
1

Scheduling

Learning Outcomes

• Understand the role of the scheduler, and
how its behaviour influences the
performance of the system.

• Know the difference between I/O-bound
and CPU-bound tasks, and how they
relate to scheduling.

2

3

What is Scheduling?

– On a multi-programmed system
• We may have more than one Ready process

– On a batch system
• We may have many jobs waiting to be run

– On a multi-user system
• We may have many users concurrently using the

system

• The scheduler decides which process (or
thread) to run next.
– The process of choosing is called scheduling.

4

Is scheduling important?

• It is not in certain scenarios
– If you have no choice

• Early systems
– Usually batching
– Scheduling algorithm simple

» Run next on tape or next on punch tape

– Only one thing to run
• Simple PCs

– Only ran a word processor, etc….
• Simple Embedded Systems

– TV remote control, washing machine, etc….

5

Is scheduling important?
• It is in most realistic scenarios

– Multitasking/Multi-user System
• Example

– Email daemon takes 2 seconds to process an email
– User clicks button on application.

• Scenario 1
– Run daemon, then application

» System appears really sluggish to the user
• Scenario 2

– Run application, then daemon
» Application appears really responsive, small email delay is

unnoticed

• Scheduling decisions can have a dramatic effect on the
perceived performance of the system
– Can also affect correctness of a system with deadlines

6

Application Behaviour

• Bursts of CPU usage alternate with periods of I/O
wait

7

Application Behaviour

a) CPU-Bound process
• Spends most of its computing
• Time to completion largely determined by received CPU time

8

Application Behaviour

b) I/O-Bound process
– Spend most of its time waiting for I/O to complete

• Small bursts of CPU to process I/O and request next I/O
– Time to completion largely determined by I/O request time

9

Observation

• We need a mix of CPU-bound and I/O-bound processes
to keep both CPU and I/O systems busy

• Processes change from CPU- to I/O-bound (or vice
versa) in different phases of execution

10

Key Insight

• Choosing to run an I/O-bound process delays a CPU-bound
process by very little

• Choosing to run a CPU-bound process prior to an I/O-bound
process delays the next I/O request significantly

– No overlap of I/O waiting with computation
– Results in device (disk) not as busy as possible

 Generally, favour I/O-bound processes over CPU-bound processes

11

When is scheduling performed?
– A new process

• Run the parent or the child?
– A process exits

• Who runs next?
– A process waits for I/O

• Who runs next?
– A process blocks on a lock

• Who runs next? The lock holder?
– An I/O interrupt occurs

• Who do we resume, the interrupted process or the process that was
waiting?

– On a timer interrupt? (See next slide)
• Generally, a scheduling decision is required when a

process (or thread) can no longer continue, or when an
activity results in more than one ready process.

12

Preemptive versus Non-preemptive
Scheduling

• Non-preemptive
– Once a thread is in the running state, it continues until it

completes, blocks on I/O, or voluntarily yields the CPU
– A single process can monopolised the entire system

• Preemptive Scheduling
– Current thread can be interrupted by OS and moved to ready

state.
– Usually after a timer interrupt and process has exceeded its

maximum run time
• Can also be as a result of higher priority process that has become

ready (after I/O interrupt).
– Ensures fairer service as single thread can’t monopolise the

system
• Requires a timer interrupt

13

Categories of Scheduling Algorithms

• The choice of scheduling algorithm depends on the
goals of the application (or the operating system)
– No one algorithm suits all environments

• We can roughly categorise scheduling algorithms as
follows
– Batch Systems

• No users directly waiting, can optimise for overall machine
performance

– Interactive Systems
• Users directly waiting for their results, can optimise for users

perceived performance
– Realtime Systems

• Jobs have deadlines, must schedule such that all jobs (predictably)
meet their deadlines.

14

Goals of Scheduling Algorithms

• All Algorithms
– Fairness

• Give each process a fair share of the CPU

– Policy Enforcement
• What ever policy chosen, the scheduler should

ensure it is carried out

– Balance/Efficiency
• Try to keep all parts of the system busy

15

Goals of Scheduling Algorithms

• Interactive Algorithms
– Minimise response time (latency)

• Response time is the time difference between issuing a
command and getting the result

– E.g selecting a menu, and getting the result of that selection
• Response time is important to the user’s perception of the

performance of the system.

– Provide Proportionality
• Proportionality is the user expectation that short jobs will

have a short response time, and long jobs can have a long
response time.

• Generally, favour short jobs

16

Goals of Scheduling Algorithms

• Real-time Algorithms
– Must meet deadlines

• Each job/task has a deadline.
• A missed deadline can result in data loss or

catastrophic failure
– Aircraft control system missed deadline to apply brakes

– Provide Predictability
• For some apps, an occasional missed deadline is

okay
– E.g. video decoder

• Predictable behaviour allows smooth video
decoding with only rare skips

17

Goals of Scheduling Algorithms

• Real-time Algorithms
– Must meet deadlines

• Each job/task has a deadline.
• A missed deadline can result in data loss or

catastrophic failure
– Aircraft control system missed deadline to apply brakes

– Provide Predictability
• For some apps, an occasional missed deadline is

okay
– E.g. video decoder

• Predictable behaviour allows smooth video
decoding with only rare skips

18

Interactive Scheduling

General-purpose Scheduling

19

Challenges of General
Scheduing

Often we do not know the actual goals or
priorities of the user.

• Scenario A:
– User gets a software update notification, accepts

it and switches back to their video.

• Scenario B:
– User starts their assignment building and

switches to their music player.

20

Round Robin Scheduling

• Each process is given a timeslice to run in
• When the timeslice expires, the next

process preempts the current process,
and runs for its timeslice, and so on
– The preempted process is placed at the end

of the queue
• Implemented with

– A ready queue
– A regular timer interrupt

21

Example

• 5 Processes
– J1 arrives slightly

before J2, etc…
– All are immediately

runnable
– Execution times

indicated by scale
on x-axis

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

22

Round Robin Schedule

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

Timeslice = 1 unit

23

Round Robin Schedule

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

Timeslice = 3 units

24

Round Robin
• Pros

– Fair, easy to implement
• Con

– Assumes everybody is equal
• Issue: What should the timeslice be?

– Too short
• Waste a lot of time switching between processes
• Example: timeslice of 4ms with 1 ms context switch = 20% round

robin overhead
– Too long

• System is not responsive
• Example: timeslice of 100ms

– If 10 people hit “enter” key simultaneously, the last guy to run will only
see progress after 1 second.

• Degenerates into FCFS if timeslice longer than burst length

25

Trade-offs

• Issue: What should the timeslice be?

• OS design is full of trade-offs. This is one of the
biggest:

– Throughput
– Latency

26

Priorities

• Downside of round-robin: assumes equal priority
• Instead, each Process (or thread) is associated

with a priority
• Provides basic mechanism to influence a

scheduler decision:
– Scheduler will always chooses a thread of higher

priority over lower priority

• Priorities can be defined internally or externally
– Internal: e.g. I/O bound or CPU bound
– External: e.g. based on importance to the user

27

Example

• 5 Jobs
– J1 top priority
– J5 lowest priority
– Release and

execution times as
shown

• Priority-driven
preemptively scheduled

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

28

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

29

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

30

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

31

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

32

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

33

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

34

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

35

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

36

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

37

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

38

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

39

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

40

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

41

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

42

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

43

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

44

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

45

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

46

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

47

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

48

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

49

Priorities

• Usually implemented by multiple priority queues, with
round robin on each queue

• Con
– Low priorities can starve

• Need to adapt priorities periodically
– Based on ageing or execution history

50

Starvation
• We’ve seen the concept of starvation a few times.
• For synchronisation primitives, starvation is a bug.

– e.g. If a lock prefers a particular thread.
• For distributed protocols, starvation is a bug.

– e.g. Some busted approach to dining philosophers.

• For priority-based systems, starvation is a consequence
of a rigid policy decision.

– Not exactly a bug.

– Qualitatively different to performance or fairness issues.

51

Starvation Trivia

• Roundabout intersections have a starvation problem.

• Starvation is an interesting metaphor for ethical
questions in broader society.

52

Priorities

• Recall: Low priorities can starve
• Can be addressed by adapting priorities periodically

– Based on ageing or execution history

53

Traditional UNIX Scheduler
• Two-level scheduler

– High-level scheduler
schedules processes
between memory and
disk

– Low-level scheduler is
CPU scheduler

• Based on a multi-
level queue structure
with round robin at
each level

54

Traditional UNIX Scheduler
• The highest priority (lower

number) is scheduled
• Priorities are re-calculated once

per second, and re-inserted in
appropriate queue

– Avoid starvation of low priority
threads

– Penalise CPU-bound threads

55

Traditional UNIX Scheduler
• Priority = CPU_usage +nice +base

– CPU_usage = number of clock ticks
• Decays over time to avoid

permanently penalising the process
– Nice is a value given to the process

by a user to permanently boost or
reduce its priority

• Reduce priority of background jobs
– Base is a set of hardwired, negative

values used to boost priority of I/O
bound system activities

• Swapper, disk I/O, Character I/O

56

Multiprocessor Scheduling

• Given X processes (or threads) and Y
CPUs,
– how do we allocate them to the CPUs

57COMP3231 04s1

A Single Shared Ready Queue

• When a CPU goes idle, it take the highest
priority process from the shared ready queue

58

Single Shared Ready Queue

• Pros
– Conceptually Simple
– Automatic load balancing

• Cons
– Lock contention on the ready queue can be a

major bottleneck
• Due to frequent scheduling or many CPUs or both

– Not all CPUs are equal
• The last CPU a process ran on is likely to have

more related entries in the cache.

59

Affinity Scheduling

• Basic Idea
– Try hard to run a process on the CPU it ran on

last time

• One approach: Multiple Queue
Multiprocessor Scheduling

60

Multiple Queue SMP Scheduling

• Each CPU has its own ready queue
• Coarse-grained algorithm assigns processes to CPUs

– Defines their affinity, and roughly balances the load
• The bottom-level fine-grained scheduler:

– Is the frequently invoked scheduler (e.g. on blocking on I/O, a
lock, or exhausting a timeslice)

– Runs on each CPU and selects from its own ready queue
• Ensures affinity

– If nothing is available from the local ready queue, it runs a
process from another CPUs ready queue rather than go idle

• Termed “Work stealing”

61

Multiple Queue SMP Scheduling

• Pros
– No lock contention on per-CPU ready queues

in the (hopefully) common case
– Load balancing to avoid idle queues
– Automatic affinity to a single CPU for more

cache friendly behaviour

Today

• Scheduling decisions.
– When to make them.
– How to make them.

• I/O bound and CPU-bound tasks.
• Round robin and priority schedulers.
• Starvation and priority adjustments.
• Multi-CPU scheduling.

62

	Scheduling
	Learning Outcomes
	What is Scheduling?
	Is scheduling important?
	Is scheduling important? (2)
	Application Behaviour
	Application Behaviour (2)
	Application Behaviour (3)
	Observation
	Key Insight
	When is scheduling performed?
	Preemptive versus Non-preemptive Scheduling
	Categories of Scheduling Algorithms
	Goals of Scheduling Algorithms
	Goals of Scheduling Algorithms (2)
	Goals of Scheduling Algorithms (3)
	Slide 17
	Interactive Scheduling
	Slide 19
	Round Robin Scheduling
	Example
	Round Robin Schedule
	Round Robin Schedule (2)
	Round Robin
	Slide 25
	Priorities
	Example (2)
	Example (3)
	Example (4)
	Example (5)
	Example (6)
	Example (7)
	Example (8)
	Example (9)
	Example (10)
	Example (11)
	Example (12)
	Example (13)
	Example (14)
	Example (15)
	Example (16)
	Example (17)
	Example (18)
	Example (19)
	Example (20)
	Example (21)
	Example (22)
	Example (23)
	Priorities (2)
	Slide 50
	Slide 51
	Slide 52
	Traditional UNIX Scheduler
	Traditional UNIX Scheduler (2)
	Traditional UNIX Scheduler (3)
	Multiprocessor Scheduling
	A Single Shared Ready Queue
	Single Shared Ready Queue
	Affinity Scheduling
	Multiple Queue SMP Scheduling
	Multiple Queue SMP Scheduling (2)
	Slide 62

