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Abstract

An increasing number of architectures provide virtual memory
support through software-managed TLBs. However, software
management can impose considerable penalties, which are highly
dependent on the operating system’s structure and its use of vir-
tual memory. This work explores software-managed TLB design
tradeoffs and their interaction with a range of operating systems
including monolithic and microkernel designs. Through hardware
monitoring and simulation, we explore TLB performance for
benchmarks running on a MIPS R2000-based workstation run-
ning Ultrix, OSF/I, and three versions of Mach 3.0.

Results: New operating systems are changing the relative fre-
quency of different types of TLB misses, some of which may not be
efficiently handled by current architectures. For the same applica-
tion binaries, total TLB service time varies by as much as an
order of magnitude under different operating systems. Reducing
the handling cost for kernel TLB misses reduces total TLB service
time up to 40%. For TLBs between 32 and 128 slots, each dou-
bling of the TLB size reduces total TLB service time up to 50%.

Keywords: Translation Lookaside Buffer (TLB), Simulation,
Hardware Monitoring, Operating Systems.

1 Introduction

Many computers support virtual memory by providing hardware-
managed translation lookaside buffers (TLBs). However, some
computer architectures, including the MIPS RISC {1] and the
DEC Alpha [2], have shifted TLB management responsibility into
the operating system. These software-managed TLBs can simplify
hardware design and provide greater flexibility in page table
structure, but typically have slower refill times than hardware-
managed TLBs [3].

At the same time, operating systems such as Mach 3.0 [4] are
moving functionality into user processes and making greater use
of virtual memory for mapping data structures held within the ker-
nel. These and related operating system trends place greater stress
upon the TLB by increasing miss rates and, hence, decreasing
overall system performance.
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This paper explores these issues by examining design trade-
offs for software-managed TLBs and their impact, in conjunction
with various operating systems, on overall system performance.
To examine issues which cannot be adequately modeled with sim-
ulation, we have developed a system analysis tool called Monster,
which enables us to monitor actual systems. We have also devel-
oped a novel TLB simulator called Tapeworm, which is compiled
directly into the operating system so that it can intercept all of the
actual TLB misses caused by both user process and OS kernel
memory references. The information that Tapeworm extracts from
the running system is used to obtain TLB miss counts and to sim-
ulate different TLB configurations.

The remainder of this paper is organized as follows: Section 2
examines previous TLB and OS research related to this work.
Section 3 describes our analysis tools, Monster and Tapeworm.
The MIPS R2000 TLB structure and its performance under Ultrix,
OSF/1 and Mach 3.0 is examined in Section 4. Experiments, anal-
ysis and hardware-based performance improvements are pre-
sented in Section 5. Section 6 summarizes our conclusions.

2 Related Work

By caching page table entries, TLBs greatly speed up virtual-to-
physical address translations. However, memory references that
require mappings not in the TLB result in misses that must be ser-
viced either by hardware or by software. In their 1985 study, Clark
and Emer examined the cost of hardware TLB management by
monitoring a VAX-11/780. For their workloads, 5% to 8% of a
user program’s run time was spent handling TLB misses [5].

More recent papers have investigated the TLB’s impact on user
program performance. Chen, Borg and Jouppi [6], using traces
generated from the SPEC benchmarks, determined that the
amount of physical memory mapped by the TLB is strongly
linked to the TLB miss rate. For a reasonable range of page sizes,
the amount of the address space that could be mapped was more
important than the page size chosen. Talluri et al. [7] have shown
that although older TLBs (as in the VAX-11/780) mapped large
regions of memory, TLBs in newer architectures like the MIPS do
not. They showed that increasing the page size from 4 KBytes to
32 KBytes decreases the TLB’s contribution to CPI by a factor of
at least 3.

1. The TLB contribution is as high as 1.7 cycles per instruction for some
benchmarks.



Operating system references also have a strong impact on TLB
miss rates. Clark and Emer’s measurements showed that although
only 18% of all memory references were made by the operating
system, these references resulted in 70% of all TLB misses. Sev-
eral recent papers [8-10] have pointed out that changes in the
structure of operating systems are altering the utilization of the
TLB. For example, Anderson et al. [8] compared an old-style
monolithic operating system (Mach 2.5) and a newer microkernel
operating system (Mach 3.0), and found a 600% increase in TLB
misses requiring a full kemel entry. Kernel TLB misses were far
and away the most frequently invoked system primitive for the
Mach 3.0 kernel.

This work distinguishes itself from previous work through its
focus on software-managed TLBs and its examination of the
impact of changing operating system technology on TLB design.
Unlike hardware-managed TLB misses, which have a relatively
small refill penalty, the design trade-offs for software-managed
TLBs are rather complex. Our measurements show that the cost of
handling a single TLB miss on a DECstation 3100 running Mach
3.0 can vary from 20 to more than 400 cycles. Because of this
wide variance in service times, it is important to analyze the fre-
quency of various types of TLB misses, their cost and the reasons
behind them. The particular mix of TLB miss types is highly
dependent on the implementation of the operating system. We
therefore focus on the operating system in our analysis and dis-
cussion.

3  Analysis Tools and Experimental
Environment

To monitor and analyze TLB behavior for benchmark programs
running on a variety of operating systems, we have developed a
hardware monitoring system called Monster and a TLB simulator
called Tapeworm. The remainder of this section describes these
tools and the experimental environment in which they are used.

3.1 System Monitoring with Monster

The Monster monitoring system enables comprehensive analyses
of the interaction between operating systems and architectures.
Monster is comprised of a monitored DECstation 3100!, an
attached logic analyzer and a controlling workstation. Monster’s
capabilities are described more completely in [11}].

In this study, we used Monster to obtain the TLB miss bandling
costs by instrumenting each OS kernel with marker instructions
that denoted the entry and exit points of various code segments
(e.g. kernel entry, TLB miss handler, kernel exit). The instru-
mented kernel was then monitored with the logic analyzer whose
state machine detected and dumped the marker instructions and a
nanosecond-resolution timestamp into the logic analyzer’s trace
buffer. Once filled, the trace buffer was post-processed to obtain a
histogram of time spent in the different invocations of the TLB
miss handlers. This technique allowed us to time code paths with
far greater accuracy than can be obtained using a system clock
with its coarser resolution or, as is often done, by repeating a code
fragment N times and then dividing the total time spent by N.

1. The DECstation 3100 contains an R2000 microprocessor (16.67 MHz)
and 16 Megabytes of memory.
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Figure 1: Tapeworm

The Tapeworm TLB simulator is buik into the operating system and is
invoked whenever there Is a real TLB miss. The simulator uses the real TLB
misses to simulate ks own TLB configuration(s). Because the simulator
resides in the operating system, Tapeworm captures the dynamic nature of
the system and avoids the problems associated with simulators driven by
static traces.

3.2 TLB Simulation with Tapeworm

Many previous TLB studies have used trace-driven simulation to
explore design trade-offs [5-7, 12]. However, there are a number
of difficulties with trace-driven TLB simulation. First, it is diffi-
cult to obtain accurate traces. Code annotation tools like pixie [13]
or AE [14] generate user-level address traces for a single task.
However, more complex tools are required in order to obtain real-
istic system-wide address traces that account for multiprocess
workloads and the operating system itself [5, 15]. Second, trace-
driven simulation can consume considerable processing and stor-
age resources. Some researchers have overcome the storage
resource problem by consuming traces on-the-fly [6, 15]. This
technique requires that system operation be suspended for
extended periods of time while the trace is processed, thus intro-
ducing distortion at regular intervals. Third, trace-driven simula-
tion assumes that address traces are invariant to changes in the
structural parameters or management policies2 of a simulated
TLB. While this may be true for cache simulation (where misses
are serviced by hardware state machines), it is not true for soft-
ware-managed TLBs where a miss (or absence thereof) directly
changes the stream of instruction and data addresses flowing
through the processor. Because the code that services a TLB miss
can itself induce a TLB miss, the interaction between a change in
TLB structure and the resulting system address trace can be quite
complex.

‘We have overcome these problems by compiling our TLB sim-
ulator, Tapeworm, directly into the OSF/1 and Mach 3.0 operating
system kernels. Tapeworm relies on the fact that all TLB misses in
an R2000-based DECstation 3100 are handled by software. We
modified the operating systems’ TLB miss handlers to call the
Tapeworm code via procedural “hooks” after every miss. This
mechanism passes the relevant information about all user and ker-
nel TLB misses directly to the Tapeworm simulator. Tapeworm
uses this information to maintain its own data structures and to
simulate other possible TLB configurations.

2. Structural parameters include the page size, the number of TLB slots
and the partition of TLB slots into pools reserved for different pur-
poses. Management policies include the placement policy (direct
mapped, 2-way set-associative, fully-associative, etc.) and the replace-

ment policy (FIFO, LRU, random, etc.).



Benchmark Description Total Ratio to
Run i
compress Uncompresses and compresses a 7.7 Megabyle Operating Time Nulobt::' of | s TL?e. l.:!::
video clip.
i System (sec) | TLB Misses Time Service
I0zone A sequential file /O benchmark that writes and (sec)* Time
then reads a 10 Megabyte file. Written by Bill Nor-
cott. Ubtrix 3.1 683 9,177,401 11.82 10
jpeg_play The xloadimage program written by Jim Frost. OSF/ 892 11,691,398 51.85 439
Displays four JPEG images. Mach 3.0 975 | 24,349,121 80.01 6.77
mab [J9°]"“ Ousterhout's Modified Andrew Benchmark Mach3+AFSin 1371 83933413| 106.56 9.02
olay - lay V20 from the Berkeley Plaeau Mach3+AFSout 1,617 36,649,834 134.71 1140
Research Group. Displays 610 frames from a
compressed video file [23]. Table 2: Total TLB Misses Across the Benchmarks
ousterhout John Ousterhout's benchmark sulte from [9].
: The total run time and number of TLB misses incurred by the seven bench-
video_play A modified version of mpeg play that displays mark programs. Akhough the same application binaries were run on each of
610 frames from an uncompressed video file. the operating systems, there is a substantial difference In the number of TLB
Operating Descrioti misses and their corresponding service times.
System cripuon * Time time based on measured median time to service TLB miss.
Ultrix Version 3.1 from Digital Equipment Corporatlon.
OSFA OSF/1 1.01s the Open Software Foundation's ver- simulate the performance of a wide range of different-sized TLBs
sion of Mach 2.5. with different degrees of associativity and a variety of placement
Mach 3.0 Camagle Melion University's version mk77 of the and replacement policies.
kernel and uk38 of the UNIX server. The Tapeworm design avoids many of the problems with trace-
Mach3+AFSin Same as Mach 3.0, but with the AFS cache man- driven TLB simulation cited above. Because Tapeworm is driven
ager (CM) running in the UNIX server. by procedure calls within the OS kernel, it does not require
Mach3+AFSout Same as Mach 3.0, but with the AFS cache man- address traces at all; the various difficulties with extracting, stor-
ager running as a separate task outside of the ing and processing large address traces are completely avoided.
UNIX server. Not all of the CM functionality has Because Tapeworm is invoked by the machine’s actual TLB miss
—— . |beonmovedintothisservertask. ________ handling code, it considers the impact of all TLB misses whether

Table 1: Benchmarks and Operating Systems

Benchmarks were complied with the Ultrix C complier version 2.1 (level 2
optimization). Inputs were tuned so that each benchmark takes approxi-
mately the same amount of time to run (100-200 seconds under Mach 3.0).
All measurements cited are the average of three runs.

A simulated TLB can be either larger or smaller than the actual
TLB. Tapeworm ensures that the acmal TLB only holds entries
available in the simulated TLB. For example, to simulate a TLB
with 128 slots using only 64 actual TLB slots (Figure 1), Tape-
worm maintains an array of 128 virtual-to-physical address map-
pings and checks each memory reference that misses the actual
TLB to determine if it would have also missed the larger, simu-
lated one. Thus, Tapeworm maintains a strict inclusion property
between the actual and simulated TI.Bs. Tapeworm controls the
actual TLB management policies by supplying placement and
replacement functions called by the operating system miss han-
dlers. It can simulate TLBs with fewer entries than the actual TLB
by providing a placement function that never utilizes certain slots
in the actual TL.B. Tapeworm uses this same technique to restrict
the associativity of the actual TLB'. By combining these policy
functions with adherence to the inclusion property, Tapeworm can

1. The actual R2000 TLB is fully-associative, but varying degrees of
associativity can be emulated by using certain bits of a mapping’s vir-
tual page number to restrict the slot (or set of slots) into which the
mapping may be placed.
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they are caused by user-level tasks or the kernel itself. The Tape-
worm code and data structures are placed in unmapped memory
and therefore do not distort simulation results by causing addi-
tional TLB misses. Finally, because Tapeworm changes the struc-
tural parameters and management policies of the actual TLB, the
behavior of the system itself changes automatically, thus avoiding
the distortion inherent in fixed traces.

3.3 Experimental Environment

All experiments were performed on an R2000-based DECstation
3100 (16.7 MHz) running three different base operating systems
(Table 1): Ultrix, OSF/1, Mach 3.0. Each of these systems
includes a standard UNIX file system (UFS) [16]. Two additional
versions of Mach 3.0 include the Andrew file system (AFS) cache
manager [17]). One version places the AFS cache manager in the
Mach Unix Server while the other migrates the AFS cache man-
ager into a separate server task.

To obtain measurements, all of the operating systems were
instrumented with counters and markers. For TLB simulation,
Tapeworm was imbedded in the OSF/1 and Mach 3.0 kemels.
Because the standard TL.B handlers for OSF/1 and Mach 3.0
implement somewhat different management policies, we modified
OSF/1 to implement the same policies as Mach 3.0.

Throughout tha paper we use the benchmarks listed in Table 1.
The same benchmark binaries were used on all of the operating
systems. Each measurement cited in this paper is the average of
three trials.



4  OS Impact on Software-Managed TLBs

Operating system references have a strong influence on TLB per-
formance. Yet, few studies have examined these effects, with most
confined to a single operating system [3, 5]. However, differences
between operating systems can be substantial. To illustrate this
point, we ran our benchmark suite on each of the operating sys-
tems listed in Table 1. The results (Table 2) show that although the
same application binaries were run on each system, there is signif-
icant variance in the number of TLB misses and total TLB service
time. Some of these increases are due to differences in the func-
tionality between operating systems (i.e. UFS vs. AFS). Other
increases are due to the structure of the operating systems. For
example, the monolithic Ultrix spends only 11.82 seconds han-
dling TLB misses while the microkernel-based Mach 3.0 spends
80.01 seconds.

Notice that while the total number of TLB misses increases 4
fold (from 9,177,401 to 36,639,834 for AFSout), the total time
spent servicing TLB misses increases 11.4 times. This is due to
the fact that software-managed TLB misses fall into different cat-
egories, each with its own associated cost. For this reason, it is
important to understand page table structure, its relationship to
TLB miss handling and the frequencies and costs of different
types of misses.

4.1 Page Tables and Translation Hardware
OSF/1 and Mach 3.0 both implement a linear page table structure
(Figure 2). Each task has its own level 1 (L1) page table, which is
maintained by machine-independent pmap code [18]. Because the
user page tables can require several megabytes of space, they are
themselves stored in the virtual address space. This is supported
through level 2 (L2 or kernel) page tables, which also map other
kernel data. Because kernel data is relatively large and sparse, the
L2 page tables are also mapped. This gives rise to a 3-level page
table hierarchy and four different page table entry (PTE) types.
The R2000 processor contains a 64-slot, fully-associative
TLB, which is used to cache recently-used PTEs. When the
R2000 translates a virtual address to a physical address, the rele-

TLB Miss Type Ulrix | OSFA Mach 3.0
Liv 16 20 20
L1K 333 355 294
L2 494 511 407
L3 ——— 354 286
Modify 375 436 499
Invalid 336 277 267

Table 3: Costs for Different TLB Miss Types

This table shows the number of machine cycles (at 60 ns/cycle) required to
setvice different types of TLB misses. To determine these costs, Monster
was used to collect a 128K-entry histogram of timings for each type of miss.
We separate TLB miss types into the six categories described below. Note
that Ultrix does not have L3 misses because &k implements a 2-level page
table.

(R ]V] TLB miss on a level 1 user PTE.

LIK TLB miss on a level 1 kemel PTE.

L2 TLB miss on level 2 PTE. This can only occur after a
miss on a level 1 user PTE.

L3 TLB miss on a level 3 PTE. Can occur after either a
level 2 miss or a level 1 kemel miss.

Modify A page protection violation.

Invalid An access to an page marked as lnvalid (page fault).

vant PTE must be held by the TLB. If the PTE is absent, the hard-
ware invokes a trap to a software TLB miss handling routine that
finds and inserts the missing PTE into the TLB. The R2000 sup-
ports two different types of TL.B miss vectors. The first, called the
user TLB (uTLB) vector, is used to trap on missing translations
for L1U pages. This vector is justified by the fact TLB misses on
L1U PTEs are typically the most frequent [3]. All other TLB miss
types (such as those caused by references to kernel pages, invalid
pages or read-only pages) and all other interrupts and exceptions
trap to a second vector, called the generic exception vector.

User Kernel
Data Data
Page LIUPTE Page
Each PTE maps one, [
4K page of user text or
L data. LIK PTE
3 Each PTE maps one, 4K
page of kemel text or
- L2PTE data.
Each L2 PTE maps
La one, 1,024 enlry user
o__] page table page.
-
Virtual Address Space
L3 PTE Physical Address Space
L3 Each L3 PTE maps 1 page
=+ of either L2 PTEs or L1K

PTEs.

Figure 2: Page Table Structure in OSF/1 and Mach 3.0

The Mach page tables form a 3-level structure with the first two levels resid-
Ing in virtual (mapped) space. The top of the page table structure holds the
user pages which are mapped by level 1 user (L1U) PTEs. These L1U PTEs
are stored in the L1 page table with each task having its own set of L1 page
tables.

Mapping the L1 page tables are the level 2 (L2) PTEs. They are stored in the
L2 page tables which hold both L2 PTEs and level 1 kemel (L1K) PTEs. In
tum, the L2 pages are mapped by the level 3 (L3) PTEs stored in the L3
page table. At boot time, the L3 page table is fixed In unmapped physical
memory. This serves as an anchor to the page table hierarchy because refer-
ences to the L3 page table do not go through the TLB.

The MIPS R2000 architecture has a fixed 4 KByte page size. Each PTE
requires 4 byles of storage. Therefore, a single L1 page table page can hold
1,024 L1U PTESs, or 4 Megabytes of virtual address space. Likewise, the L2
page tables can directly map either 4 Megabytes of kemel data or indirectly
map 4 GBytes of L1U data.
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Mapped
Kernel Service Service Add.
(o 1] - . [0}
Data Migration | Decomp. Services
Structs.
Ultrix Few None None X Server
OSF/ Many None None X Server
Mach 3.0 Some Some Some X Server
Mach3+AFSin Some Some Some X Server &
AFS CM
Mach3+AFSout Some Some Many X Server &
AFSCM

Table 4: Characteristics of the OS’s Studied

For the purposes of this study, we define TLB miss types
(Table 3) to cormrespond to the page table structure implemented
by OSF/1 and Mach 3.0. In addition to L1U TLB misses, we
define five subcategories of kernel TLB misses (L1K, L2, L3,
modify and invalid). Table 3 also shows our measurements of the
time required to handle the different types of TLB misses. The
wide differential in costs is primarily due to the two different miss
vectors and the way that the OS uses them. L1U PTEs can be
retrieved within 16 cycles because they are serviced by a highly-
tuned handler inserted at the uTLB vector. However, all other
miss types require from about 300 to over 400 cycles because they
are serviced by the generic handler residing at the generic excep-
tion vector.

The R2000 TLB hardware supports partitioning of the TLB
into two sets of slots. The lower partition is intended for PTEs
with high retrieval costs, while the upper partition is intended to
hold more frequently-used PTEs that can be re-fetched quickly
(e.g. L1U) or infrequently-referenced PTEs (e.g L3). The TLB
hardware also supports random replacement of PTEs in the upper
partition through a hardware index register that returns random
numbers in the range 8 to 63. This effectively fixes the TLB parti-
tion at 8, so that the lower partition consists of slots 0 through 7,
while the upper partition consists of slots 8 through 63.

4.2 OS Influence on TLB Performance

In the operating systems studied, there are three basic factors
which account for the variation in the number of TLB misses and
their associated costs (Table 4 & Figure 3). The central issues are
(1) the use of mapped memory by the kernel (both for page tables
and other kernel data structures), (2) the placement of functional-
ity within the kernel, within a user-level server process (service
migration) or divided among several server processes (OS decom-
position) and (3) the range of functionality provided by the system
(additional OS services). The rest of Section 4 uses our data to
examine the relationship between these OS characteristics and
TLB performance.

4.2.1 Mapping Kernel Data Structures

Mapping kernel data structures adds a new category of TLB
misses: L1K misses. In the MIPS R2000 architecture, an increase
in the number of L1K misses can have a substantial impact on
TLB performance because each L1K miss requires several hun-
dred cycles to service!.
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Ultrix places most of its data structures in a small, fixed por-
tion of unmapped memory that is reserved by the OS at boot time.
However, to maintain flexibility, Ultrix can draw upon the much
larger virtual space if it exhausts this fixed-size unmapped mem-
ory. Table 5 shows that few L1K misses occur under Ultrix.

In contrast, OSF/1 and Mach 3.02 place most of their kernel
data structures in mapped virtual space, forcing them to rely
heavily on the TLB. Both OSF/1 and Mach 3.0 mix the L1K PTEs
and L1U PTEs in the TLB’s 56 upper slots. This contention pro-
duces a large number of L1K misses. Further, handling an L1K
miss can result in an L3 miss’, In our measurements, OSF/1 and
Mach 3.0 both incur more than 1.5 million L1K misses. OSF/1
must spend 62% of its TLB handling time servicing these misses
while Mach 3.0 spends 37% of its TLB handling time servicing
L1K misses.

4.2.2 Service Migration

In a traditional operating system kernel such as Ultrix or OSF/1
(Figure 3), all OS services reside within the kernel, with only the
kemnel’s data structures mapped into the virtual space. Many of
these services, however, can be moved into separate server tasks,
increasing the modularity and extensibility of the operating sys-
tem [8]. For this reason, numerous microkernel-based operating
systems have been developed in recent years (e.g. Chorus [19],
Mach 3.0 [4], V [20]).

By migrating these services into separate user-level tasks,
operating systems like Mach 3.0 fundamentally change the behav-
ior of the system for two reasons. First, moving OS services into
user space requires both their program text and data structures to
be mapped. Therefore, they must share the TLB with user tasks,
possibly conflicting with the user tasks’ TLB footprints. Compar-
ing the number of L1U misses in OSF/1 and Mach 3.0, we see a
2.2 fold increase from 9.8 million to 21.5 million. This is directly
due to moving OS services into mapped user space. The second
change comes from moving OS data structures from mapped ker-
nel space to mapped user space. In user space, the data structures
are mapped by L1U PTEs which are handled by the fast uTLB
handler (20 cycles for Mach 3.0). In contrast, the same data struc-
tures in kernel space are mapped by L1K PTEs which are serviced
by the general exception (294 cycles for Mach 3.0).

4.2.3 Operating System Decomposition

Moving OS functionality into a monolithic UNIX server does not
achieve the full potential of a microkernel-based operating sys-
tem. Operating system functionality can be further decomposed
into individual server tasks. The resulting system is more flexible
and can provide a higher degree of fault tolerance.

Unfortunately, experience with fully decomposed systems has
shown severe performance problems. Anderson et al. [8] com-
pared the performance of a monolithic Mach 2.5 and a microker-
nel Mach 3.0 operating system with a substantial portion of the
file system functionality running as a separate AFS cache manager
task. Their results demonstrate a significant performance gap

1. From 294 to 355 cycles, depending on the operating system (Table 3).

2. Like Ultrix, Mach 3.0 reserves a portion of unmapped space for
dynamic allocation of data structures. However, it appears that Mach
3.0 quickly uses this unmapped and must begin to allocate
mapped memory. Once Mach 3.0 has allocated mapped space, it does
not distinguish between mapped and unmapped space despite their dif-
fering costs.

3. L1K PTEs are stored in the mapped, L2 page tables (Figure 2).



System T°“'(':‘°';')“"'° Liu LIK L2 L3 Invalid Modify Total
Ultrix 583 9,021,420 135,847 3,828 16,191 115 9,177,401
OSF/1 892 9,817,502 1,509,973 34,972 207,163 79,299 42,490 11,691,398
Mach3 975 21,466,165 1,682,722 352,713 556,264 165,849 125,409 24,349,121
Mach3+AFSin 1,371 30,123,212 2,493,283 330,803 690,441 168,429 127,245 33,933,413
Mach3+AFSOut 1517 31,611,047 2,712,979 1,042,527 987,648 168,128 127,505 36,649,834

Table 5: Number of TLB Misses
Total
System ServiceTTl:iBme L1U L1K L2 Ls Invalid Modify ’;u‘:::_l‘x'
(sec)
Ultrix 11.82 8.66 2.7 0.11 0.33 0.00 2.03%
OSF/1 51.85 11.78 32.16 1.07 440 132 .1 5.81%
Mach3 80.01 25.76 29.68 8.61 9.55 2.66 3.75 8.21%
Mach3+AFSin 106.56 36.15 43.98 8.08 11.85 2.70 3.81 7.77%
Mach3+AFSOut 134.71 37.93 47.86 25.46 16.95 2.69 3.82 8.88%

Table 6: Time Spent Handling TLB Misses

Thesa tables show the number of TLB misses and amount of time spent handling TLB misses for each of the operating systems
studied. in Ultrix, most of the TLB misses and TLB miss time is spent servicing L1U TLB misses. However, for OSF/1 and various
verslons of Mach 3.0, L1K and L2 misses can overshadow the L1U miss time. The increase in Modify misses Is due to OSF/1 and
Mach 3.0's use of protection to implement copy-on-write memoty sharing.

File system, networking, scheduling and Unix
interface reside inside a monolithic kernel.

Kernel text
Uttrix places

unmapped space while OSF/1 uses mapped Mach 3.0
space for many of its kernel data structures.

ULTRIX &
OSF/

Unix Server
Fiie system
Networking
Scheduling

File system
Networking
Scheduling

resides in unmapped space.
most kernel data structures in

File system, networking, and Unix interface
reside inside the monolithic Unix Server. Ker-

Kernel Mode

nel text and some data reside in unmapped Mach 3.0 + AFSout
vitual space but the Unix Server is In
mappod user space. Same as standard Mach 3.0, but with increased

functionality provided by a server task. The AFS
Cache Manager is elther inside the Unix Server
or in #ts own, userlevel server (as pictured
above).

Figure 3: Monolithic and Microkernel Operating Systems

A comparison of the morwlithic Ultrix and OSF/1 and the microkemel Mach 3.0. In Ultrix and OSF/1, all OS sarvices reside inside
the kernel. In Mach 3.0, these services have been moved inlo the UNIX server. Therefore, most of Mach 3.0's funclionality
resides In mapped virtual space. Mach3+AFS is a modified version of Mach 3.0 with the AFS Cache Manager residing in either
the Unix Server (AFSIn) or as a separate user-level server (AFSout),
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between the two systems with Mach 2.5 running 36% faster than
Mach 3.0, despite the fact that only a single additional server task
is used. Later versions of Mach 3.0 have overcome this perfor-
mance gap by integrating the AFS cache manager into the UNIX
Server.

We compared our benchmarks running on the Mach3+AFSin
system, against the same benchmarks running on the
Mach3+AFSout system. The only structural difference between
the systems is the location of the AFS cache manager. The results
(Table 5) show a substantial increase in the number of both L2 and
L3 misses. Many of the L3 misses are due to missing mappings
needed to service L2 misses.

The L2 PTEs compete for the R2000’s 8 lower TLB slots. Yet,
the number of slots required is proportional to the number of tasks
concurrently providing an OS service. As a result, adding just a
single, tightly-coupled service task overloads the TLB’s ability to
map L2 page tables. Thrashing results. This increase in L2 misses
will grow ever more costly as systems continue to decompose ser-
vices into separate tasks.

424 Additional OS Functionality

In addition to OS decomposition and migration, many systems
provide supplemental services (e.g. X, AFS, NFS, Quicktime).
Each of these services, when interacting with an application, can
change the operating system behavior and how it interacts with
the TLB hardware.

For example, adding a distributed file service (in the form of an
AFS cache manager) to the Mach 3.0 Unix server adds 10.39 sec-
onds to the L1U TLB miss handling time (Table 6). This is due
solely to the increased functionality residing in the Unix server.
However, L1K misses also increase, adding 14.3 seconds. These
misses are due to the additional management the Mach 3.0 kernel
must provide for the AFS cache manager. Increased functionality
will have an important impact on how architectures support oper-
ating systems and to what degree operating systems can increase
and decompose functionality.

5 Improving TLB Performance

In this section, we examine hardware-based techniques for
improving TLB performance under the operating systems ana-
lyzed in the previous section. However, before suggesting
changes, it is helpful to consider the motivations behind the
design of the R2000 TLB.

The MIPS R2000 TLB design is based on two principal
assumptions [3]. First, L1U misses are assumed to be the most
frequent (> 95%) of all TLB miss types. Second, all OS text and
most of the OS data structures (with the exception of user page
tables) are assumed to be unmapped. The R2000 TLB design
reflects these assumptions by providing two types of TLB miss
vectors: the fast uTLB vector and the much slower general excep-
tion vector (described in Section 4.1). These assumption are also
reflected in the partitioning of the 64 TLB slots into two disjoint
sets of 8 lower slots and 56 upper slots (also described previ-
ously). The 8 lower slots are intended to accommodate a tradi-
tional UNIX task (which requires at least three L2 PTEs) and
UNIX kernel (2 PTEs for kernel data), with three 1.2 PTEs left for
additional data segments [3].

Our measurcments (Table 5) demonstrate that these design
choices make sense for a traditional UNIX operating system such
as Ultrix. For Ultrix, L1U misses constitute 98.3% of all misses.
The remaining miss types impose only a small penalty. However,
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Previous
Typeof PTE | . g:' :::l SE:,“;
Miss from Cost
Table 6 (sec) (sec)
(sec)

Mach3+AFSin
L1 30,123,212 36.15 36.15 0.00
2 330,803 8.08 0.79 7.29
LIK 2,493,283 43.98 299 40.99
L3 690,441 11.85 11.85 0.00
Modify 127,245 3.81 3.81 0.00
Invalid 168,429 2.70 270 0.00
Total 33,933,413 106.56 58.29 48.28

Table 7: Recomputed Cost of TLB Misses Given
Additional Miss Vectors (Mach 3.0)

Supplying a separate interrupt vector for L2 misses and aliowing the uTLB
handler to service L1K misses reduces thelr cost to 40 and 20 cycles, respec-
tively. Their contribution to TLB miss time drops from 8.08 and 43.98 seconds
down to 0.79 and 2.99 seconds, respectively.

these assumptions break down for the OSF/1- and Mach 3.0-based
systems. In these systems, the non-L1U misses account for the
majority of time spent handling TLB misses. Handling these
misses substantially increases the cost of software-TLB manage-
ment (Table 6).

The rest of this section proposes and explores four hardware-
based improvements for software-managed TLBs. First, the cost
of certain types of TLB misses can be reduced by modifying the
TLB vector scheme. Second, the number of L2 misses can be
reduced by increasing the number of lower slots!. Third, the fre-
quency of most types of TLB misses can be reduced if more total
TLB slots are added to the architecture. Finally, we examine the
tradeoffs between TLB size and associativity.

Throughout these experiments, software policy issues do not
change from those originally implemented in Mach 3.0. The PTE
replacement policy is FIFO for the lower slots and Random for
the upper slots. The PTE placement policy stores 1.2 PTEs in the
lower slots and all other PTEs in the upper slots. The effectiveness
of these and other software-based techniques are examined in a
related work [21].

5.1 Additional TLB Miss Vectors

The data in Table 5 show a significant increase in L1K misses for
OSF/1 and Mach 3.0 when compared against Ultrix. This increase
is due to both system’s reliance on dynamic allocation of kernel
mapped memory. The R2000’s TLB performance suffers, how-
ever, because L1K misses must be handled by the costly generic
exception vector which requires 294 cycles (Mach 3.0).

To regain the lost TLB performance, the architecture could
vector all L1K misses through the uTLB handler, as is done in the
newer R4000 processor. Based on our timing and analysis of the

1. The newer MIPS R4000 processor [1] implements both of these
changes.
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Figure 4: L2 PTE Miss Cost ve. Number of Lower Slots

The total L2 miss time for the mab benchmark under different operating sys-
tems. As the TLB reserves more lower slots for L2 PTEs, the total time spent
servicing L2 misses becomes negligible.

TLB handlers, we estimate that vectoring the L1K misses through
the uTLB handler would reduce the cost of L1K misses from 294
cycles (for Mach 3.0) to approximately 20 cycles.

An additional refinement would be to dedicate a separate TL.B
miss vector for L2 misses. We estimate the L2 miss service time
would decrease from 407 cycles (Mach 3.0) to under 40 cycles.

Table 7 shows the same data for Mach3+AFSin as Table 5, but
recomputed with the new cost estimates resulting from the refine-
ments above. The result of combining these two modifications is
that total TLB miss service time drops from 106.56 seconds down
to 58.29 seconds. L1K service time drops 93% and L2 miss ser-
vice time drops 90%. More importantly, the L1K and L2 misses
no longer contribute substantially to overall TLB service time.
This minor design modification enables the TLB to much more
effectively support a microkernel-style operating system with
multiple servers in separate address spaces.

Multiple TLB miss vectors provide additional benefits. In the
generic trap handler, dozens of load and store instructions are used
to save and restore a task’s context. Many of these loads and
stores cause cache misses which require the processor to stall. As
processor speeds continue to outstrip memory access times, the
CPl in this save/restore region will grow, increasing the number of
wasted cycles and making non-uTL.B misses much more expen-
sive. TLB-specific miss handlers should not suffer the same per-
formance problems because they contain only a single data
reference to load the missed PTE from the memory-resident page
tables.

5.2 Lower Slots & Partitioning the TLB

The MIPS R2000 TLB fixes the partition between the 8 lower
slots and the 56 upper slots. This partitioning is appropriate for an
operating system like Ultrix [3]. However, as OS designs migrate
and decompose functionality into separate user-space tasks, 8
lower slots becomes insufficient. This is because, in a decom-
posed system, the OS services that reside in different user-level
tasks compete by displacing each other’s L2 PTE mappings from
the TLB.

To better understand this effect, we measured how 12 miss
rates vary depending on the number of lower TLB slots available.
Tapeworm was used to vary the number of lower TLB slots from
4 to 16 while keeping the total number of TLB slots fixed at 64.
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Figure 5: Total Cost of TLB Misses vs. Number of
Lower TLB Siots

The total cost of TLB miss setvicing is plotted against the L1U, L1K, L2 and
L3 components of this total time. The number of lower TLB slots varies from
4 1o 32, while the total number of TLB entries remains constant at 64.

The benchmark is videc_play running under Mach 3.0.

OSF/1 and all three versions of Mach 3.0 ran the mab benchmark
over the range of configurations and the total number of L2 misses
was recorded (Figure 4).

For each operating system, two distinct regions can be identi-
fied. The left region shows a steep decline which levels off near
zero seconds. This shows a significant performance improvement
for every extra lower TLB slot made available to the system, up to
a certain point. For example, simply moving from 4 to 5 lower
slots decreases OSF/1 L2 miss handling time by almost 50%.
After 6 lower slots, the improvement slows because the TLB can
hold most of the L2 PTEs required by OSF/1'.

In contrast, the Mach 3.0 system continues to show significant
improvement up to 8 lower slots. The additional 3 slots needed to
bring Mach 3.0’s performance in line with OSF/1 are due to the
migration of OS services from the kernel to the UNIX Server in
user space. In Mach 3.0, whepever a task makes a system call to
the UNIX server, the task and the UNIX server must share the
TLB’s lower slots. In other words, the UNIX server’s three 1.2
PTE’s (text segment, data segment, stack segment) increases the
lower slot requirement, for the system as a whole, to 8.

Mach3+AFSin’s behavior is similar to Mach 3.0 because the
additional AFS cache manager functionality is mapped by the
UNIX server’s L2 PTEs. However, when the AFS cache manager
is decomposed into a separate user-level server, the TLB must
hold three additional L2 PTEs (11 total). Figure 4 shows how
Mach3+AFSout continues to improve until all 11 L2 PTEs can
simultaneously reside in the TLB.

1. Two for kernel data structures and one each for a task’s text, data and
stack segments.
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Figure 6: Optimal Partition Points for Various
Operating Systems and Benchmarks

As more lower slots are allocated, fewer upper slots are avallable for the
L1U, L1K and L3 PTEs. This ylekis an optimal parntition point which varies
with the operating system and benchmark.

The upper graph shows the average of 3 runs of the custerhout bench-
mark run under 3 different operating systems. The lower graph shows the
average of 3 runs for 3 ditferent benchmarks run under Mach 3.0,

Unfortunately, increasing the size of the lower partition at the
expense of the upper partition has the side-effect of increasing the
number of L1U, L1K and L3 misses as shown in Figure 5. Cou-
pling the decreasing .2 misses with the increasing L1U, L1K and
L3 misses yields an optimal partition point shown in Figure 5.

This partition point, however, is only optimal for the particular
operating system. Different operating systems with varying
degrees of service migration have different optimal partition
points. For example, the upper graph in Figure 6 shows an optimal
partition point of 8 for Mach 3.0, 10 for Mach3+AFSin and 12 for
Mach3+AFSout, when running the Ousterhout benchmark.

Applications also influence the optimal partition point. The
lower graph in Figure 6 shows the results for various applications
running under Mach 3.0. compress has an optimal partition
point of 8. However, video_play requires 14 slots and
mpeg_play requires 18 slots. Some of the additional slots are
used to hold the X Server’s L2 PTEs. This underscores the impor-
tance of understanding both the decomposition of the system and
how applications interact with the various OS services because
both determine the use of TLB slots.
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Figure 7: TLB Service Time vs. Number of Upper TLB
Slots

The total cost of TLB miss servicing for all seven benchmarks run under
OSF/1. The number of upper slots was varied from 8 to 512, while the num-
ber of lower slots was fixed at 16 for alt configurations.

5.3 Increasing TLB Size

In this section we examine the benefits of building TLBs with
additional upper slots. The trade-offs here can be more complex
because the upper slots are used to hold three different types of
mappings (L1U, L1K and L3 PTEs) whereas the lower slots only
bold L2 PTEs.

To better understand the requirements for upper slots, we used
Tapeworm to simulate TLB configurations ranging from 32 to 512
upper slots. Each of these TLB configurations was fully-associa-
tive and had 16 lower slots to minimize L2 misses.

Figure 7 shows TLB performance for all seven benchmarks
under OSF/1. For smaller TLBs, the most significant component
is L1K misses; L1U and L3 misses account for less than 35% of
the total TLB miss handling time. The prominence of L1K misses
is due to the large number of mapped data structures in the OSF/1
kernel. However, as outlined in Section 5.1, modifying the hard-
ware trap mechanism to allow the uTLB handler to service L1K
misses reduces the L1K service time to an estimated 20 cycles.
Therefore, we recomputed the total time using the lower cost L1K
miss service time (20 cycles) for the OSF/1, Mach 3.0 and
Mach3+AFSout systems (Figure 8).

With the cost of L1K misses reduced, TLB miss handling time
is dominated by L1U misses. In each system, there is a noticeable
improvement in TLB service time as TLB sizes increase from 32
to 128 slots. For example, moving from 64 to 128 slots decreases
Mach 3.0 TLB handling time by over 50%.

After 128 slots, invalid and modify misses dominate (listed as
“other” in the figures). Because the invalid and modify misses are
constant with respect to TLB size, any further increases in TLB
size will have a negligeable effect on overall TLB performance.
This suggests that a 128- or 256-entry TLB may be sufficient to
support both monolithic operating systems like Ultrix and OSF/1
and microkernel operating systems like Mach 3.0. Of course, even
larger TLBs may be needed to support large applications such as
CAD programs. However, this study is limited to TLB support for
operating systems running a modest workload. The reader is
referred to [6] for a detailed discussion of TLB support for large
applications.
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Figure 8: Modified TLB Service Time vs. Number of
Upper TLB Siots

The total cost of TLB miss servicing (for all seven benchmarks) assuming
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misses are handled in 40 cycles. The top graph Is for OSF/1, the middie for
Mach 3.0 and the bottom for Mach3+AFSout. Note that the scale varies for
each graph.

Other is the sum of the invalid, modify and L2 miss costs.
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Number of | Number of
Processor Associativity | Instruction Data

Slots Slots
DEC Apha 21064 full 8+4 32
1BM RS/6000 2-way 32 128
TI Viking fult 64 unified —
MIPS R2000 full 64 unified —_—
MIPS R4000 full 48 unified _—
HP 9000 Series 700 ful 9644 96+4
Intel 486 4-way 32 unified —

Table 8: Number of TLB Slots for Current Processors

Note that page sizes vary from 4K to 16 Meg and are variable in many pro-
cessors. The MIPS R4000 actually has 48 double slots. Two PTESs can reside
in one double siot if their virtual mappings are to consecutive pages in the vir-
tual address space. [7]

5.4 TLB Associativity

Large, fully-associative TLBs (128" entries) are difficult to build
and can consume a significant amount of chip area. To achieve
high TLB performance, computer architects could implement
larger TLBs with lesser degrees of associativity. The following
section explores the effectiveness of TLBs with varying degrees
of associativity.

Many current-generation processors implement fully-associa-
tive TLBs with sizes ranging from 32 entries to 100" entries
(Table 8). However, technology limitations may force designers to
begin building larger TL.Bs which are not fully-associative. To
explore the performance impact of limiting TLB associativity, we
used Tapeworm to simulate TL.Bs with varying degrees of asso-
ciativity.

The top two graphs in Figure 9 show the total TLB miss han-
dling time for the mpeg_play benchmark under Mach3+AFSout
and the video_play benchmark under Mach 3.0. Throughout
the range of TLB sizes, increasing associativity reduces the total
TLB handling time. These figures illustrate the general “rule-of-
thumb” that doubling the size of a caching structure will yield
about the same performance as doubling the degree of associativ-

ity [24].

Some benchmarks, however, can perform badly for TLBs with
a small degree of set associativity. For example, the bottom graph
in Figure 9 shows the total TLB miss handling time for the com-
press benchmark under OSF/1. For a 2-way set-associative
TLB, compress displays pathological behavior. Even a 512-
entry, 2-way set-associative TLB is outperformed by a much
smaller 32-entry, 4-way set-associative TLB.

These three graphs show that reducing associativity to enable

the construction of larger TLBs is an effective technique for
reducing TLB misses.

1. Current-mode sensing avoids some of the problems associated with
large CMOS CAM:s [22].
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6  Summary

This paper demonstrates to architects and operating system
designers the importance of understanding the interactions
between TLBs and operating systems. Software-management of
TLBs magnifies the importance of this understanding, because of
the large variation in TLB miss service times that can exist.

TLB behavior depends upon the kernel’s use of virtual mem-
ory to map its own data structures, including the page tables them-
selves. TLB behavior is also dependent upon the division of
service functionality between the kernel and separate user tasks.
Currently popular microkernel approaches rely on server tasks,
but can fall prey to performance difficulties. Running on a
machine with a software-managed TLB like that of the MIPS
R2000, current microkernel systems perform poorly with only a
modest degree of service decomposition into separate server
tasks.

We have presented measurements of actual systems on a cur-
rent machine, together with simulations of architectural problems,
and have related the results to the differences between operating
systems. We have outlined four architectural solutions to the prob-
lems experienced by microkernel-based systems: changes in the
vectoring of TLB misses, flexible partitioning of the TLB, provid-
ing larger TL.Bs and changing the degree of associativity to enable
construction of larger TLBs. The first two can be implemented at
little cost, as is done in the R4000.
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