
© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

School of Computer Science & Engineering
COMP3891/9283 Extended Operating Systems

2025 T2 Week 08

Virtual Machines
Gernot Heiser

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Copyright Notice

These slides are distributed under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License

• You are free:
• to share—to copy, distribute and transmit the work
• to remix—to adapt the work

• under the following conditions:
• Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Kevin Elphinstone and Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/4.0/legalcode

COMP3891/9283 2025T2 W08: Virtual Machines1

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Learning Outcomes

• An appreciation that the abstract interface to the system
can be at different levels.
• Virtual machine monitors (VMMs) provide a low-level interface

• An understanding of trap and emulate
• Understanding the difference between Type-1 (native) and

Type-2 VMMs (hosted)

COMP3891/9283 2025T2 W08: Virtual Machines2

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Virtual Machines: References

• Short version: Smith, J.E.; Ravi Nair, "The architecture of
virtual machines," Computer, 38(5), pp. 32- 38, May 2005

• Longer version: Textbook “Modern Operating Systems”, 5th
ed, Ch 7–7.3

• If you’re keen: Rest of chapter 7.

COMP3891/9283 2025T2 W08: Virtual Machines3

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Observations on Interfaces

• Operating systems provide well defined interfaces
• Abstract hardware details

• Simplify
• Enable portability across hardware differences

• Hardware instruction set architectures are another well
defined interface
• Example AMD and Intel both implement (mostly) the same ISA
• Same software can run on both

4 COMP3891/9283 2025T2 W08: Virtual Machines

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Instruction Set Architecture (ISA)

5 COMP3891/9283 2025T2 W08: Virtual Machines

ISA= HW-SW
interface

Privileged
instructions

Unprivileged
instructions

Portability across
processors sharing ISA

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Application Binary Interface (ABI)

6 COMP3891/9283 2025T2 W08: Virtual Machines

ABI: Interface
seen by

applications

OS system
calls

Unprivileged
instructions

Privilege boundary,
Portability within ISA

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Application Programming Interface (API)

7 COMP3891/9283 2025T2 W08: Virtual Machines

API: Source-
level Interface

Library calls
(incl syscalls)

Unprivileged
instructions

Abstracts ABI, source-code
portability across ISAs

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Interface Goals

8 COMP3891/9283 2025T2 W08: Virtual Machines

• Portability of software across all computing platforms
• Secure sharing of hardware resources.

• E.g. cloud computing

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

OS as a Virtual Machine
• Multiplexes the physical machine between applications

• Time sharing, multitasking, batching

• … with a changed (more high-level) interface for
• Ease of use
• Portability
• Efficiency
• Security
• Etc….

9 COMP3891/9283 2025T2 W08: Virtual Machines

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Abstraction versus Virtualisation

10 COMP3891/9283 2025T2 W08: Virtual Machines

Simpler
interface

“HW”
interface

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Process versus System Virtual Machine

11 COMP3891/9283 2025T2 W08: Virtual Machines

Lifetime
is process

Lifetime
exceeds

apps

High-
level API

“HW” API

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

JAVA – Process Virtual Machine

• Write a program once, and
run it anywhere
• Architecture independent
• Operating System independent

• Language itself is clean,
robust, garbage collection

• Program compiled into
bytecode
• Interpreted or just-in-time

compiled.
• Lower than native performance

COMP3891/9283 2025T2 W08: Virtual Machines12

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Native Execution vs Emulation/Translation

COMP3891/9283 2025T2 W08: Virtual Machines13

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

JAVA and the Interface Goals

14 COMP3891/9283 2025T2 W08: Virtual Machines

• Support deploying software
across all computing platforms.

• Provide a platform to securely
share hardware resources.

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Issues

• Legacy applications
• No isolation nor resource management between applets
• Security

• Trust JVM implementation? Trust underlying OS?

• Performance compared to native?

COMP3891/9283 2025T2 W08: Virtual Machines15

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Isn’t This The Job Of The OS?
• Security

• Trust the underlying OS?

• Legacy application and OSs
• Resource management of existing systems suitable for all

applications?
• Performance isolation?

• What about activities requiring “root” privileges

COMP3891/9283 2025T2 W08: Virtual Machines16

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Remember: History of Processes

17 COMP3891/9283 2025T2 W08: Virtual Machines

Early Computers

Virtual machines

Multitasking OS

Dedicated servers

Multiprocessing OS

Server VMs

Containers

Strong
isolation

Portability:
Guest OS

Performance?

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Virtual Machine: Hypervisor

18 COMP3891/9283 2025T2 W08: Virtual Machines

Applications Applications

Guest OS Guest OS

Hypervisor
aka Virtual Machine Monitor

VM1 VM2

Physical Machine

Unprivileged
ISA

Scheduling &
resource

management

Privileged
ISA

Unprivileged
instructions

executed by HW

Privileged
instructions?

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Privileged Instruction: Trap-and-Emulate

19 COMP9242 2024 T3 W03 Part 2: Virtual Machines

mfc0 r1, C0_STATUS
nop
andi r1, r1, CST_IEc
mtc0 r1, C0_Status

Guest

Exception
lw k0, vm_reg_ctxt
mfc0 k1, C0_EPC
lw r1, VM_Status(k0)
addi k1, k1, 4
jr k1
rfe

VMM

Most instructions do not trap
• prerequisite for efficient virtualisation
• requires VM ISA (almost) same as processor ISA

Disable
interrupts

Emulate mfc0
instruction

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Trap-and-Emulate Limitations

20 COMP9242 2024 T3 W03 Part 2: Virtual Machines

mfc0 r1, C0_STATUS
nop
andi r1, r1, CST_IEC
mtc0 r1, C0_Status

Guest

Exception
lw k0, vm_reg_ctxt
mfc0 k1, C0_EPC
lw r1, VM_Status(k0)
addi k1, k1, 4
jr k1
rfe

VMM

What if reading privileged
state doesn’t trap (is a nop)?

What if the guest uses k0?

Many ISAs not trap&emulate virtualisable!
• MIPS k0, k1
• x86 popf – no-op from user mode
• Original Arm, …

Virtualisation
ISA extensions

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Native (Type-1) vs. Hosted (Type-2) Hypervisor

Applications Applications

Guest OS Guest OS

Hypervisor App (Type-2)

VM1 VM2

Physical Machine

Host Operating System

Host OS
Applications

Applications Applications

Guest OS Guest OS

Type-1 Hypervisor

VM1 VM2

Physical Machine

COMP3891/9283 2025T2 W08: Virtual Machines21

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Type-1 (Native) Hypervisor

22 COMP3891/9283 2025T2 W08: Virtual Machines

Applications Applications

Guest OS Guest OS

Hypervisor

VM1 VM2

Physical Machine • Runs in privileged mode
• implements virtual

kernel/user mode

Runs in un-
privileged mode

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Type-2 (Hosted) Hypervisor

23 COMP3891/9283 2025T2 W08: Virtual Machines

Applications Applications

Guest OS Guest OS

Hypervisor App (Type-2)

VM1 VM2

Physical Machine

Host Operating System

Host OS
Applications

• Runs in un-privileged
mode

• implements virtual
kernel/user mode

• uses host for I/O etc

How trap guest instructions?

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Type-2 Hypervisor: Trap&Emulate

24 COMP3891/9283 2025T2 W08: Virtual Machines

Applications Applications

Guest OS Guest OS

Hypervisor App (Type-2)

VM1 VM2

Physical Machine

Host Operating System

Host OS
ApplicationsException

Signal

Host emulates
trap handling

Alternative: Re-write
guest binary to invoke

hypervisor directly

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Type-2 Hypervisor: I/O

25 COMP3891/9283 2025T2 W08: Virtual Machines

Apps

Guest

VM World

Physical Machine

Host OS

Host OS
Applications

Host World
Hypervisor
App

Hyp.
Driver

Host
I/O

Hypervisor app
installs driver in host

VM I/O re-directs
to Host I/O via
hypervisor driver

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Taxonomy of Virtual Machines

COMP3891/9283 2025T2 W08: Virtual Machines26

