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Scheduling



Learning Outcomes

• Understand the role of the scheduler, and 
how its behaviour influences the 
performance of the system.

• Know the difference between I/O-bound 
and CPU-bound tasks, and how they 
relate to scheduling.
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What is Scheduling?

– On a multi-programmed system
• We may have more than one Ready process

– On a batch system
• We may have many jobs waiting to be run

– On a multi-user system
• We may have many users concurrently using the 

system

• The scheduler decides which process (or 
thread) to run next.
– The process of choosing is called scheduling.



4

Is scheduling important?

• It is not in certain scenarios
– If you have no choice

• Early systems
– Usually batching
– Scheduling algorithm simple

» Run next on tape or next on punch tape

– Only one thing to run
• Simple PCs

– Only ran a word processor, etc….
• Simple Embedded Systems

– TV remote control, washing machine, etc….
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Is scheduling important?
• It is in most realistic scenarios

– Multitasking/Multi-user System 
• Example

– Email daemon takes 2 seconds to process an email
– User clicks button on application.

• Scenario 1
–  Run daemon, then application

» System appears really sluggish to the user
• Scenario 2

– Run application, then daemon
» Application appears really responsive, small email delay is 

unnoticed

• Scheduling decisions can have a dramatic effect on the 
perceived performance of the system
–  Can also affect correctness of a system with deadlines
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Application Behaviour

• Bursts of CPU usage alternate with periods of I/O 
wait
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Application Behaviour

a) CPU-Bound process
• Spends most of its computing
• Time to completion largely determined by received CPU time
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Application Behaviour

b) I/O-Bound process
– Spend most of its time waiting for I/O to complete

• Small bursts of CPU to process I/O and request next I/O
– Time to completion largely determined by I/O request time
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Observation

• We need a mix of CPU-bound and I/O-bound processes 
to keep both CPU and I/O systems busy

• Processes change from CPU- to I/O-bound (or vice 
versa) in different phases of execution
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Key Insight

• Choosing to run an I/O-bound process delays a CPU-bound 
process by very little

• Choosing to run a CPU-bound process prior to an I/O-bound 
process delays the next I/O request significantly

– No overlap of I/O waiting with computation
– Results in device (disk) not as busy as possible

 Generally, favour I/O-bound processes over CPU-bound processes
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When is scheduling performed?
– A new process

• Run the parent or the child?
– A process exits

• Who runs next?
– A process waits for I/O

• Who runs next?
– A process blocks on a lock

• Who runs next? The lock holder?
– An I/O interrupt occurs

• Who do we resume, the interrupted process or the process that was 
waiting?

– On a timer interrupt? (See next slide)
• Generally, a scheduling decision is required when a 

process (or thread) can no longer continue, or when an 
activity results in more than one ready process.
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Preemptive versus Non-preemptive 
Scheduling

• Non-preemptive
– Once a thread is in the running state, it continues until it 

completes, blocks on I/O, or voluntarily yields the CPU
– A single process can monopolised the entire system

• Preemptive Scheduling
– Current thread can be interrupted by OS and moved to ready 

state.
– Usually after a timer interrupt and process has exceeded its 

maximum run time
• Can also be as a result of higher priority process that has become 

ready (after I/O interrupt).
– Ensures fairer service as single thread can’t monopolise the 

system
• Requires a timer interrupt
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Categories of Scheduling Algorithms

• The choice of scheduling algorithm depends on the 
goals of the application (or the operating system)
– No one algorithm suits all environments

• We can roughly categorise scheduling algorithms as 
follows
– Batch Systems

• No users directly waiting, can optimise for overall machine 
performance

– Interactive Systems
• Users directly waiting for their results, can optimise for users 

perceived performance
– Realtime Systems 

• Jobs have deadlines, must schedule such that all jobs (predictably) 
meet their deadlines.
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Goals of Scheduling Algorithms

• All Algorithms
– Fairness

• Give each process a fair share of the CPU

– Policy Enforcement
• What ever policy chosen, the scheduler should 

ensure it is carried out

– Balance/Efficiency
• Try to keep all parts of the system busy
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Goals of Scheduling Algorithms

• Interactive Algorithms
– Minimise response time (latency)

• Response time is the time difference between issuing a 
command and getting the result

– E.g selecting a menu, and getting the result of that selection
• Response time is important to the user’s perception of the 

performance of the system.

– Provide Proportionality
• Proportionality is the user expectation that short jobs will 

have a short response time, and long jobs can have a long 
response time.

• Generally, favour short jobs
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Goals of Scheduling Algorithms

• Real-time Algorithms
– Must meet deadlines

• Each job/task has a deadline.
• A missed deadline can result in data loss or 

catastrophic failure
– Aircraft control system missed deadline to apply brakes

– Provide Predictability
• For some apps, an occasional missed deadline is 

okay
– E.g. video decoder

• Predictable behaviour allows smooth video 
decoding with only rare skips 
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Interactive Scheduling

General-purpose Scheduling
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Challenges of General 
Scheduing

Often we do not know the actual goals or 
priorities of the user.

• Scenario A:
– User gets a software update notification, accepts 

it and switches back to their video.

• Scenario B:
– User starts their assignment building and 

switches to their music player.
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Round Robin Scheduling

• Each process is given a timeslice to run in
• When the timeslice expires, the next 

process preempts the current process, 
and runs for its timeslice, and so on
– The preempted process is placed at the end 

of the queue
• Implemented with

– A ready queue
– A regular timer interrupt
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Example

• 5 Processes
– J1 arrives slightly 

before J2, etc…
– All are immediately 

runnable
– Execution times 

indicated by scale 
on x-axis
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Round Robin Schedule
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Timeslice = 1 unit
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Round Robin Schedule
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Round Robin
• Pros

– Fair, easy to implement
• Con

– Assumes everybody is equal
• Issue: What should the timeslice be?

– Too short
• Waste a lot of time switching between processes
• Example: timeslice of 4ms with 1 ms context switch = 20% round 

robin overhead 
– Too long

• System is not responsive
• Example: timeslice of 100ms

– If 10 people hit “enter” key simultaneously, the last guy to run will only 
see progress after 1 second.

• Degenerates into FCFS if timeslice longer than burst length
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Trade-offs

• Issue: What should the timeslice be?

• OS design is full of trade-offs. This is one of the 
biggest:

– Throughput
– Latency
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Priorities

• Downside of round-robin: assumes equal priority
• Instead, each Process (or thread) is associated 

with a priority
• Provides basic mechanism to influence a 

scheduler decision:
– Scheduler will always chooses a thread of higher 

priority over lower priority 

• Priorities can be defined internally or externally
– Internal: e.g. I/O bound or CPU bound
– External: e.g. based on importance to the user
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Example

• 5 Jobs
– J1 top priority
– J5 lowest priority
– Release and 

execution times as 
shown

• Priority-driven 
preemptively scheduled
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Priorities

• Usually implemented by multiple priority queues, with 
round robin on each queue

• Con
– Low priorities can starve

• Need to adapt priorities periodically
– Based on ageing or execution history  
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Starvation
• We’ve seen the concept of starvation a few times.
• For synchronisation primitives, starvation is a bug.

– e.g. If a lock prefers a particular thread.
• For distributed protocols, starvation is a bug.

– e.g. Some busted approach to dining philosophers.

• For priority-based systems, starvation is a consequence 
of a rigid policy decision.

– Not exactly a bug.

– Qualitatively different to performance or fairness issues.
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Starvation Trivia

• Roundabout intersections have a starvation problem.

• Starvation is an interesting metaphor for ethical 
questions in broader society.
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Priorities

• Recall: Low priorities can starve
• Can be addressed by adapting priorities periodically

– Based on ageing or execution history  
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Traditional UNIX Scheduler
• Two-level scheduler

– High-level scheduler 
schedules processes 
between memory and 
disk

– Low-level scheduler is 
CPU scheduler

• Based on a multi-
level queue structure 
with round robin at 
each level
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Traditional UNIX Scheduler
• The highest priority (lower 

number) is scheduled
• Priorities are re-calculated once 

per second, and re-inserted in 
appropriate queue

– Avoid starvation of low priority 
threads

– Penalise CPU-bound threads
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Traditional UNIX Scheduler
• Priority = CPU_usage +nice +base

– CPU_usage = number of clock ticks
• Decays over time to avoid 

permanently penalising the process
– Nice is a value given to the process 

by a user to permanently  boost or 
reduce its priority

• Reduce priority of background jobs
– Base is a set of hardwired, negative 

values used to boost priority of I/O 
bound system activities

• Swapper, disk I/O, Character I/O
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Multiprocessor Scheduling

• Given X processes (or threads) and Y 
CPUs,
–  how do we allocate them to the CPUs
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A Single Shared Ready Queue 

• When a CPU goes idle, it take the highest 
priority process from the shared ready queue
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Single Shared Ready Queue

• Pros
– Conceptually Simple
– Automatic load balancing

• Cons
– Lock contention on the ready queue can be a 

major bottleneck
• Due to frequent scheduling or many CPUs or both

– Not all CPUs are equal
• The last CPU a process ran on is likely to have 

more related entries in the cache.
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Affinity Scheduling

• Basic Idea
– Try hard to run a process on the CPU it ran on 

last time

• One approach: Multiple Queue 
Multiprocessor Scheduling
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Multiple Queue SMP Scheduling

• Each CPU has its own ready queue
• Coarse-grained algorithm assigns processes to CPUs

– Defines their affinity, and roughly balances the load
• The bottom-level fine-grained scheduler:

– Is the frequently invoked scheduler (e.g. on blocking on I/O, a 
lock, or exhausting a timeslice)

– Runs on each CPU and selects from its own ready queue
• Ensures affinity

– If nothing is available from the local ready queue, it runs a 
process from another CPUs ready queue rather than go idle

• Termed “Work stealing”
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Multiple Queue SMP Scheduling

• Pros
– No lock contention on per-CPU ready queues 

in the (hopefully) common case
– Load balancing to avoid idle queues
– Automatic affinity to a single CPU for more 

cache friendly behaviour



Today

• Scheduling decisions.
– When to make them.
– How to make them.

• I/O bound and CPU-bound tasks.
• Round robin and priority schedulers.
• Starvation and priority adjustments.
• Multi-CPU scheduling.
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