• Running a monolithic

Unix server

2,300 cycles IPC

J. Bradley Chen and Brian N. Bershad:
"The Impact of Operating System Structure
on Memory System Performance."
ACM Symposium on Operating System
Principles, 1993, p120–133.

© Gernot Heiser 2025 – CC BY 4.0

Mach-Unix vs Ultrix Performance Analysis

13 COMP3891/9283 2025T2 W10: Microkernels

tl S-MCPI

■ Emulator

❑ IPC

❑ Microkemel

❑ UNIX service

❑ Block Ops

❑ VM-mi

❑ VM-md

❑ KTLB

❑ UTLB

❑ Trap

Figure 3-1: Relative system overheads forprograms running on Ultrix and Mach.

This fi~ure shows the relative system instruction and system memory overheads for programs running on Ultrix (+U) and Mach (+M).
Ultrixin&ruction counts arenorrnalized to one. Thetopcomponent ofeachbar refle&s ~hesystem MCF’1, which isanaggregate of the
klCPI for the instruction components. The number at the top of each bar is the percentage of total (instruction and memory) cycles that are
due to the system. For programs where thesystem isresponsible forasmall percentage of total cycles, system overheads are relatively
unimportant.

than the user’s. Even so, in only five of the cache behavior between Ultrix and Mach is small. As
workloadlsystem combinations does the system contribute Mach incurs a larger number of cache misses than Ultrix,
more than 90% of data misses, and only twelve if the and as nearly every additional cache miss is due to the
threshold is lowered to 50%. Although the system’s con- system, the percentage of misses due to the system is
tribution of instruction and data references are com- larger.
parable, the percentage of misses is not. Instruction
references miss more often than data references for both
Mach and Ultrix. From this, we conclude that instruction 4.2. System instruction locality
locality is worse than data locality during sys{em execu- Percentages are useful for comparing system and user
tion. behavior, but thev cloud overall performance effects. For

The percentage of instruction and data misses due to the
example, although 97% of instruction cache misses for

system is generally larger under Mach than Ultrix. Figure
eqntott under Mach are due to the system, the system in-

2-1 and Table 2-4 together show that the difference in user

126

Sy
st

em
 o

ve
rh

ea
d

no
rm

al
iz

ed
 to

 U
lti

x
in

st
ru

ct
io

n
co

un
ts

Relative system overheads for programs running on Ultix and Mach

Chen & Bershad Conclusions:
• “Self-interference”, poor locality of systems code
• Blame microkernel-based design

© Gernot Heiser 2025 – CC BY 4.0

0

100

200

300

400

0 2000 4000 6000
Message Length [B]

Mac
[µ

raw copy

[µs]

Reality Check: Liedtke’s L3/L4 Microkernel

0

100

200

300

400

0 2000 4000 6000
Message Length [B]

Mach IPC

115 µs,
5,750 cy

5 µs
250 cy

i486 @
50 MHz

COMP3891/9283 2025T2 W10: Microkernels

Jochen Liedtke: "Improving IPC by Kernel Design."
ACM Symposium on Operating System Principles, 1993, p175–188.

0

100

200

300

400

0 2000 4000 6000
Message Length [B]

L4 IPC

Reason:
Cache footprint
[Liedtke’95]

14

© Gernot Heiser 2025 – CC BY 4.0

Liedtke’s Microkernel Principle: Minimality

COMP3891/9283 2025T2 W10: Microkernels

Jochen Liedtke: "On µ-Kernel Construction."
ACM Symposium on Operating System Principles, 1995, p237–250.

Minimality Principle:
A concept is tolerated inside the microkernel only if moving it
outside the kernel, i.e. permitting competing implementations,
would prevent the implementation of the system’s required
functionality.

Implications:
• Kernel provides mechanisms, not policies
• Minimal mechanisms enable simple

implementation, aggressive optimisation

Size comparison:
• Mach: 35 kSLoC
• IBM: 70 kSLoC
• L4: 6 kSLoC

15

© Gernot Heiser 2025 – CC BY 4.0

L4 vs Mach: Monolithic Linux Server

16 COMP3891/9283 2025T2 W10: Microkernels

MkLinux user

Mach

Linux Server

App

MkLinux kernel

Mach

Linux

App

L4Linux
L4

Linux Server

App

System Time Cycles

Linux 1.68 µs 223

L4Linux 3.95 µs 526

MkLinux kernel 15.41 µs 2,050

MkLinux user 110.60 µs 14,710

Cost of
getpid()

Hermann Härtig and Michael Hohmuth and Jochen Liedtke and
Sebastian Schönberg and Jean Wolter: "The Performance of µ-
Kernel-Based Systems."
ACM Symposium on Operating System Principles, 1997, p66–77.

macOS similar!

© Gernot Heiser 2025 – CC BY 4.0

Microkernels Are Widely Deployed Today

… especially in safety/security-critical systems:
• QNX [Hildebrand 1992]:

• Widely used in transport systems (trains, cars)
• INTEGRITY-178 (circa 2000):

• Avionics: military and civilian aircraft
• PikeOS (née P4, an L4 clone, ca 1999):

• Avionics, defence systems
• Fiasco.OC/L4Re (TU Dresden, from 1998)

• National security systems
• L4-embedded (UNSW fork of Karlsruhe L4-Pistachio, 2005)

• Qualcomm modem chips, iOS secure enclave
• seL4 (NICTA/UNSW, 2009)

• Defence systems, electric cars

COMP3891/9283 2025T2 W10: Microkernels17

© Gernot Heiser 2025 – CC BY 4.0

Implications of Minimality

18 COMP3891/9283 2025T2 W10: Microkernels

• Challenging to get minimal API right
• But dramatically reduced trusted computing base (TCB)

Can we prove
it correct?

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski,
Michael Norrish, Thomas Sewell, Harvey Tuch, Simon Winwood:
"seL4: Formal verification of an OS kernel."
ACM Symposium on Operating System Principles, 2009, p207–220.

