
Multiprocessor Systems
II

Chapter 8, 8.1

1

Learning Outcomes
• An understanding of the structure and limits of

multiprocessor hardware.
• An appreciation of approaches to operating system

support for multiprocessor machines.
• An understanding of issues surrounding and

approaches to construction of multiprocessor
synchronisation primitives.

2

CPU clock-rate increase slowing

3

Recall Mutual Exclusion
with Test-and-Set

Entering and leaving a critical region using the
TSL instruction

4

Test-and-Set
• Hardware guarantees that the instruction executes atomically on a

CPU.
• Atomically: As an indivisible unit.

• The instruction can not stop half way through

5

Reducing Bus Contention

• Read before TSL
• Spin reading the lock variable waiting for it

to change
• When it does, use TSL to acquire the lock

• Allows lock to be shared read-only in all
caches until its released

• no bus traffic until actual release

• No race conditions, as acquisition is still
with TSL.

start:

while (lock == 1)

 ;

r = TSL(lock);

if (r == 1)

goto start;

6

7

Spinning Locks versus Blocking Locks

8

Time

Spinlock

Blocking Lock

Time

spinlock_acquir
e

spinlock_releas
e

lock_acquire lock_release

sleep wake

Uniprocessor: Spinning versus Blocking

9

Time

Spinlock

Blocking Lock

Time

Time saved by
not spinning

Thread A

Thread B

Thread A

Thread B

Spinning versus Blocking and
Switching

• Spinning (busy-waiting) on a lock makes no sense on
a uniprocessor

• The was no other running process to release the lock
• Blocking and (eventually) switching to the lock holder is

the only sensible option.
• On multiprocessor systems, the decision to spin or

block is not as clear.
• The lock might be held by another running CPU and be

freed in the near future while the current task spins

10

Multiprocessor: Spinning versus Blocking

11

Time

Spinlock

Blocking Lock

Time Time saved by
spinning

CPU 1

CPU 2

CPU 1

CPU 2
Thread A

CPU 2
Thread B

Multiprocessor: Spinning versus Blocking

12

Time

Spinlock

Blocking Lock

Time

Time saved by
not spinning

CPU 2
Thread A

CPU 2
Thread B

CPU 1

CPU 1

CPU 2
Thread A

CPU 2
Thread B

Spinning versus Switching
• Switching to another process takes time

• Save context and restore another
• Cache relevant to current process not new process

• Adjusting the cache working set also takes time
• TLB is similar to cache

• Blocking and resuming requires two switches
• Spinning wastes CPU time directly

• Trade off
• Might the lock be held for longer than 2x switch overhead?

• Yes, it’s probably more efficient to block
• No, it’s probably more efficient to spin

Þ Spinlocks expect critical sections to be short
Þ No waiting for I/O within a spinlock
Þ No nesting locks within a spinlock

13

Preemption and Spinlocks
• Critical sections synchronised via spinlocks are expected to

be short
• Avoid other CPUs wasting cycles spinning

• What happens if the spinlock holder is preempted at end of
holder’s timeslice?

• Mutual exclusion is still guaranteed
• Other CPUs will spin until the holder is scheduled again!!!!!

 ⇒ Within the OS, Spinlock implementations disable interrupts
in addition to acquiring locks

• avoids lock-holder preemption
• avoids spinning on a uniprocessor

14

A Hybrid Lock
• Suppose we want to implement a user level lock

– System has test-and-set (similar story for other ops)
– System calls take ~ 200 cycles
– Thread switches take ~ 2000 cycles

• Simple strategy:
– Attempt to take the lock with test-and-set
– If not, spin with read/test-and-set for ~ 1000 cycles
– Then trigger a thread-switch

● e.g. wait on an OS-level object

15

Bonus Content

• Some additional content on multi-core locking for today
– Invented Cache Protocol
– Ticket locks
– MCS/Queue locks

– Note this content is not assessible this year

16

Cache State (Invented)
• To understand why Test-Test-Set saves

inter-cache bandwidth
• This is an invented cache state

• Like TLB, associative mapping + status bits
– Read/Valid
– Write/Exclusive
– Dirty
– Locked

start:

while (lock == 1)

 ;

r = TSL(lock);

if (r == 1)

goto start;

17

R/V W/X D L V Addr Contents

Cache Status Bits

• Read/Valid
– This is a valid cache entry, and can be read

• Write/Exclusive
– This entry can be written. No other entry is valid.

• .Dirty
– This entry contains writes not yet written to memory.

• Locked
– ???

18

R/V W/X D L V Addr Contents

Invalidate Operations

19

R/V W/X D L V Addr Contents

1 0 0 0 0x1f00 0x0000

R/V W/X D L V Addr Contents

1 0 0 0 0x1f00 0x0000

CPU 1
– Write @ 0x1f00

CPU 2

• CPU 1 broadcasts
– INVAL(ALL)

• CPU 2
– ACK

Cache Status Bit Invariants

• W/X implies R/V
• W/X implies no other R/V
• D implies W/X
• R/V and not D implies (Contents equals Memory)

20

R/V W/X D L V Addr Contents

Invalidate to Read

21

R/V W/X D L V Addr Contents

0 0 0 0 N/A N/A

R/V W/X D L V Addr Contents

1 1 0 0 0x1f00 0x1234

CPU 1
– Read @ 0x1f00

CPU 2

• CPU 1 broadcasts
– INVAL(EXCL)

• CPU 2
– ACK

• CPU 1 can read memory

Invalidate to Read II

22

R/V W/X D L V Addr Contents

0 0 0 0 N/A N/A

R/V W/X D L V Addr Contents

1 1 1 0 0x1f00 0x4567

CPU 1
– Read @ 0x1f00

CPU 2

• CPU 1 broadcasts
– INVAL(EXCL)

• CPU 2
– WAIT!!

Lock Status Bit

• Lock status bit causes WAIT!!
• Prevents other caches causing a writeback & invalidate

• Used to implement atomics
• CPU test-and-set:

– 1: Lock cache line
– 2: Test-and-set between cache line and register
– 3: Unlock cache line

23

R/V W/X D L V Addr Contents

Test-and-Set Lock Phase 1

24

R/V W/X D L V Addr Contents

1 1 1 1 0x1f00 0 → 1

R/V W/X D L V Addr Contents

0 0 0 0 0x1f00 N/A

CPU 1
– TSL @ 0x1f00
– INVAL->Lock

CPU 2
– TSL @ 0x1f00
– Must WAIT

Test-and-Set Lock Phase 2

25

R/V W/X D L V Addr Contents

0 0 0 0 0x1f00 N/A

R/V W/X D L V Addr Contents

1 1 0 0/1 0x1f00 1

CPU 1
– Has lock, moves on

CPU 2
– Repeats TSL @ 0x1f00
– Gets cache line
– Spins
– OK

Test-and-Set Lock With 3 CPUS

26

R/V W/X D L V Addr Contents

0 0 0 0 0x1f00 N/A

CPU 1
– Has lock, moves on

CPU 2
– Repeats TSL @ 0x1f00

CPU 3
– Repeats TSL @ 0x1f00

● Massive INVAL traffic

R/V W/X D L V Addr Contents

0/1 0/1 0 0/1 0x1f00 1

R/V W/X D L V Addr Contents

0/1 0/1 0 0/1 0x1f00 1

Test-and-Test-and-Set Lock With 3 CPUS

27

R/V W/X D L V Addr Contents

1 0 0 0 0x1f00 1

CPU 1
– Has lock, moves on

CPU 2
– Repeats read @ 0x1f00

CPU 3
– Repeats read @ 0x1f00

● Reads remain in cache

● On unlock, INVAL flurry as CPU 2 & 3
race to take the lock

R/V W/X D L V Addr Contents

1 0 0 0 0x1f00 1

R/V W/X D L V Addr Contents

1 0 0 0 0x1f00 1

Ticket Lock

28

Consists of two words.
– avail: Next available ticket.
– curr: Currently active ticket.

Starting state is { avail = 0, curr = 0}.

• Lock:
– atomic { ticket = avail; avail ++ }
– Spin until { curr == ticket }

Ticket Lock With 3 CPUS

29

CPU 1
– Gets ticket 0, has lock

CPU 2
– Gets ticket 1, waits

CPU 3
– Gets ticket 2, waits

● CPU 1 releases by incrementing curr to 1
● Only CPU 2 attempts to proceed

R/V W/X D L V Addr Contents

1 0 0 0 0x1f00 0

R/V W/X D L V Addr Contents

1 0 0 0 0x1f00 0

R/V W/X D L V Addr Contents

1 0 0 0 0x1f00 0

30

MCS Locks
• Each CPU enqueues its own private lock variable into a queue and spins on

it
• No contention

• On lock release, the releaser unlocks the next lock in the queue
• Only have bus contention on actual unlock
• No starvation (order of lock acquisitions defined by the list)

31

MCS Lock
• Requires

• compare_and_swap()
• exchange()

• Also called fetch_and_store()

Today: Multiprocessing
• Need for multi-core and multi-processor systems
• Machine design, consistency and bandwidth challenges
• OS design challenges
• Synchronisation challenges on true multi-processors

32

	Multiprocessor Systems
	Learning Outcomes
	Slide 3
	Recall Mutual Exclusion with Test-and-Set
	Test-and-Set
	Reducing Bus Contention
	Slide 7
	Spinning Locks versus Blocking Locks
	Uniprocessor: Spinning versus Blocking
	Spinning versus Blocking and Switching
	Multiprocessor: Spinning versus Blocking
	Multiprocessor: Spinning versus Blocking (2)
	Spinning versus Switching
	Preemption and Spinlocks
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	MCS Locks
	MCS Lock
	Slide 32

