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Learning Outcomes
• An understanding of the structure and limits of 

multiprocessor hardware.
• An appreciation of approaches to operating system 

support for multiprocessor machines.
• An understanding of issues surrounding and 

approaches to construction of multiprocessor 
synchronisation primitives.
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CPU clock-rate increase slowing
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Recall Mutual Exclusion 
with Test-and-Set

Entering and leaving a critical region using the 
TSL instruction

4



Test-and-Set
• Hardware guarantees that the instruction executes atomically on a 

CPU.
• Atomically: As an indivisible unit.

• The instruction can not stop half way through
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Reducing Bus Contention

• Read before TSL
• Spin reading the lock variable waiting for it 

to change
• When it does, use TSL to acquire the lock

• Allows lock to be shared read-only in all 
caches until its released 

• no bus traffic until actual release

• No race conditions, as acquisition is still 
with TSL.

start:

while (lock == 1)

  ;

r = TSL(lock);

if (r == 1) 

goto start;
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Spinning Locks versus Blocking Locks

8

Time

Spinlock

Blocking Lock

Time

spinlock_acquir
e

spinlock_releas
e

lock_acquire lock_release

sleep wake



Uniprocessor: Spinning versus Blocking

9

Time

Spinlock

Blocking Lock

Time

Time saved by 
not spinning

Thread A

Thread B

Thread A

Thread B



Spinning versus Blocking and 
Switching

• Spinning (busy-waiting) on a lock makes no sense on 
a uniprocessor

• The was no other running process to release the lock
• Blocking and (eventually) switching to the lock holder is 

the only sensible option.
• On multiprocessor systems, the decision to spin or 

block is not as clear.
• The lock might be held by another running CPU and be 

freed in the near future while the current task spins
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Multiprocessor: Spinning versus Blocking
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Multiprocessor: Spinning versus Blocking
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Spinning versus Switching
• Switching to another process takes time

• Save context and restore another
• Cache relevant to current process not new process

• Adjusting the cache working set also takes time
• TLB is similar to cache

• Blocking and resuming requires two switches
• Spinning wastes CPU time directly

• Trade off
• Might the lock be held for longer than 2x switch overhead?

• Yes, it’s probably more efficient to block
• No, it’s probably more efficient to spin

Þ Spinlocks expect critical sections to be short
Þ No waiting for I/O within a spinlock
Þ No nesting locks within a spinlock
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Preemption and Spinlocks
• Critical sections synchronised via spinlocks are expected to 

be short
• Avoid other CPUs wasting cycles spinning

• What happens if the spinlock holder is preempted at end of 
holder’s timeslice?

• Mutual exclusion is still guaranteed
• Other CPUs will spin until the holder is scheduled again!!!!!

 ⇒ Within the OS, Spinlock implementations disable interrupts 
in addition to acquiring locks 

• avoids lock-holder preemption
• avoids spinning on a uniprocessor
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A Hybrid Lock
• Suppose we want to implement a user level lock

– System has test-and-set (similar story for other ops)
– System calls take ~ 200 cycles
– Thread switches take ~ 2000 cycles

• Simple strategy:
– Attempt to take the lock with test-and-set 
– If not, spin with read/test-and-set for ~ 1000 cycles
– Then trigger a thread-switch

● e.g. wait on an OS-level object
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Bonus Content

• Some additional content on multi-core locking for today
– Invented Cache Protocol
– Ticket locks
– MCS/Queue locks

– Note this content is not assessible this year
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Cache State (Invented)
• To understand why Test-Test-Set saves 

inter-cache bandwidth
• This is an invented cache state

• Like TLB, associative mapping + status bits
– Read/Valid
– Write/Exclusive
– Dirty
– Locked

start:

while (lock == 1)

  ;

r = TSL(lock);

if (r == 1) 

goto start;
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Cache Status Bits

• Read/Valid
– This is a valid cache entry, and can be read

• Write/Exclusive
– This entry can be written. No other entry is valid.

• .Dirty
– This entry contains writes not yet written to memory.

• Locked
– ???
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Invalidate Operations
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R/V W/X D L V Addr Contents

1 0 0 0 0x1f00 0x0000

R/V W/X D L V Addr Contents

1 0 0 0 0x1f00 0x0000

CPU 1
– Write @ 0x1f00

CPU 2

• CPU 1 broadcasts
– INVAL(ALL)

• CPU 2
– ACK



Cache Status Bit Invariants

• W/X   implies   R/V
• W/X   implies no other   R/V
• D   implies   W/X
• R/V   and not   D  implies   (  Contents   equals   Memory  )
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Invalidate to Read
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R/V W/X D L V Addr Contents

0 0 0 0 N/A N/A

R/V W/X D L V Addr Contents

1 1 0 0 0x1f00 0x1234

CPU 1
– Read @ 0x1f00

CPU 2

• CPU 1 broadcasts
– INVAL(EXCL)

• CPU 2
– ACK

• CPU 1 can read memory



Invalidate to Read II
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R/V W/X D L V Addr Contents

0 0 0 0 N/A N/A

R/V W/X D L V Addr Contents

1 1 1 0 0x1f00 0x4567

CPU 1
– Read @ 0x1f00

CPU 2

• CPU 1 broadcasts
– INVAL(EXCL)

• CPU 2
– WAIT!!



Lock Status Bit

• Lock status bit causes WAIT!!
• Prevents other caches causing a writeback & invalidate

• Used to implement atomics
• CPU test-and-set:

– 1: Lock cache line
– 2: Test-and-set between cache line and register
– 3: Unlock cache line
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Test-and-Set Lock Phase 1
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R/V W/X D L V Addr Contents

1 1 1 1 0x1f00 0 → 1

R/V W/X D L V Addr Contents

0 0 0 0 0x1f00 N/A

CPU 1
– TSL @ 0x1f00
– INVAL->Lock

CPU 2
– TSL @ 0x1f00
– Must WAIT



Test-and-Set Lock Phase 2
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R/V W/X D L V Addr Contents

0 0 0 0 0x1f00 N/A

R/V W/X D L V Addr Contents

1 1 0 0/1 0x1f00 1

CPU 1
– Has lock, moves on

CPU 2
– Repeats TSL @ 0x1f00
– Gets cache line
– Spins
– OK



Test-and-Set Lock With 3 CPUS
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R/V W/X D L V Addr Contents

0 0 0 0 0x1f00 N/A

CPU 1
– Has lock, moves on

CPU 2
– Repeats TSL @ 0x1f00

CPU 3
– Repeats TSL @ 0x1f00

● Massive INVAL traffic

R/V W/X D L V Addr Contents

0/1 0/1 0 0/1 0x1f00 1

R/V W/X D L V Addr Contents

0/1 0/1 0 0/1 0x1f00 1



Test-and-Test-and-Set Lock With 3 CPUS
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R/V W/X D L V Addr Contents

1 0 0 0 0x1f00 1

CPU 1
– Has lock, moves on

CPU 2
– Repeats read @ 0x1f00

CPU 3
– Repeats read @ 0x1f00

● Reads remain in cache

● On unlock, INVAL flurry as CPU 2 & 3 
race to take the lock

R/V W/X D L V Addr Contents

1 0 0 0 0x1f00 1

R/V W/X D L V Addr Contents

1 0 0 0 0x1f00 1



Ticket Lock
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Consists of two words.
– avail: Next available ticket.
– curr: Currently active ticket.

Starting state is { avail = 0, curr = 0}.

• Lock:
– atomic { ticket = avail; avail ++ }
– Spin until { curr == ticket }



Ticket Lock With 3 CPUS
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CPU 1
– Gets ticket 0, has lock

CPU 2
– Gets ticket 1, waits

CPU 3
– Gets ticket 2, waits

● CPU 1 releases by incrementing curr to 1
● Only CPU 2 attempts to proceed

R/V W/X D L V Addr Contents

1 0 0 0 0x1f00 0

R/V W/X D L V Addr Contents

1 0 0 0 0x1f00 0

R/V W/X D L V Addr Contents

1 0 0 0 0x1f00 0
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MCS Locks
• Each CPU enqueues its own private lock variable into a queue and spins on 

it
• No contention

• On lock release, the releaser unlocks the next lock in the queue
• Only have bus contention on actual unlock
• No starvation (order of lock acquisitions defined by the list)
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MCS Lock
• Requires 

• compare_and_swap() 
• exchange() 

• Also called fetch_and_store()



Today: Multiprocessing
• Need for multi-core and multi-processor systems
• Machine design, consistency and bandwidth challenges
• OS design challenges
• Synchronisation challenges on true multi-processors
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