
Memory Management
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Learning Outcomes
• Appreciate the need for memory management in operating 

systems, understand the limits of fixed memory allocation 
schemes.
• Understand fragmentation in dynamic memory allocation, 

and understand basic dynamic allocation approaches.
• Understand  how program memory addresses relate to 

physical  memory addresses, memory management in base-
limit machines, and swapping
• An overview of virtual memory management.
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Process
• One or more threads of execution
• Resources required for execution

• Memory (RAM)
• Program code (“text”)
• Data (initialised, uninitialised, stack)
• Buffers held in the kernel on behalf of the process

• Others
• CPU time
• Files, disk space, printers, etc.
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OS Memory Management
• Keeps track of what memory is in use and what memory is free
• Allocates free memory to process when needed

• And deallocates it when they don’t

• Manages the transfer of memory content between RAM and disk.
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Memory Hierarchy
• Ideally, programmers want 

memory that is
• Fast
• Large
• Nonvolatile

• Not possible
• Memory management 

coordinates how memory 
hierarchy is used.
• Focus usually on RAM  Disk
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OS Memory Management
• Two broad classes of memory management systems

• Those that transfer processes to and from external storage during execution.
• Called swapping or paging

• Those that don’t
• Simple
• Might find this scheme in an embedded device, dumb phone, or smartcard.

• Like other topics in this course, let’s start by considering and ruling out 
the simple approaches
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Basic Memory Management
Monoprogramming without Swapping or Paging

Three simple ways of organizing memory

- an operating system with one user process
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These concepts persist:
  - Firmware
  - BIOS
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Monoprogramming
• Okay if 

• Only have one thing to do
• Memory available approximately equates to memory required

• Otherwise,
• Poor CPU utilisation in the presence of I/O waiting
• Poor utilisation of memory if we switch between jobs with different memory 

needs
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Idea
• Recall, an OS aims to

• Maximise memory utilisation
• Maximise CPU utilization

• (ignore battery/power-management issues)

• Subdivide memory and run more than one process at once!!!!
• Multiprogramming, Multitasking
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General problem: How to divide 
memory between processes?
• Given a workload, how to we
• Keep track of free memory?
• Locate free memory for a new process?

• Overview of evolution of simple memory 
management
• Static (fixed partitioning) approaches
• Simple, predicable workloads of early computing

• Dynamic (partitioning) approaches
• More flexible computing as compute power and 

complexity increased. 

• Introduce virtual memory
• Segmentation and paging
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Problem: How to divide memory

•One approach 
• divide memory into fixed equal-

sized partitions
• Any process <= partition size can 

be loaded into any partition
• Partitions are free or busy
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Simple MM: Fixed, equal-sized 
partitions

•Any unused space in the partition 
is wasted
• Called internal fragmentation

•Processes smaller than main 
memory, but larger than a 
partition cannot run.
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Simple MM: Fixed, variable-sized 
partitions

• Divide memory at boot time into a 
selection of different sized partitions
• Can base sizes on expected workload

• Each partition has queue: 
• Place process in queue for smallest 

partition that it fits in.
• Processes wait for when assigned partition 

is empty to start
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• Issue
• Some partitions may be 

idle
• Small jobs available, but only 

large partition free
• Workload could be 

unpredictable 
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Alternative queue strategy

•Single queue, search for 
any jobs that fit

• Small jobs in large partition 
if necessary

• Increases internal memory 
fragmentation
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Fixed Partition Summary
•Simple
•Easy to implement
•Can result in poor memory utilisation
• Due to internal fragmentation

•Used on IBM System 360 operating system 
(OS/MFT)
• Announced  6 April, 1964

•Still applicable for simple embedded systems
• Static workload known in advance
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Dynamic Partitioning
• Partitions are of variable length

• Allocated on-demand from ranges of free memory

• Process is allocated exactly what it needs
• Assumes a process knows what it needs

18







Dynamic Partitioning
• In previous diagram
•We have 16 meg free in total, but it can’t be used to run 

any more processes requiring > 6 meg as it is fragmented
• Called external fragmentation

•We end up with unusable holes
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Recap: Fragmentation
•External Fragmentation:
• The space wasted external to the allocated memory 

regions.
•Memory space exists to satisfy a request, but it is 

unusable as it is not contiguous.
• Internal Fragmentation:
• The space wasted internal to the allocated memory 

regions.
• allocated memory may be slightly larger than requested 

memory; this size difference is wasted memory internal to 
a partition.
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Dynamic Partition Allocation 
Algorithms

•Also applicable to malloc()-like in-application 
allocators
•Given a region of memory, basic requirements are:
• Quickly locate a free partition satisfying the request
• Minimise CPU time search

•Minimise external fragmentation
•Minimise memory overhead of bookkeeping
• Efficiently support merging two adjacent free partitions 

into a larger partition 
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Classic Approach

•Represent available memory as a linked list of 
available “holes” (free memory ranges).
• Base, size
• Kept in order of increasing address
• Simplifies merging of adjacent holes into larger holes.

• List nodes can be stored in the “holes” themselves
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Coalescing Free Partitions with 
Linked Lists

Four neighbor combinations for the terminating process X
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Dynamic Partitioning Placement 
Algorithm
•First-fit algorithm
• Scan the list for the first entry that fits
• If greater in size, break it into an allocated and free part
• Intent: Minimise amount of searching performed

• Aims to find a match quickly
• Biases allocation to one end of memory
• Tends to preserve larger blocks at the end of memory
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Dynamic Partitioning Placement 
Algorithm
•Next-fit
• Like first-fit, except it begins its search from the point in 

list where the last request succeeded instead of at the 
beginning.
• (Flawed) Intuition: spread allocation more uniformly over entire 

memory to avoid skipping over small holes at start of memory
• Performs worse than first-fit as it breaks up the large free space at 

end of memory.
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Dynamic Partitioning Placement 
Algorithm
•Best-fit algorithm
• Chooses the block that is closest in size to the request
•  Performs worse than first-fit
• Has to search complete list

• does more work than first-fit

• Since smallest block is chosen for a process, the smallest 
amount of external fragmentation is left 
• Create lots of unusable holes
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Dynamic Partitioning Placement 
Algorithm
•Worst-fit algorithm
• Chooses the block that is largest in size (worst-fit)
• (whimsical) idea is to leave a usable fragment left over

• Poor performer
• Has to do more work (like best fit) to search complete list
• Does not result in significantly less fragmentation
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Dynamic Partition Allocation Algorithm
• Summary
• First-fit generally better than the others and easiest to implement

• You should be aware of them
• They are simple solutions to a still-existing OS or application 

service/function – memory allocation.
• They are similar to issues in disk block allocation.

• Note: Largely have been superseded by more complex and 
specific allocation strategies
• Typical in-kernel allocators used are lazy buddy, and slab allocators.
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Compaction

•We can reduce external 
fragmentation by 
compaction
• Shuffle memory contents to 

place all free memory 
together in one large block.
• Only if we can relocate 

running programs?
• Pointers?

• Generally requires hardware 
support
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Some Remaining Issues with 
Dynamic Partitioning
• We have ignored

• Relocation
• How does a process run in different locations in memory?

• Protection
• How do we prevent processes interfering with each other?
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Example Logical Address-Space Layout

• Logical addresses 
refer to specific 
locations within the 
program
• Once running, these 

address must refer 
to real physical 
memory
•When are logical 

addresses bound to 
physical?
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When are memory 
addresses bound?
• Compile/link time
• Compiler/Linker binds the addresses
• Must know “run” location at compile 

time
• Recompile if location changes 

• Load time
• Compiler generates relocatable code
• Loader binds the addresses at load 

time

• Run time
• Logical compile-time addresses 

translated to physical addresses by 
special hardware.  
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Hardware Support for Runtime Binding and 
Protection

• For process B to run using logical addresses
• Process B expects to access addresses from zero to 

some limit of memory size
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Hardware Support for Runtime Binding and 
Protection

• For process B to run using logical addresses
• Need to add an appropriate offset to its logical 

addresses
• Achieve relocation
• Protect memory “lower” than B

• Must limit the maximum logical address B can 
generate
• Protect memory “higher” than B
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Hardware Support for Relocation and Limit 
Registers
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Base and Limit Registers

•Also called
• Base and bound registers
• Relocation and limit registers

•Base and limit registers
• Restrict and relocate the currently 

active process
• Base and limit registers must be 

changed at
• Load time
• Relocation (compaction time)
• On a context switch 
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Base and Limit Registers

•Also called
• Base and bound registers
• Relocation and limit registers

•Base and limit registers
• Restrict and relocate the currently 

active process
• Base and limit registers must be 

changed at
• Load time
• Relocation (compaction time)
• On a context switch 
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Base and Limit Registers
• Pro

• Supports protected multi-processing (-tasking)

• Cons
• Physical memory allocation must still be contiguous
• The entire process must be in memory
• Do not support partial sharing of address spaces

• No shared code, libraries, or data structures between processes
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Timesharing

• Thus far, we have a system suitable for a 
batch system
• Limited number of dynamically allocated 

processes
• Enough to keep CPU utilised

• Relocated at runtime
• Protected from each other

• But what about timesharing?
• We need more than just a small number of 

processes running at once
• Need to support a mix of active and inactive 

processes, of varying longevity
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Swapping
• A process can be swapped temporarily out of memory to a 

backing store, and then brought back into memory for 
continued execution.
• Swapping involves transferring the whole process
• Backing store – fast disk large enough to accommodate copies 

of all memory images for all users; must provide direct access 
to these memory images.
• Can prioritize – lower-priority process is swapped out so higher-

priority process can be loaded and executed.
•Major part of swap time is transfer time; total transfer time is 

directly proportional to the amount of memory swapped.
• slow
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Schematic View of Swapping

44



So far we have assumed a process is smaller than 
memory
• What can we do if a process is larger than main memory?
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Virtual Memory
•Developed to address the issues identified with the 

simple schemes covered thus far.
•Two classic variants
• Paging
• Segmentation
•  (no longer covered in course, see textbook if interested)

•Paging is now the dominant one of the two
•We’ll focus on it

•Some architectures support hybrids of the two 
schemes
• E.g. Intel IA-32 (32-bit x86)
• Becoming less relevant
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Virtual Memory – Paging Overview
• Partition physical memory into small equal 

sized chunks
• Called frames

• Divide each process’s virtual (logical) address 
space into same size chunks
• Called pages
• Virtual memory addresses consist of a page 

number and offset within the page
• OS maintains a page table 

• contains the frame location for each page
• Used by hardware to translate each virtual 

address to physical address
• The relation between

virtual addresses and physical memory 
addresses is given by page table

• Process’s physical memory does not have to 
be contiguous
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Paging
• No external fragmentation
• Small internal fragmentation (in last page)
• Allows sharing by mapping several pages to the same frame
• Abstracts physical organisation

• Programmer only deal with virtual addresses
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Memory Management Unit
(also called Translation Look-aside Buffer – TLB)

The position and function of the MMU
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MMU Operation

Internal operation of simplified MMU with 16 4 KB pages
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Today
(if we get to the end)

• The need to manage memory
• More on allocation and fragmentation
• Various schemes for static and dynamic allocation of regions
• Simple relocation

– Base and limit
– Offset

• Paging
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