
Memory Management

1

Learning Outcomes
• Appreciate the need for memory management in operating

systems, understand the limits of fixed memory allocation
schemes.
• Understand fragmentation in dynamic memory allocation,

and understand basic dynamic allocation approaches.
• Understand how program memory addresses relate to

physical memory addresses, memory management in base-
limit machines, and swapping
• An overview of virtual memory management.

2

Process
• One or more threads of execution
• Resources required for execution

• Memory (RAM)
• Program code (“text”)
• Data (initialised, uninitialised, stack)
• Buffers held in the kernel on behalf of the process

• Others
• CPU time
• Files, disk space, printers, etc.

3

OS Memory Management
• Keeps track of what memory is in use and what memory is free
• Allocates free memory to process when needed

• And deallocates it when they don’t

• Manages the transfer of memory content between RAM and disk.

4

Memory Hierarchy
• Ideally, programmers want

memory that is
• Fast
• Large
• Nonvolatile

• Not possible
• Memory management

coordinates how memory
hierarchy is used.
• Focus usually on RAM  Disk

5

OS Memory Management
• Two broad classes of memory management systems

• Those that transfer processes to and from external storage during execution.
• Called swapping or paging

• Those that don’t
• Simple
• Might find this scheme in an embedded device, dumb phone, or smartcard.

• Like other topics in this course, let’s start by considering and ruling out
the simple approaches

6

Basic Memory Management
Monoprogramming without Swapping or Paging

Three simple ways of organizing memory

- an operating system with one user process
7

These concepts persist:
 - Firmware
 - BIOS

8

Monoprogramming
• Okay if

• Only have one thing to do
• Memory available approximately equates to memory required

• Otherwise,
• Poor CPU utilisation in the presence of I/O waiting
• Poor utilisation of memory if we switch between jobs with different memory

needs

9

Idea
• Recall, an OS aims to

• Maximise memory utilisation
• Maximise CPU utilization

• (ignore battery/power-management issues)

• Subdivide memory and run more than one process at once!!!!
• Multiprogramming, Multitasking

10

General problem: How to divide
memory between processes?
• Given a workload, how to we
• Keep track of free memory?
• Locate free memory for a new process?

• Overview of evolution of simple memory
management
• Static (fixed partitioning) approaches
• Simple, predicable workloads of early computing

• Dynamic (partitioning) approaches
• More flexible computing as compute power and

complexity increased.

• Introduce virtual memory
• Segmentation and paging

11

Process B

Process C

Process D

Problem: How to divide memory

•One approach
• divide memory into fixed equal-

sized partitions
• Any process <= partition size can

be loaded into any partition
• Partitions are free or busy

12

Process A

Process B

Process C

Process D

Simple MM: Fixed, equal-sized
partitions

•Any unused space in the partition
is wasted
• Called internal fragmentation

•Processes smaller than main
memory, but larger than a
partition cannot run.

13

Process A

Process B

Process C

Process D

Simple MM: Fixed, variable-sized
partitions

• Divide memory at boot time into a
selection of different sized partitions
• Can base sizes on expected workload

• Each partition has queue:
• Place process in queue for smallest

partition that it fits in.
• Processes wait for when assigned partition

is empty to start

14

• Issue
• Some partitions may be

idle
• Small jobs available, but only

large partition free
• Workload could be

unpredictable

15

Alternative queue strategy

•Single queue, search for
any jobs that fit

• Small jobs in large partition
if necessary

• Increases internal memory
fragmentation

16

Fixed Partition Summary
•Simple
•Easy to implement
•Can result in poor memory utilisation
• Due to internal fragmentation

•Used on IBM System 360 operating system
(OS/MFT)
• Announced 6 April, 1964

•Still applicable for simple embedded systems
• Static workload known in advance

17

Dynamic Partitioning
• Partitions are of variable length

• Allocated on-demand from ranges of free memory

• Process is allocated exactly what it needs
• Assumes a process knows what it needs

18

Dynamic Partitioning
• In previous diagram
•We have 16 meg free in total, but it can’t be used to run

any more processes requiring > 6 meg as it is fragmented
• Called external fragmentation

•We end up with unusable holes

21

Recap: Fragmentation
•External Fragmentation:
• The space wasted external to the allocated memory

regions.
•Memory space exists to satisfy a request, but it is

unusable as it is not contiguous.
• Internal Fragmentation:
• The space wasted internal to the allocated memory

regions.
• allocated memory may be slightly larger than requested

memory; this size difference is wasted memory internal to
a partition.

22

Dynamic Partition Allocation
Algorithms

•Also applicable to malloc()-like in-application
allocators
•Given a region of memory, basic requirements are:
• Quickly locate a free partition satisfying the request
• Minimise CPU time search

•Minimise external fragmentation
•Minimise memory overhead of bookkeeping
• Efficiently support merging two adjacent free partitions

into a larger partition

23

Classic Approach

•Represent available memory as a linked list of
available “holes” (free memory ranges).
• Base, size
• Kept in order of increasing address
• Simplifies merging of adjacent holes into larger holes.

• List nodes can be stored in the “holes” themselves

24

Address

Size

Link

Address

Size

Link

Address

Size

Link

Address

Size

Link

Coalescing Free Partitions with
Linked Lists

Four neighbor combinations for the terminating process X

25

Dynamic Partitioning Placement
Algorithm
•First-fit algorithm
• Scan the list for the first entry that fits
• If greater in size, break it into an allocated and free part
• Intent: Minimise amount of searching performed

• Aims to find a match quickly
• Biases allocation to one end of memory
• Tends to preserve larger blocks at the end of memory

26

Address

Size

Link

Address

Size

Link

Address

Size

Link

Address

Size

Link

Dynamic Partitioning Placement
Algorithm
•Next-fit
• Like first-fit, except it begins its search from the point in

list where the last request succeeded instead of at the
beginning.
• (Flawed) Intuition: spread allocation more uniformly over entire

memory to avoid skipping over small holes at start of memory
• Performs worse than first-fit as it breaks up the large free space at

end of memory.

27

Address

Size

Link

Address

Size

Link

Address

Size

Link

Address

Size

Link

Dynamic Partitioning Placement
Algorithm
•Best-fit algorithm
• Chooses the block that is closest in size to the request
• Performs worse than first-fit
• Has to search complete list

• does more work than first-fit

• Since smallest block is chosen for a process, the smallest
amount of external fragmentation is left
• Create lots of unusable holes

28

Address

Size

Link

Address

Size

Link

Address

Size

Link

Address

Size

Link

Dynamic Partitioning Placement
Algorithm
•Worst-fit algorithm
• Chooses the block that is largest in size (worst-fit)
• (whimsical) idea is to leave a usable fragment left over

• Poor performer
• Has to do more work (like best fit) to search complete list
• Does not result in significantly less fragmentation

29

Address

Size

Link

Address

Size

Link

Address

Size

Link

Address

Size

Link

Dynamic Partition Allocation Algorithm
• Summary
• First-fit generally better than the others and easiest to implement

• You should be aware of them
• They are simple solutions to a still-existing OS or application

service/function – memory allocation.
• They are similar to issues in disk block allocation.

• Note: Largely have been superseded by more complex and
specific allocation strategies
• Typical in-kernel allocators used are lazy buddy, and slab allocators.

31

Compaction

•We can reduce external
fragmentation by
compaction
• Shuffle memory contents to

place all free memory
together in one large block.
• Only if we can relocate

running programs?
• Pointers?

• Generally requires hardware
support

32

Process A

Process B

Process C

Process D

Process A

Process B

Process C

Process D

Some Remaining Issues with
Dynamic Partitioning
• We have ignored

• Relocation
• How does a process run in different locations in memory?

• Protection
• How do we prevent processes interfering with each other?

33

Process A

Process B

Process C

Process D

Example Logical Address-Space Layout

• Logical addresses
refer to specific
locations within the
program
• Once running, these

address must refer
to real physical
memory
•When are logical

addresses bound to
physical?

34

0x0000

0xFFFF

When are memory
addresses bound?
• Compile/link time
• Compiler/Linker binds the addresses
• Must know “run” location at compile

time
• Recompile if location changes

• Load time
• Compiler generates relocatable code
• Loader binds the addresses at load

time

• Run time
• Logical compile-time addresses

translated to physical addresses by
special hardware.

35

Hardware Support for Runtime Binding and
Protection

• For process B to run using logical addresses
• Process B expects to access addresses from zero to

some limit of memory size

36

Process B
limit

0x0000

Hardware Support for Runtime Binding and
Protection

• For process B to run using logical addresses
• Need to add an appropriate offset to its logical

addresses
• Achieve relocation
• Protect memory “lower” than B

• Must limit the maximum logical address B can
generate
• Protect memory “higher” than B

37

Process B baselimit

0x0000

0xFFFF

Hardware Support for Relocation and Limit
Registers

38

Base and Limit Registers

•Also called
• Base and bound registers
• Relocation and limit registers

•Base and limit registers
• Restrict and relocate the currently

active process
• Base and limit registers must be

changed at
• Load time
• Relocation (compaction time)
• On a context switch

39

Process A

Process B

Process C

Process D

baselimit

0x0000

0xFFFF

0x0000

0x1FFF

0x8000

0x9FFF

base=0x8000

limit = 0x2000

Base and Limit Registers

•Also called
• Base and bound registers
• Relocation and limit registers

•Base and limit registers
• Restrict and relocate the currently

active process
• Base and limit registers must be

changed at
• Load time
• Relocation (compaction time)
• On a context switch

40

Process A

Process B

Process C

Process D

base
limit

0x0000

0xFFFF

0x0000

0x2FFF

0x4000

0x6FFF

base=0x4000

limit = 0x3000

Base and Limit Registers
• Pro

• Supports protected multi-processing (-tasking)

• Cons
• Physical memory allocation must still be contiguous
• The entire process must be in memory
• Do not support partial sharing of address spaces

• No shared code, libraries, or data structures between processes

41

Timesharing

• Thus far, we have a system suitable for a
batch system
• Limited number of dynamically allocated

processes
• Enough to keep CPU utilised

• Relocated at runtime
• Protected from each other

• But what about timesharing?
• We need more than just a small number of

processes running at once
• Need to support a mix of active and inactive

processes, of varying longevity

42

Process A

Process B

Process C

Process D

0x0000

0xFFFF

Swapping
• A process can be swapped temporarily out of memory to a

backing store, and then brought back into memory for
continued execution.
• Swapping involves transferring the whole process
• Backing store – fast disk large enough to accommodate copies

of all memory images for all users; must provide direct access
to these memory images.
• Can prioritize – lower-priority process is swapped out so higher-

priority process can be loaded and executed.
•Major part of swap time is transfer time; total transfer time is

directly proportional to the amount of memory swapped.
• slow

43

Schematic View of Swapping

44

So far we have assumed a process is smaller than
memory
• What can we do if a process is larger than main memory?

45

Virtual Memory
•Developed to address the issues identified with the

simple schemes covered thus far.
•Two classic variants
• Paging
• Segmentation
• (no longer covered in course, see textbook if interested)

•Paging is now the dominant one of the two
•We’ll focus on it

•Some architectures support hybrids of the two
schemes
• E.g. Intel IA-32 (32-bit x86)
• Becoming less relevant

46

Virtual Memory – Paging Overview
• Partition physical memory into small equal

sized chunks
• Called frames

• Divide each process’s virtual (logical) address
space into same size chunks
• Called pages
• Virtual memory addresses consist of a page

number and offset within the page
• OS maintains a page table

• contains the frame location for each page
• Used by hardware to translate each virtual

address to physical address
• The relation between

virtual addresses and physical memory
addresses is given by page table

• Process’s physical memory does not have to
be contiguous

47

Paging
• No external fragmentation
• Small internal fragmentation (in last page)
• Allows sharing by mapping several pages to the same frame
• Abstracts physical organisation

• Programmer only deal with virtual addresses

50

Memory Management Unit
(also called Translation Look-aside Buffer – TLB)

The position and function of the MMU

51

MMU Operation

Internal operation of simplified MMU with 16 4 KB pages

52

Assume for now that
the page table is
contained wholly in
registers within the
MMU – in practice it is
not

53

Today
(if we get to the end)

• The need to manage memory
• More on allocation and fragmentation
• Various schemes for static and dynamic allocation of regions
• Simple relocation

– Base and limit
– Offset

• Paging

	Memory Management
	Learning Outcomes
	Process
	OS Memory Management
	Memory Hierarchy
	OS Memory Management (2)
	Basic Memory Management Monoprogramming without Swapping or Pag
	Slide 8
	Monoprogramming
	Idea
	General problem: How to divide memory between processes?
	Problem: How to divide memory
	Simple MM: Fixed, equal-sized partitions
	Simple MM: Fixed, variable-sized partitions
	Slide 15
	Alternative queue strategy
	Fixed Partition Summary
	Dynamic Partitioning
	Slide 19
	Slide 20
	Dynamic Partitioning (2)
	Recap: Fragmentation
	Dynamic Partition Allocation Algorithms
	Classic Approach
	Coalescing Free Partitions with Linked Lists
	Dynamic Partitioning Placement Algorithm
	Dynamic Partitioning Placement Algorithm (2)
	Dynamic Partitioning Placement Algorithm (3)
	Dynamic Partitioning Placement Algorithm (4)
	Slide 30
	Dynamic Partition Allocation Algorithm
	Compaction
	Some Remaining Issues with Dynamic Partitioning
	Example Logical Address-Space Layout
	When are memory addresses bound?
	Hardware Support for Runtime Binding and Protection
	Hardware Support for Runtime Binding and Protection (2)
	Hardware Support for Relocation and Limit Registers
	Base and Limit Registers
	Base and Limit Registers (2)
	Base and Limit Registers (3)
	Timesharing
	Swapping
	Schematic View of Swapping
	So far we have assumed a process is smaller than memory
	Virtual Memory
	Virtual Memory – Paging Overview
	Slide 48
	Slide 49
	Paging
	Memory Management Unit (also called Translation Look-aside Buff
	MMU Operation
	Slide 53

