
© Gernot Heiser 2025 – CC BY 4.0

School of Computer Science & Engineering
COMP3891/9283 Extended Operating Systems

2025 T2 Week 09

Object Capabilities
Gernot Heiser

© Gernot Heiser 2025 – CC BY 4.0

Copyright Notice

These slides are distributed under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License

• You are free:
• to share—to copy, distribute and transmit the work
• to remix—to adapt the work

• under the following conditions:
• Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/4.0/legalcode

COMP3891/9283 2025T2 W09: Object Capabilities1

© Gernot Heiser 2025 – CC BY 4.0

Learning Outcomes

• Understanding of object capabilities as a fine-grained
access control model

• Understanding of the pros and cons vs access-control lists
• Understanding of implementation approaches

COMP3891/9283 2025T2 W09: Object Capabilities2

© Gernot Heiser 2025 – CC BY 4.0

Access Control

Who can access what in which ways
• The “who” are called subjects (or agents)

• e.g. users, processes etc.
• The “what” are called objects

• e.g. individual files, sockets, processes etc.
• includes all subjects!

• The “ways” are called permissions
• e.g. read, write, execute etc.
• are usually specific to the kind of object
• include those meta-permissions that allow modification of the

protection state
• e.g. own

COMP3891/9283 2025T2 W09: Object Capabilities3

XY Z

write

© Gernot Heiser 2025 – CC BY 4.0

Unix File Access Control: User/Group/Mode

4 COMP3891/9283 2025T2 W09: Object Capabilities

g r ru s w w w xxx r

User-ID of
file owner

Mode: Access
permissions

GID

UID

Group-ID of file

• Identify file’s owner and group
• Specify access rights
• Stored in i-node

© Gernot Heiser 2025 – CC BY 4.0

Unix File Access Control: Mode Word

5 COMP3891/9283 2025T2 W09: Object Capabilities

g r ru s w w w xxx r

Read

Write
Execute/

search

User (owner)
permissions

Group
permissions

Permissions
for othersSet-UID

Set-GID

Sticky

for a ∈ {rwx}: a is allowed iff
 subject.UID == 0 ∨
 (subject.UID == file.UID ∧ u_perm.a) ∨
 (subject.UID ∈ group(file.GID) ∧ g_perm.a) ∨
 o_perm.a

© Gernot Heiser 2025 – CC BY 4.0

More General: Access Control Lists (ACLs)

6 COMP3891/9283 2025T2 W09: Object Capabilities

Ordered list of (id,perm) pairs

UID or GID Can be
negative right!

bool allowed (UID subj, ACCESS a, ACL acl) {
 if (subj == 0) return TRUE;
 for item in acl do {
 if (subj ∈ item.id) {
 if (a ∈ item.perm) return TRUE;
 if (a ∈ !item.perm) return FALSE;
 }
 }
 return FALSE;
}

• Unix mode word is a compressed ACL
• Linux, BSD now offer full ACLs as well

© Gernot Heiser 2025 – CC BY 4.0

alice$ gcc –o source.o source.c

The Confused Deputy

COMP3891/9283 2025T2 W09: Object Capabilities

Alice gcc Log fileWX

static char* log = “/var/gcc/log”;
int gcc (char *src, *dest) {
 int s = open (src, RDONLY);
 int l = open (log, APPEND);
 int d = open (dest, WRONLY);
 …
 write (dest, …);
}

Clobber log!

• ACLs separate naming and permissions
• Deputy depends on ambient authority:

Uses own privileges for access

Confused deputy is
inherent problem of ACLs!

Unix:
• Log file is group admin
• Alice not member of admin
• gcc is set-GID admin

alice$ gcc –o Log_file source.c

7

Subject
Deputy Object

© Gernot Heiser 2025 – CC BY 4.0

Protection State: Access-Control Matrix

COMP3891/9283 2025T2 W09: Object Capabilities

Obj 1 Obj 2 Obj 3 Subj 2

Subj 1 R RW send

Subj 2 RX control

Subj 3 RW
RWX
own

recv

Subjects are
also objects

Defines system’s protection state at a
particular time instance [Lampson ‘71]

8

© Gernot Heiser 2025 – CC BY 4.0

Representing Protection State

COMP3891/9283 2025T2 W09: Object Capabilities

Obj 1 Obj 2 Obj 3 Subj 2

Subj 1 R RW send

Subj 2 RX control

Subj 3 RW
RWX
own

recv

Storing full matrix is infeasible
• huge but sparse
• highly dynamic

Obj 1
Subj1: R
Subj3:
RW

Columns are ACLs!

9

© Gernot Heiser 2025 – CC BY 4.0

Representing Protection State

COMP3891/9283 2025T2 W09: Object Capabilities

Obj 1 Obj 2 Obj 3 Subj 2

Subj 1 R RW send

Subj 2 RX control

Subj 3 RW
RWX
own

recv

Subj 3
Obj1: RW
Obj3: RWX, own
Subj2: recv

Represented as a
capability list (Clist)

How about
rows?

“Object capability”

Set of rights a subject has –
the subject’s protection domain

bool allowed (ACCESS a, Cap c) {
 return a ∈ c.perm;
}

10

© Gernot Heiser 2025 – CC BY 4.0

(Object) Capabilities (aka Ocaps, Caps)

11 COMP3891/9283 2025T2 W09: Object Capabilities

Any operation is invoking a capability:
err = cap.method(args);

Obj reference
Access rights

E.g. read, write,
send, execute…

Object

E.g. thread,
address space

Capability = Access Token
Prima facie evidence of privilege

Fine-grained
access control

© Gernot Heiser 2025 – CC BY 4.0

Implementing Ocaps: Hardware

12 COMP3891/9283 2025T2 W09: Object Capabilities

PermissionsObject IDTag

i-node #, base
address, … r, w, c, d, …

Special bit
in memory • Cap can be copied like data ⇒ “delegation”

• Tag is reset when modifying word
• CPU has capability registers

Revocation
is hard!

Recently
revived: CHERI

© Gernot Heiser 2025 – CC BY 4.0

Implementing Ocaps: Software-Usermode

13 COMP3891/9283 2025T2 W09: Object Capabilities

Object ID Signature

• Cap can be copied like data ⇒ delegation
• Signature mismatch when modifying cap
• OS has object table,

holds signatures and permissions

Revocation
is hard!

© Gernot Heiser 2025 – CC BY 4.0

Implementing Ocaps: Software-Kernel

14 COMP3891/9283 2025T2 W09: Object Capabilities

Per-process
capability list

• Delegation is system call
• Revocation is easy

PermissionsObject ID
PermissionsObject ID
PermissionsObject ID
PermissionsObject ID
PermissionsObject ID
PermissionsObject ID
PermissionsObject ID

Kernel

User

Subj1
cap-ref

© Gernot Heiser 2025 – CC BY 4.0

alice$ gcc –o Log_file source.c

Confused Deputy With Object Capabilities

COMP3891/9283 2025T2 W09: Object Capabilities

Alice gcc Log fileRWX

static cap_t log = <cap>;
int gcc (cap_t src, dest) {
 fd_t s = open (src, RDONLY);
 fd_t l = open (log, APPEND);
 df_t d = open (dest, WRONLY);
 …
 write (d, …);
}

Open fails!

• Caps are both names and permissions
• Presented explicitly, not ambient
• Can’t name object if don’t have access!

Object capability (Ocaps) system:
• gcc holds w cap for log file
• Alice holds r cap for source,

w cap for destination
• Alice holds no cap for log file

Invalid cap

15

© Gernot Heiser 2025 – CC BY 4.0

How About Linux Capabilities?

16 COMP3891/9283 2025T2 W09: Object Capabilities

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

NAME
 capabilities - overview of Linux capabilities

DESCRIPTION
 For the purpose of performing permission checks, traditional UNIX
 implementations distinguish two categories of processes: privileged
 processes (whose effective user ID is 0, referred to as superuser or
 root), and unprivileged processes (whose effective UID is nonzero).
 Privileged processes bypass all kernel permission checks, while un-
 privileged processes are subject to full permission checking based
 on the process's credentials (usually: effective UID, effective GID,
 and supplementary group list).

 Starting with Linux 2.2, Linux divides the privileges traditionally
 associated with superuser into distinct units, known as capabili-
 ties, which can be independently enabled and disabled. Capabilities
 are a per-thread attribute.

© Gernot Heiser 2025 – CC BY 4.0

How About Linux Capabilities?

17 COMP3891/9283 2025T2 W09: Object Capabilities

bool allowed (UID subj, ACCESS a, ACL acl) {
 if (subj == 0) return TRUE;
 for item in acl do {
 if (subj ∈ item.id) {
 if (a ∈ item.perm) return TRUE;
 if (a ∈ !item.perm) return FALSE;
 }
 }
 return FALSE;
}

Linux “capabilities”
restrict system calls a
root process can invoke

syscall ∈ caplist;

“Capability lists” are
process attributes

Linux “capabilities” aren’t Ocaps:
Limit access to system calls, not objects

© Gernot Heiser 2025 – CC BY 4.0

alice$ gcc –o source.o source.c

Confused Deputy With Linux Capabilities

COMP3891/9283 2025T2 W09: Object Capabilities

Subject

Alice gcc Log fileRWX

Deputy

static char* log = “/var/gcc/log”;
int gcc (char *src, *dest) {
 int s = open (src, RDONLY);
 int l = open (log, APPEND);
 int d = open (dest, WRONLY);
 …
 write (dest, …);
}

Still uses ambient
authority!

Linux ”capabilities” do nothing to prevent
the deputy from being confused!

Unix:
• Log file is group admin
• Alice not member of admin
• gcc is set-GID admin

alice$ gcc –o Log_file source.c

18

• gcc doesn’t execute as root
• Needs w access to log file

© Gernot Heiser 2025 – CC BY 4.0

Delegating Access

19 COMP3891/9283 2025T2 W09: Object Capabilities

Privilege conveyed by cap (eg files):
• Read (r)
• Write (w)
• Execute (x)
• Delegate (d)

Object

Subj1
- dr w

Subj2
- -r -

Delegate (-w,-d)

rw r

No write access,
no delegation

© Gernot Heiser 2025 – CC BY 4.0

Access Control Lists
• Access based on identity
• Course-grained (by subj-ID)
• Objects referenced by name
• Ambient authority
• Delegation course-grained

• setuid/setgid
• Large default access set

Object capabilities
• Access based on holding cap
• Fine-grained (per object)
• Object referenced by Ocap
• Explicit cap presentation
• Delegation fine-grained

• per object per subject
• No default access

20 COMP3891/9283 2025T2 W09: Object Capabilities

ACLs vs Ocaps

Principle of least
authority (POLA)!

