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Virtual Memory



Learning Outcomes

• An understanding of page-based virtual 
memory in depth.
– Including the R3000’s support for virtual 

memory.
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Memory Management Unit
(or TLB)

The position and function of the MMU
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• Virtual Memory
– Divided into equal-

sized pages
– A mapping is a 

translation between 
• A page and a frame
• A page and invalid

– Mappings defined at 
runtime

• They can change
– Address space can 

have holes
– Process does not 

have to be 
contiguous in 
physical memory

• Physical 
Memory
– Divided into 

equal-sized 
frames
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Typical Address 
Space Layout
• Stack region is at top, and 

can grow down
• Heap has free space to grow 

up
• Text is typically read-only
• Kernel is in a reserved, 

protected, shared region
• 0-th page typically not used, 

why?
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• A process may be 
only partially 
resident
– Allows OS to 

store individual 
pages on disk

– Saves memory 
for infrequently 
used data & code

• What happens if 
we access non-
resident memory?

A
K

E

C
S

Virtual Address 
Space

Physical Address 
Space

F
E

D

C

B

A

K
T
S

L T

L

F

D

B

Disk

Programmer’s perspective: 
logically present
System’s perspective: Not 
mapped, data on disk



7

K
D
X
M
A

C
S

Proc 1 Address 
Space

Physical 
Address Space

C

A
0

U
T
S

D

B
L

J
0

Z
Y
X

M

K

Proc 2 Address 
Space

L

U

Z J
B

T Y

Disk

Currently 
running

Memory 
Access

B



8

Page Faults

• Referencing an invalid page triggers a page fault
• An exception handled by the OS

• Broadly, two standard page fault types
– Illegal Address (protection error)

• Signal or kill the process
– Page not resident

• Get an unused frame
• Load page from disk
• Update page (translation) table (enter frame #, set valid bit, etc.)
• Restart the faulting instruction
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• Page table 
for resident 
part of 
address 
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Shared Pages
• Private code and 

data
– Each process has 

own copy of code 
and data

– Code and data can 
appear anywhere in 
the address space

• Shared code
– Single copy of code 

shared between all 
processes executing it

– Code must not be self 
modifying

– Code must appear at 
same address in all 
processes
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Address Translation

• Every (virtual) memory address issued by 
the CPU must be translated to physical 
memory
– Every load and every store instruction
– Every instruction fetch

• Need Translation Hardware
• In a page-based system, translation 

involves replacing the page number with a 
frame number



Virtual Memory Summary
virtual and physical mem chopped up in pages/frames

• programs use virtual 
addresses

• virtual to physical mapping 
by MMU phys

• split virtual address
● page number & offset

• look up frame number I
● if found, create physical 

address
● if not found, fault 



Page Table Structure
• Page table is (logically) an array of 

frame numbers
– Index by page number

• Each page-table entry (PTE) also has 
other bits
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PTE Attributes (bits)
● Present/Absent bit

– Also called valid bit, it indicates a valid mapping for the page

● Protection bits
– Read permission, Write permission, Execute permission

– Or combinations of the above

● Caching bit
– Use to indicate processor should bypass the cache when accessing memory

● Example: to access device registers or memory

● Modified bit
– Also called dirty bit, it indicates the page may have been modified in memory

● Reference bit
– Indicates the page has been accessed
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Page Tables

• Assume we have
– 32-bit virtual address (4 Gbyte address space)
– 4 KByte page size
– How many page table entries do we need for one 

process?
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Page Tables
• Assume we have

– 64-bit virtual address (humungous address space)
– 4 KByte page size
– How many page table entries do we need for one 

process?
• Problem:

– Page table is very large
– Access has to be fast, lookup for every memory 

reference
– Where do we store the page table?

• Registers?
• Main memory?
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Page Tables
• Page tables are implemented as data structures in main 

memory
• Most processes do not use the full 4GB address space

– e.g., 0.1 – 1 MB text, 0.1 – 10 MB data, 0.1 MB stack
• We need a compact representation that does not waste 

space
– But is still very fast to search

• Three basic schemes
– Use data structures that adapt to sparsity
– Use data structures which only represent resident pages
– Use VM techniques for page tables (details left to extended OS)
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Two-level Page 
Table

• 2nd –level 
page tables 
representing 
unmapped 
pages are not 
allocated
– Null in the 

top-level 
page table
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Two-level Translation



Example Translations
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Summarising Two-level Page 
Tables

•  
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offset

frame# offset

10-bits 10-bits 12-bits

20-bits 12-bits

Two-level 
page 
table



Index bits determine node sizes

•  
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offset

frame# offset

8-bits 12-bits 12-bits

20-bits 12-bits

Two-level 
page 
table



Supporting 64-bit Virtual to 
Physical Translation

•  
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offset

frame# offset

12-bits

52-bits 12-bits

Two-level 
page 

table???

26-bits 26-bits



Multi-level Page Tables
•  
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offset

frame# offset

12-bits

40-bits 12-bits

Four-level 
page 
table!!
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Intel 4-Level Page Tables
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Alternative: Inverted Page Table

PID VPN next

PID VPN offset

Index
0
1
2
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5
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…

IPT: entry for each physical frame

Hash Anchor Table
(HAT)

Hash

ctrl



Alternative: Inverted Page Table

PID VPN next

0

PID VPN offset

Index
0
1
2

…
0x40C
0x40D

…
…

Hash Anchor Table
(HAT)

Hash

ctrl

0x5 0x123

1 0x1A 0x40C

0 0x5 0x0

2

0x40C 0x123
ppn offset
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Inverted Page Table (IPT)
• “Inverted page table” is an array of page 

numbers sorted (indexed) by frame number (it’s 
a frame table).

• Algorithm
– Compute hash of page number
– Extract index from hash table
– Use this to index into inverted page table
– Match the PID and page number in the IPT entry
– If match, use the index value as frame # for 

translation
– If no match, get next candidate IPT entry from chain 

field
– If NULL chain entry  page fault
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Properties of IPTs
• IPT grows with size of RAM, NOT virtual address space
• Frame table is needed anyway (for page replacement, 

more later)
• Need a separate data structure for non-resident pages
• Saves a vast amount of space (especially on 64-bit 

systems)
• Used in some IBM and HP workstations



Given n processes

• how many page tables will the system 
have for
– ‘normal’ page tables
– inverted page tables?



Another look at sharing…
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Improving the IPT: Hashed 
Page Table

• Retain fast lookup of IPT
– A single memory reference in best case

• Retain page table sized based on physical 
memory size (not virtual)
– Enable efficient frame sharing
– Support more than one mapping for same frame

• Key addition: adding frame number to HPT entry
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Hashed Page Table

PID VPN next

PID VPN offset

HPT: Frame number stored in table 

Hash

PFN ctrl

Best-case lookup: one memory 

reference 



Hashed Page Table
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Sharing Example

PID VPN next
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Sizing the Hashed Page Table

• HPT sized based on physical memory size
• With sharing

– Each frame can have more than one PTE
– More sharing increases number of slots used

• Increases collision likelihood

• However, we can tune HPT size based on:
• Physical memory size
• Expected sharing
• Hash collision avoidance. 

– HPT a power of 2 multiple of number of physical 
memory frame
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• Performance?
– Each virtual memory reference can cause two 

physical memory accesses
• One to fetch the page table entry
• One to fetch/store the data
 Intolerable performance impact!!

• Solution:
– High-speed cache for page table entries (PTEs)

• Called a translation look-aside buffer (TLB)
• Contains recently used page table entries
• Associative, high-speed memory, similar to cache memory
• May be under OS control (unlike memory cache)

VM Implementation Issue
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TLB operationOn-CPU 
hardware 
device!!!

Data 
structure 
in main 
memory
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Translation Lookaside Buffer

• Given a virtual address, processor examines the 
TLB

• If matching PTE found (TLB hit), the address is 
translated

• Otherwise (TLB miss), the page number is used 
to index the process’s page table
– If PT contains a valid entry, reload TLB and restart
– Otherwise, (page fault) check if page is on disk

• If on disk, swap it in
• Otherwise, allocate a new page or raise an exception
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TLB properties

• Page table is (logically) an array of frame 
numbers

• TLB holds a (recently used) subset of PT entries
– Each TLB entry must be identified (tagged) with the 

page # it translates
– Access is by associative lookup:

• All TLB entries’ tags are concurrently compared to the page 
#

• TLB is associative (or content-addressable) memory
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TLB properties
• TLB may or may not be under direct OS control

– Hardware-loaded TLB
• On miss, hardware performs PT lookup and reloads TLB
• Example: x86, ARM

– Software-loaded TLB
• On miss, hardware generates a TLB miss exception, and 

exception handler reloads TLB
• Example: MIPS, Itanium (optionally)

• TLB size: typically 64-128 entries
• Can have separate TLBs for instruction fetch 

and data access
• TLBs can also be used with inverted page tables 

(and others)  
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TLB and context switching
• TLB is a shared piece of hardware
• Normal page tables are per-process (address space)
• TLB entries are process-specific

– On context switch need to flush the TLB (invalidate all 
entries)
• high context-switching overhead (Intel x86)

– or tag entries with address-space ID (ASID)
• called a tagged TLB
• used (in some form) on all modern architectures
• TLB entry: ASID, page #, frame #, valid and write-protect bits
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TLB effect

• Without TLB
– Average number of physical memory 

references per virtual reference 
= 2

• With TLB (assume 99% hit ratio)
– Average number of physical memory 

references per virtual reference
= .99 * 1 + 0.01 * 2

= 1.01 
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Recap - Simplified Components of 
VM System

1 2 3

CPU

Frame Pool

TLB

Virtual Address 
Spaces (3 processes)

Page Tables for 3 
processes

Frame Table

Physical Memory

TLB R
efill 

Mech
anism 21 3
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Recap - Simplified Components of 
VM System

1 2 3

CPU
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Virtual Address 
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Physical Memory
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Recap - Simplified Components of 
VM System

1 2 3

CPU

Frame Pool

TLB

Virtual Address 
Spaces (3 processes)

Hashed Page 
Table

Physical Memory
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MIPS R3000 TLB

• N = Not cacheable
• D = Dirty = Write protect
• G = Global (ignore ASID 

in lookup)

• V = valid bit
• 64 TLB entries
• Accessed via software through 

Cooprocessor 0 registers
– EntryHi and EntryLo
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R3000 Address 
Space Layout

• kseg0: 
– 512 megabytes
– Fixed translation window to 

physical memory
• 0x80000000 - 0x9fffffff virtual = 

0x00000000 - 0x1fffffff physical
• TLB not used

– Cacheable
– Only kernel-mode accessible
– Usually where the kernel code 

and data is placed

kseg0

kuseg

0x00000000

0x80000000

kseg1

kseg2

0xA0000000

0xC0000000

0xffffffff

Physical Memory
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R3000 Address 
Space Layout

• kuseg: 
– 2 gigabytes
– TLB translated (mapped)
– Cacheable (depending on ‘N’ bit)
– user-mode and kernel mode 

accessible
– Page size is 4K

kseg0

kuseg

0x00000000

0x80000000

kseg1

kseg2

0xA0000000

0xC0000000

0xFFFFFFFF
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R3000 Address 
Space Layout

– Switching processes 
switches the translation 
(page table) for kuseg

kseg0

Proc 3
kuseg

0x00000000

0x80000000

kseg1

kseg2

0xA0000000

0xC0000000

0xFFFFFFFF

Proc 2
kuseg

Proc 1
kuseg
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R3000 Address 
Space Layout

• kseg1: 
– 512 megabytes
– Fixed translation window to 

physical memory
• 0xa0000000 - 0xbfffffff virtual = 

0x00000000 - 0x1fffffff physical
• TLB not used

– NOT cacheable
– Only kernel-mode accessible
– Where devices are accessed (and 

boot ROM)

kseg0

kuseg

0x00000000

0x80000000

kseg1

kseg2

0xA0000000

0xC0000000

0xffffffff

Physical Memory
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Today

• Page-based VM apparatus
• Additional uses of paging

– Swapping

– Sharing

• Page tables
– Two-level and multi-level

– Inverted and Hash Pts

• The TLB
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