
1

Virtual Memory

Learning Outcomes

• An understanding of page-based virtual
memory in depth.
– Including the R3000’s support for virtual

memory.

2

3

Memory Management Unit
(or TLB)

The position and function of the MMU

4

• Virtual Memory
– Divided into equal-

sized pages
– A mapping is a

translation between
• A page and a frame
• A page and invalid

– Mappings defined at
runtime

• They can change
– Address space can

have holes
– Process does not

have to be
contiguous in
physical memory

• Physical
Memory
– Divided into

equal-sized
frames

C
B
A

F
E
D

A
F
D

B

C
E

Virtual Address
Space

Physical Address
Space

Page-based VM

0
1

2
3
4
5

6
77

6
5
4
3
2
1
0

15
14
13
12
11
10
9
8

5

Typical Address
Space Layout
• Stack region is at top, and

can grow down
• Heap has free space to grow

up
• Text is typically read-only
• Kernel is in a reserved,

protected, shared region
• 0-th page typically not used,

why?

F
E
D
C
B
A

K
T
S

L

Virtual Address
Space

Kernel

Stack

Shared
Libraries

BSS
(heap)

Data

Text
(Code)

6

• A process may be
only partially
resident
– Allows OS to

store individual
pages on disk

– Saves memory
for infrequently
used data & code

• What happens if
we access non-
resident memory?

A
K

E

C
S

Virtual Address
Space

Physical Address
Space

F
E

D

C

B

A

K
T
S

L T

L

F

D

B

Disk

Programmer’s perspective:
logically present
System’s perspective: Not
mapped, data on disk

7

K
D
X
M
A

C
S

Proc 1 Address
Space

Physical
Address Space

C

A
0

U
T
S

D

B
L

J
0

Z
Y
X

M

K

Proc 2 Address
Space

L

U

Z J
B

T Y

Disk

Currently
running

Memory
Access

B

8

Page Faults

• Referencing an invalid page triggers a page fault
• An exception handled by the OS

• Broadly, two standard page fault types
– Illegal Address (protection error)

• Signal or kill the process
– Page not resident

• Get an unused frame
• Load page from disk
• Update page (translation) table (enter frame #, set valid bit, etc.)
• Restart the faulting instruction

9

• Page table
for resident
part of
address
space A

K

E

C
S

Virtual Address
Space

Physical
Address Space

F
E

C

A

K
T
S

L

D

B

3

1

7

6

0

Page
Table

0
1

2
3
4
5

6
77

6
5
4
3
2
1
0

15
14
13
12
11
10
9
8

7
6
5
4
3
2
1
0

15
14
13
12
11
10
9
8

10

Shared Pages
• Private code and

data
– Each process has

own copy of code
and data

– Code and data can
appear anywhere in
the address space

• Shared code
– Single copy of code

shared between all
processes executing it

– Code must not be self
modifying

– Code must appear at
same address in all
processes

11

B

X
N

A
C
S

Proc 1 Address
Space

Physical
Address Space

C

A

U
T
S

D

B
2

5

4

7
Page
Table

M

A

Z
Y
X

N

B
1

2

0

7

Proc 2 Address
Space

Page
Table

Two (or more)
processes
running the

same program
and sharing

the text section

12

Address Translation

• Every (virtual) memory address issued by
the CPU must be translated to physical
memory
– Every load and every store instruction
– Every instruction fetch

• Need Translation Hardware
• In a page-based system, translation

involves replacing the page number with a
frame number

Virtual Memory Summary
virtual and physical mem chopped up in pages/frames

• programs use virtual
addresses

• virtual to physical mapping
by MMU phys

• split virtual address
● page number & offset

• look up frame number I
● if found, create physical

address
● if not found, fault

Page Table Structure
• Page table is (logically) an array of

frame numbers
– Index by page number

• Each page-table entry (PTE) also has
other bits

2

5

4

7
Page
Table

15

PTE Attributes (bits)
● Present/Absent bit

– Also called valid bit, it indicates a valid mapping for the page

● Protection bits
– Read permission, Write permission, Execute permission

– Or combinations of the above

● Caching bit
– Use to indicate processor should bypass the cache when accessing memory

● Example: to access device registers or memory

● Modified bit
– Also called dirty bit, it indicates the page may have been modified in memory

● Reference bit
– Indicates the page has been accessed

16

Page Tables

• Assume we have
– 32-bit virtual address (4 Gbyte address space)
– 4 KByte page size
– How many page table entries do we need for one

process?

17

Page Tables
• Assume we have

– 64-bit virtual address (humungous address space)
– 4 KByte page size
– How many page table entries do we need for one

process?
• Problem:

– Page table is very large
– Access has to be fast, lookup for every memory

reference
– Where do we store the page table?

• Registers?
• Main memory?

18

Page Tables
• Page tables are implemented as data structures in main

memory
• Most processes do not use the full 4GB address space

– e.g., 0.1 – 1 MB text, 0.1 – 10 MB data, 0.1 MB stack
• We need a compact representation that does not waste

space
– But is still very fast to search

• Three basic schemes
– Use data structures that adapt to sparsity
– Use data structures which only represent resident pages
– Use VM techniques for page tables (details left to extended OS)

19

Two-level Page
Table

• 2nd –level
page tables
representing
unmapped
pages are not
allocated
– Null in the

top-level
page table

20

Two-level Translation

Example Translations

21

22

Summarising Two-level Page
Tables

•

23

offset

frame# offset

10-bits 10-bits 12-bits

20-bits 12-bits

Two-level
page
table

Index bits determine node sizes

•

24

offset

frame# offset

8-bits 12-bits 12-bits

20-bits 12-bits

Two-level
page
table

Supporting 64-bit Virtual to
Physical Translation

•

25

offset

frame# offset

12-bits

52-bits 12-bits

Two-level
page

table???

26-bits 26-bits

Multi-level Page Tables
•

26

offset

frame# offset

12-bits

40-bits 12-bits

Four-level
page
table!!

12-bits

9-bits9-bits9-bits9-bits16-bits

Intel 4-Level Page Tables

27

Alternative: Inverted Page Table

PID VPN next

PID VPN offset

Index
0
1
2
3
4
5
6
…

IPT: entry for each physical frame

Hash Anchor Table
(HAT)

Hash

ctrl

Alternative: Inverted Page Table

PID VPN next

0

PID VPN offset

Index
0
1
2

…
0x40C
0x40D

…
…

Hash Anchor Table
(HAT)

Hash

ctrl

0x5 0x123

1 0x1A 0x40C

0 0x5 0x0

2

0x40C 0x123
ppn offset

30

Inverted Page Table (IPT)
• “Inverted page table” is an array of page

numbers sorted (indexed) by frame number (it’s
a frame table).

• Algorithm
– Compute hash of page number
– Extract index from hash table
– Use this to index into inverted page table
– Match the PID and page number in the IPT entry
– If match, use the index value as frame # for

translation
– If no match, get next candidate IPT entry from chain

field
– If NULL chain entry  page fault

31

Properties of IPTs
• IPT grows with size of RAM, NOT virtual address space
• Frame table is needed anyway (for page replacement,

more later)
• Need a separate data structure for non-resident pages
• Saves a vast amount of space (especially on 64-bit

systems)
• Used in some IBM and HP workstations

Given n processes

• how many page tables will the system
have for
– ‘normal’ page tables
– inverted page tables?

Another look at sharing…

34

B

X
N

A
C
S

Proc 1 Address
Space

Physical
Address Space

C

A

U
T
S

D

B
M

A

Z
Y
X

N

B

Proc 2 Address
Space

Two (or more)
processes
running the

same program
and sharing

the text section

‘easy’ for normal page tables

bit of a nightmare for IPT

Improving the IPT: Hashed
Page Table

• Retain fast lookup of IPT
– A single memory reference in best case

• Retain page table sized based on physical
memory size (not virtual)
– Enable efficient frame sharing
– Support more than one mapping for same frame

• Key addition: adding frame number to HPT entry

35

Hashed Page Table

PID VPN next

PID VPN offset

HPT: Frame number stored in table

Hash

PFN ctrl

Best-case lookup: one memory

reference

Hashed Page Table

PID VPN next

0 0x5 0x0

1 0x1A 0x3

PID VPN offset

Hash

PFN

0x42

0x13

ctrl

0x5 0x1230

1
2
3
4
5
6
…

0x42 0x123
ppn offset

Sharing Example

PID VPN next

1 0x5 0x0

0 0x5 0x3

PID VPN offset

Hash

PFN

0x42

0x42

ctrl

0x5 0x1230

1
2
3
4
5
6
…

0x42 0x123
ppn offset

Sizing the Hashed Page Table

• HPT sized based on physical memory size
• With sharing

– Each frame can have more than one PTE
– More sharing increases number of slots used

• Increases collision likelihood

• However, we can tune HPT size based on:
• Physical memory size
• Expected sharing
• Hash collision avoidance.

– HPT a power of 2 multiple of number of physical
memory frame

39

40

• Performance?
– Each virtual memory reference can cause two

physical memory accesses
• One to fetch the page table entry
• One to fetch/store the data
 Intolerable performance impact!!

• Solution:
– High-speed cache for page table entries (PTEs)

• Called a translation look-aside buffer (TLB)
• Contains recently used page table entries
• Associative, high-speed memory, similar to cache memory
• May be under OS control (unlike memory cache)

VM Implementation Issue

41

TLB operationOn-CPU
hardware
device!!!

Data
structure
in main
memory

42

Translation Lookaside Buffer

• Given a virtual address, processor examines the
TLB

• If matching PTE found (TLB hit), the address is
translated

• Otherwise (TLB miss), the page number is used
to index the process’s page table
– If PT contains a valid entry, reload TLB and restart
– Otherwise, (page fault) check if page is on disk

• If on disk, swap it in
• Otherwise, allocate a new page or raise an exception

43

TLB properties

• Page table is (logically) an array of frame
numbers

• TLB holds a (recently used) subset of PT entries
– Each TLB entry must be identified (tagged) with the

page # it translates
– Access is by associative lookup:

• All TLB entries’ tags are concurrently compared to the page
#

• TLB is associative (or content-addressable) memory

44

TLB properties
• TLB may or may not be under direct OS control

– Hardware-loaded TLB
• On miss, hardware performs PT lookup and reloads TLB
• Example: x86, ARM

– Software-loaded TLB
• On miss, hardware generates a TLB miss exception, and

exception handler reloads TLB
• Example: MIPS, Itanium (optionally)

• TLB size: typically 64-128 entries
• Can have separate TLBs for instruction fetch

and data access
• TLBs can also be used with inverted page tables

(and others)

45

TLB and context switching
• TLB is a shared piece of hardware
• Normal page tables are per-process (address space)
• TLB entries are process-specific

– On context switch need to flush the TLB (invalidate all
entries)
• high context-switching overhead (Intel x86)

– or tag entries with address-space ID (ASID)
• called a tagged TLB
• used (in some form) on all modern architectures
• TLB entry: ASID, page #, frame #, valid and write-protect bits

46

TLB effect

• Without TLB
– Average number of physical memory

references per virtual reference
= 2

• With TLB (assume 99% hit ratio)
– Average number of physical memory

references per virtual reference
= .99 * 1 + 0.01 * 2

= 1.01

47

Recap - Simplified Components of
VM System

1 2 3

CPU

Frame Pool

TLB

Virtual Address
Spaces (3 processes)

Page Tables for 3
processes

Frame Table

Physical Memory

TLB R
efill

Mech
anism 21 3

48

Recap - Simplified Components of
VM System

1 2 3

CPU

Frame Pool

TLB

Virtual Address
Spaces (3 processes)

Inverted Page
Table

Physical Memory

TLB R
efill

Mech
anism

49

Recap - Simplified Components of
VM System

1 2 3

CPU

Frame Pool

TLB

Virtual Address
Spaces (3 processes)

Hashed Page
Table

Physical Memory

TLB R
efill

Mech
anism

Frame Table

50

MIPS R3000 TLB

• N = Not cacheable
• D = Dirty = Write protect
• G = Global (ignore ASID

in lookup)

• V = valid bit
• 64 TLB entries
• Accessed via software through

Cooprocessor 0 registers
– EntryHi and EntryLo

51

R3000 Address
Space Layout

• kseg0:
– 512 megabytes
– Fixed translation window to

physical memory
• 0x80000000 - 0x9fffffff virtual =

0x00000000 - 0x1fffffff physical
• TLB not used

– Cacheable
– Only kernel-mode accessible
– Usually where the kernel code

and data is placed

kseg0

kuseg

0x00000000

0x80000000

kseg1

kseg2

0xA0000000

0xC0000000

0xffffffff

Physical Memory

52

R3000 Address
Space Layout

• kuseg:
– 2 gigabytes
– TLB translated (mapped)
– Cacheable (depending on ‘N’ bit)
– user-mode and kernel mode

accessible
– Page size is 4K

kseg0

kuseg

0x00000000

0x80000000

kseg1

kseg2

0xA0000000

0xC0000000

0xFFFFFFFF

53

R3000 Address
Space Layout

– Switching processes
switches the translation
(page table) for kuseg

kseg0

Proc 3
kuseg

0x00000000

0x80000000

kseg1

kseg2

0xA0000000

0xC0000000

0xFFFFFFFF

Proc 2
kuseg

Proc 1
kuseg

54

R3000 Address
Space Layout

• kseg1:
– 512 megabytes
– Fixed translation window to

physical memory
• 0xa0000000 - 0xbfffffff virtual =

0x00000000 - 0x1fffffff physical
• TLB not used

– NOT cacheable
– Only kernel-mode accessible
– Where devices are accessed (and

boot ROM)

kseg0

kuseg

0x00000000

0x80000000

kseg1

kseg2

0xA0000000

0xC0000000

0xffffffff

Physical Memory

55

Today

• Page-based VM apparatus
• Additional uses of paging

– Swapping

– Sharing

• Page tables
– Two-level and multi-level

– Inverted and Hash Pts

• The TLB

	Virtual Memory
	Learning Outcomes
	Memory Management Unit (or TLB)
	Page-based VM
	Typical Address Space Layout
	Slide 6
	Slide 7
	Page Faults
	Slide 9
	Shared Pages
	Slide 11
	Address Translation
	Virtual Memory Summary
	Page Table Structure
	PTE Attributes (bits)
	Page Tables
	Page Tables (2)
	Page Tables (3)
	Two-level Page Table
	Two-level Translation
	Example Translations
	Slide 22
	Summarising Two-level Page Tables
	Index bits determine node sizes
	Supporting 64-bit Virtual to Physical Translation
	Multi-level Page Tables
	Intel 4-Level Page Tables
	Alternative: Inverted Page Table
	Alternative: Inverted Page Table (2)
	Inverted Page Table (IPT)
	Properties of IPTs
	Given n processes
	Another look at sharing…
	Slide 34
	Improving the IPT: Hashed Page Table
	Hashed Page Table
	Hashed Page Table (2)
	Sharing Example
	Sizing the Hashed Page Table
	VM Implementation Issue
	TLB operation
	Translation Lookaside Buffer
	TLB properties
	TLB properties (2)
	TLB and context switching
	TLB effect
	Recap - Simplified Components of VM System
	Recap - Simplified Components of VM System (2)
	Recap - Simplified Components of VM System (3)
	MIPS R3000 TLB
	R3000 Address Space Layout
	R3000 Address Space Layout (2)
	R3000 Address Space Layout (3)
	R3000 Address Space Layout (4)
	Slide 55

