Multiprocessor Systems

Chapter 8, 8.1

ssssss



Learning Outcomes

* An understanding of the structure and limits of
multiprocessor hardware.

* An appreciation of approaches to operating system
support for multiprocessor machines.

* An understanding of issues surrounding and
approaches to construction of multiprocessor
synchronisation primitives.
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CPU clock-rate increase slowing
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CPU clock-rate increase slowing

CPU CIOCk Rate + Core Count (Including "boost clock" and server core count, but no overclocking) (In Log)
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Moore's Law continuing

Moore’s Law: The number of transistors on microchips doubles every two years [SHgWEE

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
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Related Anecdotes

* There are fascinating pictures out there of multi-core layouts

€.g. https://www.cpushack.com/2018/03/24/making-multicore-a-slice-of-sandy/
* There are plenty of auxiliary reasons to go multi-core

— c.f. conversation about multi-core engine controller
* In this lecture we will discuss multi-CPU and multi-core

— Similar but different communication layout

— Similar but different performance concerns
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https://www.cpushack.com/2018/03/24/making-multicore-a-slice-of-sandy/

Multiprocessor System

* We will look at shared-memory multiprocessors
* More than one processor sharing the same memory

* Because: a single CPU can only go so fast
* Use more than one CPU to improve performance

* Assumes
* Workload can be parallelised
* Workload is not I/0O-bound or memory-bound

* Because: other computer hardware is expensive

* e.g. disks, memory, network connection
* Can share hardware between CPUs
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Amdahl's law

* Given a proportion P of a program that can
be made parallel, and the remaining serial
portion (1-P), speedup by using N processors

1
P
(1- P)+—
N
1 Processor 2 Processors
Serial Parallel Serial Parallel
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Time \ / Time__,

Speedup = 1/(0.5+0.5/2) =1.33...
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Bus-Based Uniform Memory Access
Multiprocessors

* Simplest MP, multiple processors on a single bus with memory.
* Bus controller or mechanism resolves parallel access.
* Access to all memory occurs at roughly the same speed for all processors.
* Bus bandwidth becomes a bottleneck with more than just a few CPUs.

Shared memory

\

CPU CPU M

Bus
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Multiprocessor caches

* Each processor has a cache to reduce its need for access to memory.
* Hopefully most accesses are performed in the local cache.
* Bus bandwidth still becomes a bottleneck with many CPUs.
* Software behaviour affects the CPU/memory tradeoff.

CPU
[

Cache

CPU
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Cache Consistency

* What happens if one CPU writes to address 0x1234 (and it is stored in
its cache) and another CPU reads from the same address (and gets

what is in its cache)?

CPU

CPU

I Cache
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Cache Consistency

* Cache consistency is usually handled by the hardware.
* Writes to one cache propagate to, or invalidate appropriate entries on other

caches

e Cache transactions also consume bus bandwidth

CPU

Cache

CPU
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Multi-core Processor

)
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Bus-Based UMA Multiprocessors

* With only a single shared bus, scalability can be limited by the bus
bandwidth of the single bus.

* Caching helps, but only helps so much.

* Alternative bus architectures do exist.
* They can improve bandwidth available.
* Nonetheless, bus bandwidth is limited.

ssssss



Summary

* Multiprocessors can

* Increase computation power beyond that available from a
single CPU

* Share resources such as disk and memory

* However
* Assumes a workload which can run in parallel

* Assumes not I/O or memory limited
* Shared buses (bus bandwidth) limit scalability

* Bus bandwidth can be boosted via hardware design

* Bus contention can be reduced by careful software design
* Good cache locality together with limited data sharing where possible
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Question

* How do we construct an OS for a multiprocessor?
* What are some of the issues?
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Each CPU has its own OS?

* Statically allocate physical memory to each CPU

* Each CPU runs its own independent OS

* Share peripherals

e Each CPU (OS) handles its processes system calls

CPU 1

Has
private
oS

CPU 2

Has
private
0S

CPU 3

Has
private
OS

— Or create a cross/OS “peripheral”

CPU 4

Has
private
OS

Memory

1 2
Data | Data

/O

3 4
Data | Data

OS code




Each CPU has its own OS

* Used in early multiprocessor systems to ‘get them going’
* Simpler to implement
* Avoids CPU-based concurrency issues by not sharing
* Scales - no shared serial sections
* Modern analogy, virtualisation in the cloud.

/O

CPU 1 CPU 2 CPU 3 CPU 4 Memory
1
Has Has Has Has Data Dita
private private private private (3 | 4
oS oS OS oS Data | Data
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Issues

* Each processor has its own scheduling queue
* We can have one processor overloaded, and the rest idle

* Each processor has its own memory partition

* We can a one processor thrashing, and the others with free
memory
* No way to move free memory from one OS to another

CPU 1 CPU2 CPU 3 CPU 4 Memory /O
1
Has Has Has Has Data Dita
private private private private (3 | 4
oS oS OS oS Data | Data
QS code




Symmetric Multiprocessors (SMP)

* OS kernel run on all processors

* Load and resources are balanced between all processors
* Including kernel execution

* Issue: Real concurrency in the kernel
* Need carefully applied synchronisation primitives to avoid disaster

CPU 1 CPU 2 CPU 3 CPU 4 Memory /O
Runs Runs Runs Runs
users and users and users and users and

shared OS shared OS shared OS shared OS oS o

\ \Locks

Bus
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Symmetric Multiprocessors (SMP)

* One alternative: A single mutex that make the entire kernel a
large critical section

* Only one CPU can be in the kernel at a time

* The “big lock” becomes a bottleneck when in-kernel processing exceeds
what can be done on a single CPU

CPU 1 CPU 2 CPLU 3 CPU 4 Memory /O
Runs Runs Runs Runs
users and users and users and users and
shared 0S| |sharedOS| [shared OS| |shared OS 0S o
\
\ Locks
Bus
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Symmetric Multiprocessors (SMP)

* Better alternative: identify largely independent parts of the
kernel and make each of them their own critical section
* Allows more parallelism in the kernel

* |ssue: Difficult task
* Code is mostly similar to uniprocessor code

* Hard part is identifying independent parts of the OS
* Remember all the inter-dependencies between OS subsystems.

CPU 1 CPU 2 CPU 3 CPU 4 Memory /O
Runs Runs Runs Runs
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Symmetric Multiprocessors (SMP)

* Example:

* Associate a mutex with independent parts of the kernel

* Some kernel activities require more than one part of the kernel

* Need to acquire more than one mutex
* Great opportunity to deadlock!!!!

* Results in potentially complex lock ordering schemes that must be

adhered to
CPU 1 CPU 2 CPU 3 CPU 4 Memory /O
Runs Runs Runs Runs
users and users and users and users and
shared OS| [shared OS| [shared OS| |shared OS oS 0O
\ Locks
Bus
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Symmetric Multiprocessors (SMP)

* Example:
* Given a “big lock” kernel, we divide the kernel into two independent

parts with a lock each

e Good chance that one of those locks will become the next bottleneck

* Leads to more subdivision, more locks, more complex lock acquisition rules
* Subdivision in practice is (in reality) making more code multithreaded (parallelised)

CPU 1 CPU 2 CPU 3 CPU 4 Memory /O
Runs Runs Runs Runs
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Real life Scalability Example

* Early 1990’s, CSE wanted to run 80 X-Terminals off one or
more server machines

* Winning tender was a 4-CPU bar-fridge-sized machine with
256M of RAM
* Eventual config 6-CPU and 512M of RAM
* Machine ran fine in all pre-session testing
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Real life Scalability Example

* Students + assignment deadline = machine unusable
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Real life Scalability Example

* To fix the problem, the tenderer supplied more CPUs to
improve performance (number increased to 8)
* No change????

* Eventually, machine was replaced with
* Three 2-CPU pizza-box-sized machines, each with 256M RAM
* Cheaper overall

* Why?
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Real life Scalability Example

* Paper:
 Ramesh Balan and Kurt Gollhardt, “A Scalable Implementation of

Virtual Memory HAT Layer for Shared Memory Multiprocessor
Machines”, Proc. 1992 Summer USENIX conference

* The 4-8 CPU machine hit a bottleneck in the single threaded
VM code

* Adding more CPUs simply added them to the wait queue for the VM
locks, and made others wait longer

* The 2 CPU machines did not generate that much lock
contention and performed proportionally better.
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Lesson Learned

* Building scalable multiprocessor kernels is hard
* Lock contention can limit overall system performance
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SMP Linux similar evolution

inux 2.0 Single
Linux 2.2 Big loc
Linux 2.4 Big loc

kernel big lock (1996)
kK with interrupt handling locks

K plus some subsystem locks

Linux 2.6 most code moved outside the big lock,
data-based locking, lots of scalability tuning, etc..

*Big lock removed in kernel version 2.6.39
— released 2011
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Multiprocessor Synchronisation

* Given we need synchronisation, how can we
achieve it on a multiprocessor machine?

* Unlike a uniprocessor, disabling interrupts does not work.
* It does not prevent other CPUs from running in parallel

* Need special hardware support
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Recall Mutual Exclusion
with Test-and-Set

enter_region:

TSL REGISTER,LOCK | copy lock to register and set lock to 1
CMP REGISTER,#0 | was lock zero?
JNE enter_region | if it was non zero, lock was set, so loop

RET | return to caller; critical region entered

leave region:
MOVE LOCK,#0 | store a 0 in lock
RET | return to caller

Entering and leaving a critical region using the
TSL instruction
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Test-and-Set

* Hardware guarantees that the instruction executes atomically on a
CPU.

e Atomically: As an indivisible unit.
* The instruction can not stop half way through
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Test-and-Set on SMP

* |t does not work without some extra hardware support

CPU 1

Word
1000 is

initially O

Memory

CPU 2

1 A+II

| A
L1.CPU 1 readsaOJ

LZ. CPU2reads a0

)

.~

4

3.CPU 1 writes a 1

4. CPU 2 writes a 1
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Test-and-Set on SMP

* A solution:

* Hardware blocks all other CPUs from accessing the bus during
the TSL instruction to prevent memory accesses by any other
CPU.

* TSL has mutually exclusive access to memory for duration of
instruction.

Word

CPU 1000 is

Memory CPU 2

initially O

A A+I

| A |
L1.CPU 1 readsaOJ LZ. CPU2reads a0 J

4
3. CPU 1 writes a 1 4. CPU 2 writes a 1 \
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Test-and-Set on SMP

* Test-and Set is a busy-wait synchronisation primitive
* Called a spinlock

* [ssue:

* Lock contention leads to spinning on the lock

* Spinning on a lock requires blocking the bus which slows all other CPUs down
* Independent of whether other CPUs need a lock or not
* Causes bus contention
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Test-and-Set on SMP

* Caching does not help reduce bus contention
* Either TSL blocks the bus

* Or TSL requires exclusive access to the lock in the local cache

* Requires invalidation of same entry in other caches, and loading
entry into local cache

* Many CPUs performing TSL simply bounce a single exclusive entry
between all caches using the bus

CPU CPU| | CPU CPU M

Toate | loate |

Cache Cache
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Reducing Bus Contention

* Read before TSL start:
* Spin reading the lock variable waiting for it while (lock == 1)
to change
* When it does, use TSL to acquire the lock 7
* Allows lock to be shared read-only in all r = TSL( lock),
caches until its released if (r == 1)
* no bus traffic until actual release
goto start,
* No race conditions, as acquisition is still
with TSL.
CPU CPU| | CPU CPU M

| Cache ‘ | Cache ‘




Thomas Anderson, “The Performance of Spin Lock Alternatives for
Shared-Memory Multiprocessors”, IEEE Transactions on Parallel and
Distributed Systems, Vol 1, No. 1, 1990
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Comparison of Simple Spinlocks

* Test and Set
void lock (volatile lock_t *1) {
while (test_and_set(1l)) ;

}

* Read before Test and Set
void lock (volatile lock_t *1) {
while (*1 == BUSY || test_and_set(l)) ;

}
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Benchmark

for 1 =1 .. 1,000,000 {
lock(1)
crit_section()
unlock()
compute()

}

* Compute chosen from uniform random distribution
of mean 5 times critical section

* Measure elapsed time on Sequent Symmetry (20
CPU 30386, coherent write-back invalidate caches)
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Results

* Test and set performs poorly once there are enough CPUs
to cause contention for lock
* Expected

* Read before Test and Set performs better
* Performance less than expected
* Still significant contention on lock when CPUs notice release and all
attempt acquisition
* Critical section performance degenerates
* Critical section requires bus traffic to modify shared structure

* Lock holder competes with CPU that’s waiting as they test and set,
so the lock holder is slower

e Slower lock holder results in more contention

ssssss



A Performance Pattern

Output

Load
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Spinning Locks versus Blocking Locks

spinlock acquir spinlock releas
e e
Spinlock

Time

lock acquire lock release J
Blocking Lock ’ ’

) —— — —\m@—— — -

Time




Uniprocessor: Spinning versus Blocking

Thread A -EE - — — — — — — - —————-

Spinlock
ThreadB — —— — — N — — — — -
—
Time

Thread A - — — — @ — — — — — — — — — — - - —
Time saved by

not spinning

Blocking Lock

o7 B UNSW
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Spinning versus Blocking and
Switching

* Spinning (busy-waiting) on a lock makes no sense on
a uniprocessor
* The was no other running process to release the lock
* Blocking and (eventually) switching to the lock holder is
the only sensible option.
* On multiprocessor systems, the decision to spin or
block is not as clear.

* The lock might be held by another running CPU and be
freed in the near future while the current task spins
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Multiprocessor: Spinning versus Blocking

Time Time saved by
spinning

cPUL —————— @ ——————-

Blocking Lock
CPU2 e e e e e — — 4J4-————— - - — =

Thread A

U2 ——————4:».—%-«:————————-
Thread B

vvvvvv



Multiprocessor: Spinning versus Blocking

CPU 1
Spinlock

CPU 2
Thread A - = - = = =

CPU 2
Thread B

CPU 1

Blocking Lock

CPU 2 —_———————
Thread A

Time saved by
not spinning

Thread B —

vvvvvv



Spinning versus Switching

* Switching to another process takes time
* Save context and restore another
* Cache relevant to current process not new process
* Adjusting the cache working set also takes time
* TLB is similar to cache

* Blocking and resuming requires two switches

* Spinning wastes CPU time directly

* Trade off
* Might the lock be held for longer than 2x switch overhead?
* Yes, it's probably more efficient to block
* No, it's probably more efficient to spin

= Spinlocks expect critical sections to be short
= No waiting for I/O within a spinlock
= No nesting locks within a spinlock
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Preemption and Spinlocks

* Critical sections synchronised via spinlocks are expected to
be short

* Avoid other CPUs wasting cycles spinning

* What happens if the spinlock holder is preempted at end of
holder’s timeslice?
* Mutual exclusion is still guaranteed

= Within the OS, Spinlock implementations disable interrupts
in addition to acquiring locks
* avoids lock-holder preemption
* avoids spinning on a uniprocessor
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A Hybrid Lock

* Suppose we want to implement a user level lock
— System has test-and-set (similar story for other ops)

— System calls take ~ 200 cycles

— Thread switches take ~ 2000 cycles

* Simple strategy:
— Attempt to take the lock with test-and-set
— If not, spin with read/test-and-set for ~ 1000 cycles

— Then trigger a thread-switch
* e.g. wait on an OS-level object
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Today: Multiprocessing

* Need for multi-core and multi-processor systems
* Machine design, consistency and bandwidth challenges
* OS design challenges

* Synchronisation challenges on true multi-processors
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