
1

I/O Management
Intro

Chapter 5 - 5.3

Learning Outcomes

• A high-level understanding of the
properties of a variety of I/O devices.

• An understanding of methods of
interacting with I/O devices.

2

3

4

I/O Devices

• There exists a huge variety of I/O devices
• Challenge:

– Uniform and efficient approach to I/O

5

Device Drivers
• Logical position of device drivers

is shown here
• Drivers (originally) compiled into

the kernel
– Including OS/161
– Device installers were

technicians
– Number and types of devices

rarely changed
• Nowadays they are dynamically

loaded when needed
– Linux modules
– Typical users (device installers)

can’t build kernels
– Number and types vary greatly

• Even while OS is running (e.g
hot-plug USB devices)

6

Device Drivers

• Drivers classified into similar categories
– Block devices and character (stream of data) device

• OS defines a standard (internal) interface to
the different classes of devices
– Example: USB Human Input Device (HID) class

specifications
• human input devices follow a set of rules making it easier to

design a standard interface.

USB Device Classes
Base
Class

Descriptor
Usage

Description

00h Device Use class information in the Interface Descriptors

01h Interface Audio

02h Both Communications and CDC Control

03h Interface HID (Human Interface Device)

05h Interface Physical

06h Interface Image

07h Interface Printer

08h Interface Mass Storage

09h Device Hub

0Ah Interface CDC-Data

0Bh Interface Smart Card

0Dh Interface Content Security

0Eh Interface Video

0Fh Interface Personal Healthcare

10h Interface Audio/Video Devices

DCh Both Diagnostic Device

E0h Interface Wireless Controller

EFh Both Miscellaneous

FEh Interface Application Specific

FFh Both Vendor Specific

7

8

I/O Device Handling

• Data rate
– May be differences of several orders of

magnitude between the data transfer rates

– Example: Assume 1000 cycles/byte I/O
• Keyboard needs 10 KHz processor to keep up
• Gigabit Ethernet needs 100 GHz processor…..

9

Sample Data Rates

USB 3.0 625 MB/s (5 Gb/s)
Thunderbolt 2.5GB/sec (20 Gb/s)
PCIe v3.0 x16 16GB/s

10

Device Drivers
• Device drivers job

– translate request through the device-independent
standard interface (open, close, read, write) into
appropriate sequence of commands (register
manipulations) for the particular hardware

– Initialise the hardware at boot time, and shut it down
cleanly at shutdown

11

Device Driver

• After issuing the command to the device, the
device either
– Completes immediately and the driver simply returns

to the caller
– Or, device must process the request and the driver

usually blocks waiting for an I/O complete interrupt.
• Drivers are thread-safe as they can be called

by another process while a process is already
blocked in the driver.
– Thead-safe: Synchronised…

12

Device-Independent I/O Code

• OS Software can support multiple devices
• Divide I/O software into device-dependent

and device-independent I/O software
• Device independent software includes

– Buffer or Buffer-cache management
– TCP/IP stack
– Sound multiplexing
– Error reporting

Accessing Devices

13

14

Accessing I/O Controllers

a) Separate I/O and memory space
– I/O controller registers appear as I/O ports
– Accessed with special I/O instructions

b) Memory-mapped I/O
– Controller registers appear as memory
– Use normal load/store instructions to access

c) Hybrid
– x86 has both ports and memory mapped I/O

15

Interrupts

• Devices connected to an Interrupt Controller via
lines on an I/O bus (e.g. PCI)

• Interrupt Controller signals interrupt to CPU and
is eventually acknowledged.

• Exact details are architecture specific.

I/O Interaction

16

17

• Also called polling, or busy
waiting

• CPU initiates I/O
• I/O device performs the I/O
• On completion, device updates a

status register
• No interrupts occur
• CPU loops until it detects

operation is complete
– Wastes CPU cycles

Programmed I/O

18

Interrupt-Driven I/O

• Processor is interrupted when I/O
module (controller) ready to
exchange data

• Processor is free to do other work
• No needless waiting

• Copying data is still slow

19

Direct Memory Access
• Transfers data directly between Memory and Device
• CPU not needed for copying

CPU Memory Device

CPU Memory Device

DMA
Controller

DMA
Controller

DMA
Controller in

Device

Separate
DMA

Controller

20

Direct Memory Access

• Transfers a block of data
directly to or from memory

• An interrupt is sent when
the task is complete

• The processor is only
involved at the beginning
and end of the transfer

21

DMA Considerations
 Reduces number of interrupts

– Less (expensive) context switches or kernel entry-exits
 Requires contiguous regions (buffers)

– Copying
– Some hardware supports “Scatter-gather”

• Synchronous/Asynchronous
• Shared bus must be arbitrated (hardware)

– CPU cache reduces (but not eliminates) CPU need for bus

• Buggy device can read/write memory

CPU Memory Device

22

Interrupt Handlers
• Interrupt handlers

– Can execute at (almost) any time
• Raise (complex) concurrency issues in the kernel
• Can propagate to userspace (signals, upcalls), causing similar

issues
• Generally structured so I/O operations block until interrupts

notify them of completion
– kern/dev/lamebus/lhd.c

23

Interrupt Handler Example
static int
lhd_io(struct device *d,
 struct uio *uio)
{
...
 /* Loop over all the sectors
 * we were asked to do. */
 for (i=0; i<len; i++) {
 /* Wait until nobody else
 * is using the device. */
 P(lh->lh_clear);
 ...
 /* Tell it what sector we want... */
 lhd_wreg(lh, LHD_REG_SECT, sector+i);
 /* and start the operation. */
 lhd_wreg(lh, LHD_REG_STAT, statval);
 /* Now wait until the interrupt
 * handler tells us we're done. */
 P(lh->lh_done);

 /* Get the result value
 * saved by the interrupt handler. */
 result = lh->lh_result;
}

lhd_iodone(struct lhd_softc *lh, int err)
{
 lh->lh_result = err;
 V(lh->lh_done);
}

void
lhd_irq(void *vlh)
{
 ...
 val = lhd_rdreg(lh, LHD_REG_STAT);

 switch (val & LHD_STATEMASK) {
 case LHD_IDLE:
 case LHD_WORKING:
 break;
 case LHD_OK:
 case LHD_INVSECT:
 case LHD_MEDIA:
 lhd_wreg(lh, LHD_REG_STAT, 0);
 lhd_iodone(lh,
 lhd_code_to_errno(lh, val));
 break;
 }
}

INT

SLEEP

24

Interrupt Handler Steps
• Save Registers not already saved by hardware interrupt

mechanism

• (Optionally) set up context for interrupt service procedure
– Typically, handler runs in the context of the currently running process

• No expensive context switch

• Set up stack for interrupt service procedure
– Handler usually runs on the kernel stack of current process
– Or “nests” if already in kernel mode running on kernel stack

• Ack/Mask interrupt controller, re-enable other interrupts
– Implies potential for interrupt nesting.

25

Interrupt Handler Steps
• Run interrupt service procedure

– Acknowledges interrupt at device level
– Figures out what caused the interrupt

• Received a network packet, disk read finished, UART transmit queue
empty

– If needed, it signals blocked device driver
• In some cases, will have woken up a higher priority

blocked thread
– Choose newly woken thread to schedule next.
– Set up MMU context for process to run next
– What if we are nested?

• Load new/original process' registers
• Re-enable interrupt; Start running the new process

26

Blocking in Interrupts
• An interrupt generally has no context (runs on current kernel stack)

– Unfair to sleep on interrupted process (deadlock possible)
– Where to get context for long running operation?
– What goes into the ready queue?

• What to do?
– Top and Bottom Half
– Linux implements with tasklets and workqueues
– Generically, in-kernel thread(s) handle long running kernel

operations.

Top/Half Bottom Half
• Top Half

– Interrupt handler
– remains short

• Bottom half
– Is preemptable by top half

(interrupts)
– performs deferred work (e.g. IP

stack processing)
– Is checked prior to every kernel exit
– signals blocked processes/threads to

continue

• Enables low interrupt latency
• Bottom half can’t block

27

Top Half (Interrupt
Handler)

Bottom Half

Higher Software
Layers

Stack Usage

1. Higher-level
software

2. Interrupt
processing
(interrupts
disabled)

3. Deferred
processing
(interrupt re-
enabled)

4. Interrupt while in
bottom half

28

Kernel Stack

H

HT

HB

HBT

1

2

3

4

Deferring Work on In-kernel
Threads

• Interrupt
– handler defers work

onto in-kernel thread

• In-kernel thread
handles deferred
work (DW)
– Scheduled normally
– Can block

• Both low interrupt
latency and blocking
operations

29

H

I

D
W

In-kernel thread
stack

Normal
process/thread

stack

30

I/O Software Summary

 Layers of the I/O system and the main
functions of each layer

	I/O Management Intro
	Learning Outcomes
	Slide 3
	I/O Devices
	Device Drivers
	Device Drivers (2)
	USB Device Classes
	I/O Device Handling
	Sample Data Rates
	Device Drivers (3)
	Device Driver
	Device-Independent I/O Software
	Slide 13
	Accessing I/O Controllers
	Interrupts
	I/O Interaction
	Programmed I/O
	Interrupt-Driven I/O
	Direct Memory Access
	Direct Memory Access (2)
	DMA Considerations
	Interrupt Handlers
	Interrupt Handler Example
	Interrupt Handler Steps
	Interrupt Handler Steps (2)
	Sleeping in Interrupts
	Top/Half Bottom Half
	Stack Usage
	Deferring Work on In-kernel Threads
	I/O Software Summary

