
Design l%adeoffs for Software-Managed TLBs

David Nagle, Richard Uhlig, Tim Stanley,

Stuart Seehrestj Trevor Mudge & Richard Brown

Department of Electrical Engineering and Computer Science

University of Mieldgan

e-d uMig@eecs.umich.edu, bassoon@ eecs.umich.edu

Abstract

An incmm.ring number of a~hitectums pmwiie virtual memcvy
suppoti through sojiwanwnanaged TLBs. HoweveC so@vam
management can impose consiakrable penalties, which cnv highly
dependent on the operating system k structuw and its use of vir-

tual memmy. This work explores so@are-managed TM design
tradeoffs and their interaction with a range of operating systems
including monolithic and micnkwnel designs. 27uvugh haniwaw
monitoring and simulatw~ we explore TLB peflormance for
benchmati running on a MIPS R.XXW-based workstation run-
ning Ultrix, OSF/1, and thee verswns of Mach 3.0.

Results: New operating systems am changing the Artive fr-
equency of dl~enmt ~es of TLB misses, some of which may not be

efficiently handled bYcurrent atchitectunm. For the same applica-
tion binaries, total TM service time varies by as much as an
order of magm’tude under diffenmt operating ~stems. Reducing
the handling cost for kernel TLB mirses rvduces total TLB service
time up to 40%. For TLBs between 32 and 128 slots, each a2M-

bling of the TLB si.r,e reduces total TLB service time up to SO%.

Keywom%: Translatwn Lo&aside Bufler (lZ.B), Simulatio~
Hardware Monitoring, Operating Systems.

1 Introduction

Many computers support virtnal memory by providing hardware-
managed translation lookaaide buffers (TLBs). However, some
computer architectures, including the MIPS RISC [1] and the
DEC Alpha [2], have shiied TLB management responsibility into
the operating system. These software-managed TLBs can simplify
hardware design and provide greater flexibility in page table
structnre, but typically have slower refill times than hardwam-
managed TLBs [31.

At the same time, operating systems such as Mach 3.0 [4] are
moving functionality into user processes and making greater use
of virtual memory for mapping data structures held witbii the ker-

nel. These and related operating system trends place greater stress
upon the TLB by increasing miss rates and hence, deereasing

overall system performance.

This work was supported by Defcmse Advenced Researeh Proje@s
Agency under DARPA/ARO Contract Number DAAL03-90-C-
0028 and a National Science Foundation Oraduate Fellowship.

‘lIds paper explores these issues by examining design trade-
offs for software-managed TLBs and their irnpac~ in conjunction
with various operating systems, on overall system performance.
To examine issues which cannot be adequately modeled with sim-
ulation, we have developed a system analysis tool called Monster,
which enables us to monitor actual systems. We have also devel-

oped a novel lLB simulator called TapewornL which is compiled
directly into the operating system so that it can intercept all of the
actual TLB misses caused by both user pmceas and OS kernel
memory references. ‘lhe information that Tapeworm extracts from
the mnning system is used to obtain TLB miss counts and to sim-
ulate different TLB configurations.

‘he remain&r of this paper is organized as follows Section 2
examines pmvions ‘lLB and OS twearch related to thii work.
Section 3 describes our analysis tools, Monster and Tapeworm.

‘lhe MJPS R2000 TLB structure and its performance under Ultrix,
OSFI1 and Mach 3.0 is examined in Section 4. Experiments, anal-
ysis and hardware-based performance improvements are pre-

sented in Section 5. Section 6 summarizes our conclusions.

2 Related Work

By caching page table entries, TLBs greatly speed up virtual-to-
physieal ackitess translations. However, memory references that
require mappings not in the ‘llB result in misses that must be ser-

viced either by hardware or by software. In their 1985 study, Clark

and Emer examined the cost of hardware TLB management by
monitoring a VAX-11/780. For their workloads, 570 to 890 of a
user program’s mn time was spent handling ‘ILB misses [5].

More recent papers have investigated the TLB’s impact on user
program performance. Chen, Borg and Jouppi [6], using traces
generated from the SPEC benchmarks, determined that the
amount of physical memory mapped by the ‘ILB is strongly
linked to the TLB miss rate. For a reasonable range of page sizes,
the amount of the address space that could be mapped was more

important than the page size chosen. Tallnri et al. [7] have shown
that although older TLBs (ss in the VAX-11/780) mapped large

regions of memory, ‘llBs in newer architectures like the MIPS do

not. ‘Ibey showed that increasing the page size from 4 KBytcs to
32 KBytes decreases the TLB’s contribution to CPI by a factor of
at least 31.

1. ~;chptrilxtion is 55high as 1.7 cycles per instruction for some

08S4-7495193 $3.00@ 1993 IEEE
27

Operating system references also have a strong impact on lLB
miss rates. Clark and Emer’s measurements showed that although
only 18% of all memory references were made by the operating
system, these references tesulted in 70% of all TLB misses. Sev-
eral recent papera [8-10] have pointed out that changes in the
structure of operafirtg systems are altering the utilization of the

TLB. For example, Anderson et al, [8] compared an old-style
monolithic operating system (Mach 2.5) and a newer microkcwnel
operating system (Mach 3.0), end found a 600% increase in TLB

misses requiring a full kernel enfry. Kernel lLB misses were far
and away the most frequently invoked system primitive for the

Mach 3.0 kernel.

This work distinguishes itself from previous work through its
focus on software-managed TLBs and its examination of the

impact of changing operating system technology on lLB design.
Unlike hardware-managed TLB misses, which have a relatively

small refill penalty, the design trade-offs for software-managed
TLBs are rather complex. Our measurements show that the cost of
handling a single TLB miss on a DECstation 3100 running Mach
3.0 can vary from 20 to more than 400 cycles. Because of this
wide variance in service times, it is important to analyze the fr-
equency of various types of TLB misses, their wst and the reasons

behind them. The particular mix of TLB miss types is highly
dependent on the implementation of the operating system. We

therefore focus on the operating system in our analysis and dis-

cussion.

3 Analysis Twls and Experimental

Environment

To monitor and analyze TLB behavior for benchmark programs
running on a variety of operating systems, we have developed a
hardware monitoring system called Monster and a ‘11.B simulator

called Tapeworm. The remainder of this section describes these
tools and the experimental environment in which they are used.

3.1 System Monitoring with Monster

The Monster monitorirtg system enables wmprehensive analyses
of the interaction between opmting systems and architectures.
Monster is wmprised of a monitored DECsfation 31001, an
attached logic analyzer and a controlling workstation. Monster’s
capabilities are described mote completely in [1 1].

In this study, we used Monster to obtain the TLB miss handling

costs by instrumenting each OS kernel with marker instructions
that denoted the entry and exit points of various wde segments
(e.g. kernel entry, TI.13 miss handler, kernel exit). The instm-
mented kernel was then monitored with the logic analyzer whose
state machine deteeted and clomped the marker instructions and a

nanosecond-resolution timestamp into the logic analyzer’s trace
buffer. Once filled, the trace buffer was post-processed to obtain a
histogram of time spent in the different invocations of the ‘ILB
miss handlers. This technique allowed us to time wde paths with
far greater accuracy than can be obtained using a system clock
with its coarser resolution or, as is often done, by repeating a code

fragment N times and then dividing the total time spent by N.

L TheDECstation3100 contains so R2000 microprocessor (16.67 MHz)
and 16 Megabytes of memory.

SoffwreTraP onlLt3Mtss

\
Twwomr~ Kernel Cda (Unrrqpd Space)

r

TLBMiee Hanrkra
Policy Tapeworm

/ \

Functions

/
AC&d I E!!z?l

Paw T@Mes

(- -) (~ -)

Figure 1: Tapeworm

Ttra Twworm TLB ahruhttor is built Irto the operating system and is
Wti~wttim*a WWmb. -*uMor Htk W~
mkaee to ahnutate its own TIE eonfiwrefbrt(s). Because the simulator
reetdeein the operattng system, Tqmvorrn eapturea the dynamk nature of
the system and avoids the frrcblema aaaociated with ehnulstora driven by
Statk traese.

3.2 TLB Simulation with ‘Ihpeworm

Many previous TLB studies have used trace-driven simulation to
explore design trade-offs [5-7, 12]. However, there are a number
of difficulties with trace-driven TLB simulation. FmG it is diffi-
cult to obtain accurate maces. Code annotation tools like pixie [13]
or AE [14] generate user-level address traces for a single task.

However, more wmplex tools are required in order to obtain rerd-
istic system-wi& address traces that account for multiprocess
workloads and the operating system itself [5, 15]. Second, trace-
driven simulation can wnaume considerable processing and stor-
age resources. Some researchers have overcome the storage
resource problem by wnsmning tmwes on-tho-fl y [6, 15]. ‘Ibis
technique requires that system operation be suspended for
extended periods of time while the trace is processed, thus intro-

ducing distortion at xegular intervals. Thii, txace-driven simulat-

ion assumes that address traces are invariant to changes in the
structural parameters or management policiesz of a simulated

TLB. While thii maybe true for cache simulation (where misses

are serviced by hardware state machines), it is not true for soft-
ware-managed ‘lZBs where a miss (or absence thered) directly
changes the stream of instruction and data addresses flowing
through the processor. Because the code that aeMces a TLB miss
can itself induce a TLB miss, the interaction between a change in
TLB structure and the resulting system address trace can be quite

wmplex.

We have overcome these problems by compiling our TLB sim-

ulator, Tapeworm, directly into the OSFI1 and Mach 3.0 operating
system kernels. Tapeworm relies on the fact that all TLB misses in

an R2000-based DECstation 3100 are handled by software. We
modified the operating syatema’ TLB miaa handfera to call the
Tapeworm code via procedural “hooks” after every miss. This
mechanism passes the relevant information about all user and ker-
nel ‘ILB misses directly to the Tapewomn simulator. Tapeworm
uses this information to maintain ita own data structures and to
simulate other possible TLB wnfigurationa,

2. Structural psramrters include the page size, the number of TLB slots
and the partition of TM slots into pools reserved fm different pur-
parrx. Management policiw include the plscornent policy (direct
mapped, ~way set-associative, tidly-aasocistive, etc.) sad the replace-
nmt polwy (FIFO, LRU, random etc.).

28

Benchmark I Daacrivtiort

ccmprese.

I
Ummpmaas and co~raaaas e 7.7 Megabyte
Video Cfb.

mab John oU5tSfhOUt’SModKfad Andrew Sanchrnark

[9].

wqr-dw V2.O from the Eerlraley flafaatt
Research Group. Displays 610 frames from a
comprsesed video ttla [231.

ousterhout

video-lay

Operating
System I

John Ouaferhcut’s banchrnark au~efrom [9].

A modiffed verabn of mpag_play that displays
610 frames from an uncorqxaaaad video file.

Description
1

Ultrbt Vetsbn 3.1 from DtgifsdEquipment Cwpereflon.

OSFII ! OSF/1 1.0 fa fhs Ooan Software Foundation’s ver-
I sion of Mach 2.5. “

Mach 3.0

Mach3+AFSin

Mach3+AFSouf

Carnagla Malbn Unkrews ventfon rnk77 of ffrs
kemaf and uk36 of the UNIX sewer.

Same es Mach 3.0, but wffh the AFS cache msn-
agar (CM) mnnlng In the UNIX sewer.

Same es Mach 3.0, but with the AFS cache marr-
ager rurrnfnges a separate task outelda of the
UNIX server. Not all of the CM furrdbnallfy has
been moved Into this sewer task.

Table 1: Benchmarks and Operating Systems

Benchmarks were complied wtfh the Ultrbt C canplfer verabn 2.1 (level 2
optimizatbn). Irputs ware tuned so that each benchmark takes approxf-
mafely the cams amount of time to run (100-200 aaeonrfs under Mach 3.0).
Ail rneasuremants cited are the avemge of three rune.

A simulated TLB can be either larger or smaller than the actual

TLB. Tapeworm ensures that the actual TLB only holds enfries

available in the simulated TLJ3. For example, to simulate a TLB

with 128 slots using only 64 actual TLB slots (Figure 1), Tape-

worm maintains an array of 128 virtual-to-physical eddress map-

pings and checks each memory reference that misses the actual

TLB to determine if it would have also missed the larger, simu-

lated one. Thus, Tapeworm maintains a strict inclusion property

between the actual and simulated TLBs. Tapeworm mntrols the

actual TLB management policies by supplying placement and

replacement functions called by the operating system miss han-

dlers. It can simulate TLBs with fewer entries than the actual ‘IT-B

by providing a placement function that never utilizes certain slots

in the actual TLB. Tapeworm uses this same technique to restrict

the associativity of the actual TLB1. By combining these policy

functions with adherence to the inclusion property, Tapeworm can

L The actual RZOtXl TLB is r%lly-sssociafive, but varying degrees of
sssociativity can be emulated by using esrtain bits of a mapping’s vir-
tual page number to restrict the slot (or set of slots) into which the
mapping may be placed.

II I Total I Ratio to

Opaating
Run Total TLB Ulth

system lima Number of Sarviie TIE
(see) TtE Waaaa Time Sarvke

(Seoy Time

Ulfrk 3.1 563 9,177,401 11.62 1.0

OSFI1 SW 11,691,396 51.65 4.39

Maoh 3.0 975 24,349,121 60.01 6.77

Mach3+AFStn I 1.371 I 33.933.413 I 106.56 ! 9.02

Mach3+AFSout I 1,517 I 36,649,634 I 134.71 I 11.40

Table 2 Total TLB Misses Across the Benchmarks

Ths totalrun time and nurrbar et TLB mbaaa Incurred by the seven bench-
nrarft programs. Although the same appfbafbrr bfnarfes were run on each 01
the operating eyaferns,them is a substantial differanea In the number of lLS
rnlseasand thafr ~rrg Sewke times.

simulate the performance of a wide range of different-sized TLBs

with different degrees of associativity and a variety of placement

artd replacement policies.

The Tapeworm design avoids many of the problems with trace-
driven TLB simulation cited above. Because Tapeworm is driven
by procedure calls within the OS kernel, it does not require

address tracea at al~ the various difficulties with extracting, stor-

ing and processing large address traces are completely avoided.
Because Tapeworm is invoked by the machiie’s actual TLB miss
handliig code, it considers the impact of all TLB misses whether

they are caused by user-level tasks or the kernel itself. The Tape-

worm code and data structures are placed in unmapped memory

and therefore do not distort simulation results by causing addi-
tional TLB misses. Finally, because Tapeworm changes the stmc-

turrd parameters and management policies of the actual TLB, the

behavior of the system itself changes automatically, thus avoiding

the distortion inherent in fixed traces.

3.3 Experimental Environment

All experiments were performed on an R2000-based DECstation

3100 (16.7 MHz) running three different base operating systems

(Table 1} Ultrix, OSF/1, Mach 3.0. Each of these systems
includes a standard UNIX file system (UPS) [16]. ‘IWO additional

versions of Mach 3.0 include the Andrew tile system (AFS) cache

manager [17]. One version places the AFS cache manager in the
Mach Unix Server while the other migrates the AFS cache man-
ager into a separate server task.

To obtain measurements, all of the operating systems were

instmmentcd with counters and markem. For TEE simulation,

Tapeworm was imbedded in the OSF/1 and Mach 3.0 kernels.
Because the standard TLB handlers for OSF/1 and Mach 3.0

implement somewhat different management policies, we modified

OSF/1 to implement the same policies as Mach 3.0.

‘l%mughottt the paper we use the benchmarks listed in Table 1,

‘lhe same benchmark binaries were used on all of the operating
systems. Each measurement cited in this paper is the average of
three trials.

29

4 OS Impact on Software-Managed TLBs

O~rating system references have a strong intluence on TLB per-
formance. Yet, few studies have examined these effects, with most
confined to a single operating system [3, 5]. However, differences

between operating systems can be substantial. To illustrate thii
point, we ran our benchmark suite on each of the operating sys-
tems listed in Table 1. The results (Table 2) show that although the
same application binaries were run on each system, there is signif-
icant variance in the number of TLB misses and total TLB service
time. Some of these increases are due to differences in the func-
tionality between operating systems (i.e. UFS vs. AFS). Other

increases are due to the structure of the operating systems, For
example, the monolithic Ukrix spends only 11.82 seconds han-
dling TLB misses while the microkernel-besed Mach 3.0 spmds
80.01 seconds.

Notice that while the total number of TLB misses increases 4
fold (from 9,177,401 to 36,639,834 for AFSout), the total time

spent servicing TLB misses increases 11.4 times. This ia due to
the fact that software-managed TLB misses fall into different cat-
egories, each with its own associated cost. For this reason, it ia

impofint to understand page table structure, its relationship to
TLB miss handling and the frequencies and costs of different
types of misses.

4.1 Page lhbles and Translation Hardware

OSF/1 and Mach 3.0 both implement a linear page table structure
(Figure 2). Each task has its own level 1 (Ll) page table, which is

maintained by machine-independent pmap code [18]. Because the

user page tables can require several megabytes of space, they are
themselves stored in the virtual address space. This ia supported
through level 2 (L2 or kernel) page tables, which also map other
kernel data. Because kernel data is relatively large and sparse, the
L2 page tables are also mapped. This gives rise to a 3-level page
table hierarchy and four different page table entry (PTE) types.

The R2000 processor contains a 64-s1oL fully-associative
TLB, which is used to cache reumtly-used PTEs. When the
R2000 translates a virtual address to a physical address, the rele-

TLB Miss Type Ultrix OSFII Mach 3.o

LIU 16 2tf 20

LIK 333 355 294

L2 494 511 407

L3 354 266

Modify 375 436 499

Irwafld 336 277 267

Table 3: Costs for Different TLB Miss Typas

Thfat~ls showathe ranrbar of rnaohirts eyctaa (et 60 ticycla) tequired to
sewkx differati types of TLB mtsass. To determine thaaa coats, Monster
was used to cotfact a 126K-entry hbtogram of timings for ead type of robs.
We separate TLB rnba types Ho the abI catagorfee deaertbed below. Note
that LJBrLxdoes not have L3 mfsaea because k Impbmsnta a 2-level page
tsble.

LIU TLSrnbsona leveflussr HE.

L1K TLBtrtiason alavallkamel PTE.

L2 TLS mba on level 2 PTE. Thie cart onty occur aftar a
mfaaon a tevel 1 user PTE.

L3 TLB rnbs on a tsvel 3 PTE. Can occur after either a
Isvef 2 M&S or a level 1 kamel miss.

Modify A page protection vbtatton.

Invalid An eccess to an page marked as Invalid (pegs fautt).

vant PTE must be held by the TLB. If the PTE is absent, the hard-

ware invokes a trap to a softwsre TLB miss handling routine that

6nds and inserts the missing PTE into the TLB. ‘Ibe R2000 sup-

ports two different types of TLB miss vectors. The firs~ called the

user TLB (uTLB) vector, is used to trap on missing translations

for LIU pages. ‘Ibis vector is justified by the fact TLB misses on

LIU PTEs are typically the most frequent [3]. AII other ‘llB miss

types (such as those caused by references to kernel pages, invalid

pages or read-only pages) and all other interrupts and exceptions

trap to a second vector, called the generic exception vector.

uUssr -nKernal
Data Data
Page LIU PTE Pega

@

Each PTE m- one,
4K pegs of user text or

L1 data. L1K PTE
Each PTE maps one, 4K

L2 PTE page of kernel tesl or

Each L2 PTE maps data.

L2 one, 1,024 erdfy u66r
page tabb page.

*

Vnuet Ad&ass 3paca

L3 PTE PhyaicatAddmsa Space
L3 Each L3 PTE maps 1 page

— of either L2 PTEs or LIK
PTEs.

Figure 2: Page Table Structure in OSF/1 and Mach 3.0

TheMach page tites forma 3-taval etmciurs wffh the first two fsvels rasld-
krg In virtual (mapped) apace. The top of the page tabfe sfructura holds the
uaerpagss which era mapped by fsvel 1 user (LIU) PTEe. Thess LIU PTEe
are stored h the L1 pegs fabb with each task hevfng fts own sat of L1 page
t*s.

Mappfng the L1 page t-are the favel 2 (12) PTEs. They are stored in the
L2 page tabtaa wtttch hotd both L2 PTEs and kwel 1 kernel (LIK) PTEs. In
turn, the L2 pegss are mapped by the fevel 3 (L3) PTEs stored In fhe L3
P%W**. ~ ~ time, ~ L3 PEW tebia IS fbmd In unmapped physical
~. ~ sew= * M Snchorto ffm page table hierarchy because refer-
e-stotb~~t-titi~tti~hti~.

The MIPS R2000 arctMactura has a ttxed 4 Kf3yie pegs size. Each PTE
requkas 4 bytes of storage. Therefore, a sfngb L1 page tabfa page can kid
1,024 LIU PTEs, or 4 Megabytes of virtual address space. Lfkawba, the L2
page tables can directly map either 4 Megabytes of kernel data or Indlrecfty
~ 4 GByles of LIU data.

30

Mapped

0s Kernel IIServke Servke ~oy
Data Migration Deeomp. *b=

Strucfa.

mix I Few I Nens I Nens I)(seNW

tlSFll Many None Nerte x seNW

Mach 3.0 some some some x sewer

Madr3+AFStn some some Sems xsewer&
AFS CM

Maeh3+AFSout I Some I Sonra I Marv I X Sewer&

Table 4 Characteristics of the 0S’s Studied

For the purposes of thk study, we define TLB miss types
(Table 3) to eorrospond to the page table stmettrre implemented

by OSF/1 and Mach 3.0. In addition to LIU TLB misses, we
define five subcategories of kernel TLB misses (Ll~ L2, L3,
modify and invalid). Table 3 also shows our measurements of the
time required to handle the d~erent types of TLB misses. ‘Ihe
wide differential in costs is primarily due to the two different miss
vectors and the way that the OS uses them. LIU PTEs ean be

retrieved within 16 cycles because they are serviced by a Klghly-
tuned handler inserted at the uTLB vector. However, all other
miss types require from about 300 to over 400 cycles because they
are serviced by the generic handler residing at the generic exeep-
tion vector.

The R2000 TLB hardware supporta partitioning of the ‘fLJ3
into two sets of slots. The lower partition is intended for PTEs
with high retrieval costs, while the upper partition is intended to

hold more frequently-used PTEs that can be re-fetehed quickly
(e.g. LIU) or infrequently-referenced PTEs (e.g L3). The TLB

hardware also supports random replacement of PTEs in the upper

partition through a hardware index register that rehtrtts random
numbers in the range 8 to 63. This effectively fixes the TLB parti-
tion at 8, so that tbe lower partition consists of slots O through 7,
while the upper partition consists of slots 8 through 63.

4.2 OS Influence on TLB Performance

In the operating systems studied, there are three basic factors
which account for the variation in the number of TLB misses and

their associated costs (Table 4 & Figure 3). The central issues am
(1) the use of mapped memory by the kernel (both for page tables

and other kernel data structures), (2) the placement of functional-
ity within the kernel, within a user-level server process (service
migration) or divided among several server pmeesses (OS decom-
pmition) and (3) the range of functionality provided by the system
(additional OS serviees). The rest of Section 4 uses our data to
examine the relationship between these OS characteristics and
TLB performance.

4.2.1 Mapping Kernel Data Structures

Mapping kernel data structures adds a new category of TLB
misse~ LI K misses. In the MIPS R2000 architecture, an increase

in the number of LIK misses can have a substantial itnpaet on
TLB performance be-cause each LIK miss requires several hun-

dred cycles to servicel.

Ultrix places most of its data structures in a small, fixed por-
tion of unmapped memory that is reserved by the OS at boot time.
However, to maintain flexibility, Ultrix can draw upon the much

larger virtual space if it exhausts thii fixed-size unmapped mem-
ory. Table 5 shows that few LIK misses occur under Ultrix.

In contras~ OSF/1 and Mach 3.02 place most of their kernel
data stmettrres in mapped virturd space, forcing them to rely

heavily on the TLB. Both OSF/1 and Mach 3.0 mix the LIK PTEs

and LIU PTEs in the ‘ILB’s 56 upper slots. ‘lhis contention pro-
duces a large number of LIK misses. Further, handling an LIK

miss can result in an L3 miss3. In our measurements, OSF/1 and

Mach 3.0 both incur more than 1.5 million LIK misses. OSF/1
must spend 62% of its TLB handling time servicing these misses

while Mach 3.0 spends 37% of its TLB handliig time servicing
LIK ttiSSM.

4.2.2 Service Migration

In a tra&ional operating system kernel such as Ultrix or OSF/1

(13gore 3), all OS services reside within the kernel, with only the
kernel’s data structures mapped into the virtual space. Marty of

these services, however, can be moved into separate server tasks,
increasing the modularity and extensibility of the operating sys-
tem [8]. For this reason, numerous rrticrokemel-based operating

systems have been developed in reeent years (e.g. Chores [19],

Mach 3.0 [4], V [20]).

By migrating these serviees irtto separate user-level tasks,
operating systems like Mach 3.0 fundamentally change the behav-
ior of the system for two teaaons. Fws~ moving OS serviees into
user space requires both their program text and data slxuctures to
be mapped. ‘llterefore, they must share the TLB with user tasks,

possibly conflicting with the user tasks’ TLB footprints. Compar-

ing the number of LIU misses in OSF/1 and Mach 3.0, we see a

2.2 fold increase from 9.8 million to 21.5 million. This is dwectly
due to moving OS services into mapped user space. ‘llte second
change comes from moving OS data structures from mapped ker-

nel space to mapped user space. In user space, the data structures

are mapped by LIU PTEs wtdch are handled by the fast uTLB
handler (20 cycles for Mach 3.0). In contrast, the same data stmc-
tures in kernel space are mapped by L1 K PTEs which are serviced
by the general exeeption (294 cycles for Mach 3.0).

4.2.3 Operating System Decomposition

Moving OS functionality into a monolithic UNIX server does not
achieve the full potential of a mierokemel-based operating sys-

tem. Operating system functionality can be further decomposed

into individual server tasks. ‘Ilte resulting system is more flexible
and cart provide a higher degree of fault toleranee.

Unfortunately, experience with fully decomposed systems has
shown severe performance problems. Anderson et al. [8] com-
pared the performance of a monolitldc Mach 2.5 and a mieroker-
nel Mach 3.0 operating system with a substantial portion of the
tile system functionality running as a separate AFS cache manager
task. ‘flteir results demonstrate a significant performance gap

1. Prom 294 to 355 cycles, depending on the operating system (Table 3).

2 Like Ultrixj Mach 3.0 reserves a pmtion of unmapped apace for
dynamic allocation of data atmetures. However, it appears that Mach
3.0 quickly uses this unmapped apace and must begin to allocate
msp~ memory. Once Mach 3.0 has allocated mapped SpiUX, it does
not dstmgtusb between meppd and unm~d space despite their dif-
fering costs.

3. LIK FTEs are stored in the mapped, L2 page tables (Figure 2).

System Total Run Tfme
(ss0)

LIU LIK L2 L3 Invdif Modify Total

Ulwx 583 9,021,420 135,847 3,826 — 16,191 115 9,177,401

OSFI1 692 9,617,502 1,509,973 34,972 207,163 79W 42,430 11,691,396

Mach3 975 21,486,165 1,682,722 352,713 556X 185,849 125,409 24,349,121

Mach3+AFSin 1,371 30,123$?12 2,4934X33 330,803 690,441 168,429 127245 33,933,413

Mach3+AFSCiif 1,517 31,611,047 2,712,979 1,042,527 987,648 16S,128 127,505 36,649,s34

Table 5: Number of TLB Miseee

Totsl TLB
System Ssrvioe llme LIU LIK L2 L3 Invafid Modify

% of Totsl

(ss0)
Run lime

Ultrix 11.82 8.86 2.71 0.11 0.33 0.00 2.03”7a

OSFI1 51.85 11.76 32.16 1.07 4.40 1.32 1.11 5.81%

Mach3 80.01 25.78 23.ss 8.61 9.55 2.66 3.75 6.21%

Mach3+AFSin 108.56 36.15 43.98 8.08 11.85 2.70 3.81 7.77%

Mach3+AFSOut 134.71 37.93 47.86 25.46 16.95 2.6s 3.82 6.S6%

Table 6 Time Spent Handling TLB Miseee

Thasa fabfaa ahow the number of TLS misses and amount of tkna spent handlfng TIE mbaaa for each of the operating systems
etudlad. In Ultrfx, moat of the TLS rrisaas andTLS mlaa time k apati aarvidng LIU TLS mbaaa. However, for OSF/1 and various
versions of Mach 3.0, L1K and L2 mbaaa can overshadow the L1U rnba time. The kwnaae in Mor#y mlaaae la due to OSF/1 and
Mach 3.0s uaa of protection to knpfamanf copy-on-tie memory sharfng.

Uaar Mode

File system, rrafworNng,eohadullng and Un&
inferfaoa raakfe inside a monolithic kemd.
Kernel terrt rsekfea in unmapped space.
Ullrbr places moat kernel data structures In
unmapped apace while OSF/1 uses rnagKJad
space for many of ifs kernel data structures.

Uaar Moda

~

File system, nafwor@, and Unix Irrfatfaca
raafda Inelda the rnonolifhb Unix server. Ker-
nel terrt end some data raslda in ursnapped
virtual apsoe but the Unix server is h
mapped ueerspace.

w
Sarna se standard Mach 3.0, but with inc$eeaad
funcfbnalffy provfdad by a ~er teak. The AFS
Cache Manager is either klakfa the Unix Server
or in ifs own, war-level aarver (ss pictured
above).

Figure 3: Monolithk and Microkernel Operating Systems

A carqmrfaorr of the rnonoffthicUffr& and 06F/1 and the rnbrokenral Msoh 3.0. In Ulfrfx and OSF/l, all OS aarvlcea reside inelda
the kernel. In Mach 3.0, these aarvlcaa have bean moved Info the UNIX server. Therefore, moat of Mach 3.0s fundlonalily
resides in mapped virtual apaoa. Mach3+AFS las modified varebn of Mach 3.0 with the AFS Cache Manager rasldlng In either
the Unfx Server (AFSln) or se a aapsrafe user-level server (AFSouf).

32

between the two systems with Mach 2.5 running 36% faster then
Mach 3.0, despite the fact that only a single additional server task
is used. Later versions of Mach 3.0 have ovemome this perfor-

mance gap by integrating the AFS cache manager into the UNIX
Server.

We compared our benchmarks mnning on the Mach3+AFSin

system, against the same benchmarks running on the
Mach3+AFSout system. ‘he only structural dtierence between

the systems is the location of the AFS cache manager. The results
(Table 5) show a substantial increase in the number of both L2 and
13 misses. Many of the L3 misses are due to missing mappings
needed to service L2 misses.

The L2 PTEs compete for the R2000’s 8 lower TLB slots. Ye~
the number of slots required is proportional to the number of tasks
concurrently providing an OS service. As a resul~ adding just a
single, tightlyumpled service task overloads the TLB’s ability to

map L2 page tables. Thrashing results. This increase in L2 misses
will grow ever more costly as systems continue to decompose ser-
vices into separate taska.

4.2.4 Additional OS Functionality

In addition to OS decomposition and migration, many systems

provide supplemental services (e.g. X, AFS, NFS, Quicklime).
Each of these services, when interacting with an application, can

change the operating system behavior and how it interacts with

the TLB hardware.

For example, adding a distributed tile service (in the form of an
AFS cache manager) to the Mach 3.0 Unix server adds 10.39 sec-
onds to the LIU TLB miss handling time (Table 6). This is due
solely to the increased functionality residing in the Unix server.
However, LIK misses also increase, adding 14.3 seconds. l%ese
misses are due to the additional management the Mach 3.0 kernel
must provide for the AFS cache manager. Increased functionshty
will have an important impact on how architecture= support oper-
ating systems and to what degree operating systems can increase

and decompose functionality.

5 Improving TLB Performance

In this section, we examine hardware-baaed techniques for
improving TLB performance under the operating systems ana-
lyzed in the pevious section. However, before suggesting
changes, it is helpful to consider the motivations behind the
design of the R2000 TLB.

The MIPS R2000 TLB design is based on two principal
assumptions [3]. FirsL LIU misses are a.wumed to be the most

frequent (> 95%) of all TLB miss types. Second, all OS text and
most of the OS data structures (with the exception of user page
tables) are assumed to be unmapped. The R2000 TLB design
reflects these assumptions by providing two types of TLB miss
vectors: the fast uTLB vector and the much slower general excep-

tion vector (described in Section 4.1). These assumption are also
reflected in the partitioning of the 64 TLB slots into two disjoint
sets of 8 lower slots and 56 upper slots (also described previ-

ously). The 8 lower slots are intended to accommodate a tradi-

tional UNIX task (which requires at least three L2 PTEs) and
UNIX kernel (2 PTEs for kernel data), with three L2 PTEs left for
additional data segments [3].

Our measurements (Table 5) demonstrate that these design

choices make sense for a traditional UNIX operating system such

as Ultrix. For Ultrix, LIU misses constitute 98.3% of all misses.
The remaining miss types impose only a small penalty. However,

I I Prwious I I

~
Mach3+AFSin

LIU I 30,123,212 I 3s.15 I 38.15 I 0.00

u 330,803 I 8.08 I 0.79 I 7.29

LIK I 2,493283 43.98 2.99 I 40.99

L3 S90,441 I 11.85 I 11.85 I 0.00, 1 1 1

Modty I 127,245 I 3.81 I 3.81 I 0.00

Irwalld I le8,429 2.70 2.70 I 0.00

Total 33,933,413 I 108.58] 58.29 I 48.28

Table fi Recomputed Cost of TLB Mieses Given
AdcWional Miss Vectors (Mach 3.0)

Supplying a separate Intermpt veetor for L2 mlaeas and albwlng the uTLB
handler to servloa LIK rniseaareduces their cost to 40 and 20 cyelaa, raspac-
tivety.Thalr oorrttlbutlon to TLS mlsa time drops from 8.08 and 43.98 seconds
down to 0.79 and 2.99 aaconds, raspaetively.

these assumptions break down for the OSF/1- and Mach 3.O-based
systems. In these systems, the non-LIU misses account for the
majority of time spent handling TLB misses. Handling these
misses substantially increases the cost of software-TLB manage-
ment (Table 6).

The rest of dds section proposes and explores four hardware-
based improvements for software-managed TLBs. FirsG the cost
of certain types of llli misses can be reduced by modifying the
TLB vector scheme. Second, the number of L2 misses can be

reduced by increasing the number of lower slotsl. l’hiid, the fre-

quency of most types of TLB misses can be reduced if more total
TL13 slots are added to the architecture. Finally, we examine the
tradeoffs between TLB sixe and aasociativity.

Throughout these experiments, software policy issues do not
change from those originally implemented in Mach 3.0. The PTE

replacement policy is FIFO for the lower slots and Random for
the upper slots. The PTE placement policy stores L2 PTEs in the
lower slots and all other PTEs in the upper slots. The effectiveness
of these and other softwaro-baaed techniques am examined in a
related work [21].

5.1 Additional TLB Miss Vectors

The data in Table 5 show a significant increase in LIK misses for
OSF/1 and Mach 3.0 when compared against Ultrix. ‘Ibis increase
is due to both system’s reliance on dynamic allocation of kernel
mapped memory. ‘l%e R2000’s TLB performance suffers, how-
ever, because L1 K misses must be handled by the costly generic

exception vector which requires 294 cycles (Mach 3.0).

To regain the lost TLB performance, the architecture could
vector all LIK misses through the uTLB handler, as is done in the

newer R4000 processor. Baaed on our timing and analysis of the

1. ‘l’he newer MIPS R4000 prccessor [1] implements both of these
changes.

33

8

7
h -6- AFSout

y3 1
\

-6- AFSin

g5 -4- Med13

+ 02F1
s
p3
o.
92

I’i)i

456789101112131415 16
Numbsr d Lewsr Slots

Figure 4 L2 PTE Miss Cost vs. Number of Lower Slots

The total L2 rnbe We for the mab benchmark under dfffarart operating aya-
terne.As the TLB reserves mors bwer abts for L2 PTEs, the totat time spent
servidng L2 misses baeornaa nsgt@4bb.

TLB handlers, we estimate that vectoring the LIK misses through
the uTLB handler would reduce the cost of LIK misses from 294
cycles (for Mach 3.0) to approximately 20 cycles.

An additional refinement would be to dedicate a separate TLB
miss vector for L2 misses. We estimate the L2 miss service time
would decrease from 407 cycles (Mach 3.0) to under 40 cycles.

Table 7 shows the same data for Mach3+AFSin as Table 5, but

recomputed with the new cost estimates resulting from the re6ne-
ments above. The result of combining these two modifications is

that total TLB miss service time drops from 106.56 seconds down
to 58.29 seconds. LIK service time drops 9370 and L2 miss ser-
vice time drops 90%. More importantly, the L1 K and L2 misses
no longer contribute substantially to overall TLB service time.
This minor design modification enables the TLB to much more
effectively support a rnicrokemel-style operating system with
mukiple servers in separate address space-s.

Multiple TLB miss vectors provi& additional benefits. In the
generic trap handler, dozens of load and store instructions are used
to save and restore a task’s context. Many of these loads and

stores cause cache misses which require the processor to stall. As
processor speeds continue to outstrip memory access times, the
CPI in this save/restore region will grow, increasing the number of
wasted cycles and making non-uTLB misses much more expen-
sive. TLB-specific miss handlers should not stier the same per-
formance problems because they contain only a single data
reference to load the missed PTE from the memory-resident page
tables.

5.2 Lower Slots & Partitioning the TLB

The MIPS R2000 TLB fixes the partition between the 8 lower
slots and the 56 upper slots. This partitioning is appropriate for an
operating system like Ultrix [3]. However, as OS designs migrate
and decompose functionality into separate user-space tasks, 8
lower slots becomes insufficient. This is because, in a decom-
posed system, the OS services that reside in different user-level
tasks compete by displacing each other’s L2 PTE mappings fmm
the TLB.

To better understand thk effec~ we measmed how L2 miss

rates vary depending on the number of lower TLB slots available.

Tapeworm was used to vary the number of lower TLB slots from
4 to 16 while keeping the total number of TLB slots fixed at 64.

25

20

15

~

E
i=

10

5

0

-e- Total + L2

!
-E- LIK + L3

-A- LIU Q@

G Optkrral partition point

I
481216202426 32

Numberof Lowar Slots

Figure 5: Total Coet of TLB Miasas vs. Number of
Lower TLB Slots

The total cost of TLS miss eervfdng la pbtted againet the LIU, LIK, L2 and
L3 earpmmk of thle totat time. The rrwrber et bwer TLS sbta varfee from
4 to 32, whifa ttre total nurrber of TLS ar#riee remains constant at S4.

The benctmsrk Lsvideo_play mnnfng urxlar Mach 3.0.

OSF/1 and all three versions of Mach 3.0 ran the mab benchmark

over the range of configurations and the total number of L2 misses

was recorded (Figure 4).

For each operating system, two distinct regions can be identi-

fied. The left region shows a steep decline which levels off near

mm seconds. This shows a significant performance improvement

for every extra lower TLB slot made available to the system, up to

a certain point. For example, simply moving from 4 to 5 lower

slots decreases OSF/1 L2 miss handling time by almost 50~0.

After 6 lower slots, the improvement slows because the TLB can

hold most of the L2 PTEs required by OSF/ll.

In mntrss~ the Mach 3.0 system continues to show significant

improvement up to 8 lower slots. The additional 3 slots needed to

bring Mach 3.0’s performance in line with OSF/1 are due to the

migration of OS services from the kernel to the UNfX Server in

user space. In Mach 3.0, whenever a task makes a system call to

the UNIX server, the task and the UNIX server must share the

TLB’s lower slots. In other words, the UNIX server’s three L2

PTE’s (text segmen~ data segmen~ stack segment) increases the

lower slot requiremen~ for the system as a whole, to 8.

Msch3+AFSirt”s behavior is similar to Mach 3.0 because the

additional AFS cache manager functionality is mapped by the

UNIX server’s L2 PTEs. However, when the AFS cache manager

is decomposed into a separate user-level server, the TLB must

hold three additional L2 PTEs (11 total). Figure 4 shows how

Mach3+AFSout continues to impmve until all 11 L2 PTEs can

simultaneously ~side in the TLB,

1. Two for kerael data structures sad one each for a task’s text, data and
stack segments.

34

26-I
-CI- AFSout

24
-E- AFSin

-A- Mach3
g:

z

14

12

10 i I 1 I I I 1 1 I I 1
4S81012141S 182022 24

Number of Lower SbtS

24

22

f 1s:

3
,

e 16J

14-

12 1 I
4 S 810121416162022242S 2S30

Number cdLowsr Slots

Figure 6: Optirnel Partition Points for Various
Operating Systems and Benchrnerks

As more lower slots are allocated, fewer uppar slots are avsltabls for the
LIU, LIK and L3 PTEs. Thb yields an epflmsl partltlen point which varfaa
with fhe operating system and benchmark.

The upper graph shows the average of 3 runs of the Ousterhout bend’+
mark run under 3 different operating systems. The bwar Wsph shows the
average of 3 runs for 3 d!4fsrar#tranchmsrks run under Msdr 3.0.

Unfortunately, increasing the size of the lower partition at the

expense of the upper partition has the side-effect of increasing the

number of LIU, LIK and L3 misses as shown in Figure 5. Cou-

pling the decreasing L2 misses with the increasing LIU, LIK and

1.3 misses yields m optimal partition point shown in Figure 5.

This partition poin~ however, is only optimal for the pdcular

operating system. Different operating systems with varying

degrees of service migration have different optimal partition

points. For example, the upper graph in Figure 6 shows an optimal
partition point of 8 for Mach 3.0, 10 for Mach3+AFSin and 12 for
Mach3+AFSout, when running the ous t erhout benchmark.

Applications also influence the optimal partition point. The

lower graph in Figure 6 shows the results for various applications

running under Mach 3.0. compress has an optimal partition

point of 8. However, video_play requires 14 slots and

mpeg~l ay requires 18 slots. Some of the additional slots are

used to hold the X Server’s L2 PTEs. This underscores the impor-
tance of understanding both the decomposition of the system and

how applications interact wifh the various OS seMces because

both determine the use of TLB slots.

100

WI
“.

80w ❑ LIU

❑ LIK

❑ L3

■ Othsr
1

32”64”128’2S3” 512
Number of Upper Sbts

Figure Z TLB Service Time vs. Number of Upper TLB
slots

Tha total cost et TLB miss servioing for sfi seven tranelwnarke run under
OSF/1. The nutier of upper ebts was varfad from S to 512, while the nunr-
bsr of bwer slots was fissd at 16 for all mnflgurafbns.

5.3 Increasing TLB Size

In thii section we examine the benefits of building TLBs with
additional upper slots. ‘l%e trade-offs here can be more complex
because the upper slots are used to hold three different types of
mappings (LIU, LIK and L3 FTEs) whereas the lower slots only
hold L2 ~S.

To better understand the requirements for upper slots, we used
Tapeworm to simulate TLB configurations ranging from32to512

upper slots. Each of these TLB configurations was fully-sssocia-
tive and had 16 lower slots to miniize L2 misses.

Figure 7 shows TLB performance for all seven benchmarks
under OSF/1. For smaller TLBs, the most significant component
is LIK misses; LIU and L3 misses account for less than 3!$% of
the total TLB miss handling time. ‘he prominence of LIK misses
is due to the large number of mapped data structures in the OSF/1
kernel. However, as outlined in Section 5.1, modifying the hard-
ware trap mechanism to allow the uTLB handler to service L1 K

misses reduces the LIK service time to an estimated 20 cycles.

Therefore, we recomputed the total time using the lower cost LIK
miss service time (20 cycles) for the OSF/1, Mach 3.0 and
Mach3+AFSout systems (Egure 8).

With the cost of LIK misses reduced, TLB miss handling time
is dominated by LIU misses. In each system, there is a noticeable

improvement in TLB service time as ‘llE sizes incre~ from 32
to 128 slots. For example, moving from 64 to 128 slots decreases

Mach 3.0 lLB handling time by over 50~0.

After 128 slots, invalid and modiiy misses dominate (listed as
“other” in the figures), Because the invalid and modify misses are
constant with respect to TLB sire, any tiutber increases in TLB
size will have a negligeable effect on overall TLB performanw.
‘Ilds suggests that a 128- or 256-entry TLB may be sufficient to

support both monolitilc operating systems like Ultrix and OSF/1
and micmkemel operating systems like Mach 3.0. Of course, even
larger TLBs may be needed to support large applications such as

CAD programs. However, this study is limited to TLB support for
operating systems running a modest workload. ‘he reader is
referred to [6] for a detailed discussion of TLB support for large

applications.

35

40, osFn—
35: — ❑ LIU

30: — ❑ LIK

_25: — ❑ L3

i ■ CMIW
:20- —
E
i=

15

10

5

0

32” 64’ 128 256 512

Number of Upper Sots

70
Mach 3.0

60–

60–
❑ LIK

•d L3

2

20-

lo–

32 64 128 266 512
Numlmr of Upper SIC4S

100
Mech3+AFSout

So
❑ LIU

80
❑ LIK

70
H L3

~ 60
~ so ■ other

g
+ 40

w

20

10

0

S!i”e.f 128 266 512
Number d Upper Skrrs

Figure 8: Modfied TLB Swvice Time vs. Number of
Upper TLB Slots

Ttra total coat of TLS rnLsaeervielng (for all seven banchmerka) eaeum@g
LIKmbsesc enbatamdledb ytheu TLS handlar in20eycleeand L2
mieees are handled In 40 eyclaa. The top g@r is for OSF/l, the mkfcNefor
Mach 3.0 and the bottom for Maeh3+AFSout. Note Ihat the aeab vaffes for
each graph.

CXheris the sum of the invalid, modify and L2 rnfaaeoafa.

IINumber of Number of
Proeeseor Aeeoeietivity Instruction Data

slots slots
1 1 1

DEc *ha 21064 I fufl I 6+4 I 32

ISM RWSOOO I 2-way I 32 I 128

TI VikfIW fun S4unified I —

MIPS R2000 I fun I S4 uniffed —

MIPS R4000 full 4Sunlffed I —

HP9000Sarfae700 fulf I 9s4 I 9s+4

Infat4ss I 4-way 32uNffed I —

Table 8: Number of TLB Slots for Current Processors

Note that page eiraavaryfrom 4K to 16 Meg and are variable In many pro-
eessOfS.The MIPS R4000 SCtUdy hsS4S double sbte. TWOPTEs can reside
h ona double slot If their virtual mappfngs are to coneaeufive pagee in the vir-
tual address epwxr. ~

5.4 TLB Associativity

Large, fully-associative TLBs (128+ entries) are difficult to buildl

and can consume a significant amount of chip area. To achieve

high TLB performance, computer architects could implemeut

latger TLBs with lesser degrees of associativity. The following

section explores the effectiveness of TLBs with varying degrees

of associstivity.

Many current-generation processors implement fully-associa-

tive TLBs with sizes ranging from 32 entries to 100+ entries

(Table 8). However, technology limitations may force designers to

begin building larger TLBs which are not fully-associative. To

explore the performance impact of limiting TLB sssociativity, we

used Tapeworm to simulate TLBs with varying degrees of asso-

ciativity.

‘llte top two graphs in Figure 9 show the total ‘ILB miss han-

dling time for the mpeg_play benchmark under Mach3+AFSout

and the video-lay benchmark under Mach 3.0. Throughout

the range of TEE sixes, incmesing essoeiativity reduces the total

TLB handling time. These figures illustrate the general “rule-of-

thumb” that doubling the size of a caching strucmre will yield

about the same performance es doubling the degree of essociativ-

ity [24].

Some benchmark, however, cart perform badly for TLBs with

a small degree of set associativity. For example, the bottom graph

in Figure 9 shows the total TLB miss handling time for the com-

press benchmark under OSFI1. For a 2-way set-associative

11.13, compress displays pathological behavior. Even a 512-

etttry, 2-way set-associative TLB is outperformed by a much

smaller 32-enfry, 4-way set-associative TLB.

lltese three graphs show that reducing aasociativity to enable

the construction of larger TLBs is en effective techoique for

reducing TLB mimes,

1. Current-mode sensing avoids some of tbe problems associated with
large CMOS CAMS [22].

36

25

1

32 64 128 256 512
Nutnbsr of Uppar SIota

mPeg_plaY under M=h3+AFSout

251

f
+ 2-way

20-

-H- 4-way

g15 -A- 8-way

~.-
+ + Fufl

~ lo
1-

5-

32 64 128 2k 5i2

Nurrber of Uppar slots

video-lay under Mach 3.0

1401

32 64 12s 256 512

Number of Upper Slot8

compress under OSFll

Figure 9: Total TLB Sewice Time for TLBs of Different
Sizes and Aeeociativiiies

6 Summary

‘Ibis paper demonstrates to archkecta and operating system
designers the importance of understanding the interactions
between TLBs and operating systems. Software-management of
Tf.Bs magnifies the importance of this understanding, because of
the large variation in TLB miss service times that can exist.

‘11.,B behavior depends upon the kernel’s use of virtual mem-

ory to map its own data structures, including the page tables them-
selves, TLB behavior is also dependent upon the dhiaion of

service functionality between the kernel and separate user tasks.
Currently popular microkemel approaches rely on server tasks,
but can fall prey to performance difficulties. Running on a

machiie with a software-managed TLB like that of the MIPS
R2000, current microkernel systems perform poorly with only a
modest degree of sexvice decomposition into separate server
taska.

We have pmaented measurements of actual systems on a cur-

rent machine, together with simulations of architectural problems,
and have related the results to the dfierences between operating
systems. We have outlined four amhitectural solutions to the prob-
lems experienced by microkemel-bsaed systems: changes in the

vectoring of ‘ILB misses, flexible partitioning of the ‘ILB, provid-
ing larger TLBs and changing the degree of associativity to enable
eonstmction of larger TLBs. The first two can be implemented at
little C@ as is done in the R4000.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Kane, G. and J. Heinrich, MIPS RISC Architecture. 1992,
Prentice-Hall, Inc.

Digital, Alpha Architecture Handbook. 1992, USA Digital
Equipment Corporation.

DcMoney, M., J. Moore, and J. Maahey. Operating system

support on a RISC. in COIUPCOiV. 1986.

Accetta, M., et al. Mach: A new kzme[foundation for
UNLY akvelopment. in Summer 1986 USENLX Conference.

1986. USENIX.

Clark, D.W. and J.S. Emer, Performance of the V2iX-

11/780 trttnwktion bu@er: Sirrudatwn and measurement.
ACM Transactions on Computer Systems, 1985. 3(1) p.
31-62.

Chen, J.B., A. Borg, and N.P. Jouppi. A simulation based
study of lZB pe~ormance. in The 19th Annual Intema-
twnalSymposium on Computer Architecture. 1992. Gold

Coast, Australk IEEE.

Talluri, M., et al. Tradeo@ in supporting two page sizes.

in Ihe 19th Annual International Symposium on Computer
Architecture. 1992. Gold Coast, Australia IEEE.

Anderson, T.E., et al. The interactwn of architecture and
operating system a%sign. in Fourth International Confer-
ence on Architectural Support for Programming Lzn-
guages and Operating Systems. 1991. Sants Clara,
California ACM.

(hsterhou~ J., Why aren’t operating systems getting fmter

@fat us hardwaw? WRLTectmical Note, 1989. (TN-1 1).

Welch, B. The jik system belongs in the kernel. in
US.E7W Mach Symposium Proceedings. 1991. Monterey,

California USENIX.

37

[11] Nagle, D., R. Uhlig, and T. Mudge, Monsier: A tool for
analyzing the interactwn between operating systems and
computer atrhitectums. 1992, The University of Michi-

gan.

[12] Alexander, C.A., W.M. Keshlear, and F. Briggs, Tiansla-
twn buffer pe~o rmance in a UNJX environment. Com-
puter Architecture News, 1985. 13(5} p. 2-14.

[13] MIPS Computer Systcma, I., RISCompiler Languages
Programmer’s Guide. 1988, MIPS.

[14] Larus, J.R.,Abstract Ewcution: A technquefor e@ciently
tracing programs. 1990, University of W~consin-MadL
son.

[15] Agarwal, A., J. Hennessy, and M. Homwi@ Cache peflor-
mance of operating system and multiptvgranttting work-
loads. ACM Transactions on Computer Systems, 1988.
6(Number 4} p. 393-431.

[16] McKusick, M.K., et aL, A fmtjik system for UNLY. ACM
Transactions on Computer Systems, 1984. 2(3) p. 181-
197.

[18] Raahid, R., et al., Machine-independent virtual memory
management for paged unipmcessor and multiptvcessor
amhitectures. IEEE Transactions on Computers, 1988.

37(8I p. 896-908.

[19] Dean, R.W. and F. Armand. Data movement in kernelized

systems. in A4icto-kemels and Other Kernel Atrhitectures.
1991. Seattle, Washington USENIX.

[20] Cheriton, D.R., The Vkernel: A software base for dtWib-
uted systems. IEEE Software, 1984. 1(2] p. 19-42.

[21] Uhlig, R., et al., Sojlwam TLB management in OSF/1 and
Mach 3.0.1993, University of Michigan.

[22] Heald, R.A. and J.C. Hoist. 6ns cycZe 256 kb cache mem-
ory and memory management unit. in fEEE International
Solid-State Cinxits Conference. 1993. San Francisco, CA
IEEE.

[23] Patel, K., B.C. Smith, and L.A. Rowe, Petfonnance of a
so~are MPEG viako akcodw. 1992, University of Cali-
forni% Berkeley.

[24] Patterson, D. and Hennessy, J., Computer architecture A
quantitative approach. 1990. Mo~an Kaufmann Publish-
ers, Inc.San Mateo, California.

[17] Satyansrayanan, M., Sm&bk, secwe, and highly avail-

abk distributedjile access. IEEE Computer, 1990. 23(5)
p. 9-21.

38

