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This paper presents a new technique for disk storage management called a log-structured file

system, A log-structured file system writes all modifications to disk sequentially in a log-like
structure, thereby speeding up both file writing and crash recovery. The log is the only structure

on disk; it contains indexing information so that files can be read back from the log efficiently.
In order to maintain large free areas on disk for fast writing, we divide the log into segments and

use a segment cleaner to compress the live information from heavily fragmented segments. We

present a series of simulations that demonstrate the efficiency of a simple cleaning policy based
on cost and benefit. We have implemented a prototype logstructured file system called Sprite

LFS; it outperforms current Unix file systems by an order of magnitude for small-file writes

while matching or exceeding Unix performance for reads and large writes. Even when the
overhead for cleaning is included, Sprite LFS can use 70% of the disk bandwidth for writing,

whereas Unix file systems typically can use only 5 –10%.
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1. INTRODUCTION

Over the last decade CPU speeds have increased dramatically while disk

access times have only improved slowly. This trend is likely to continue in

the future and it will cause more and more applications to become disk-bound.

To lessen the impact of this problem, we have devised a new disk storage
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management technique called a log-structured file system, which uses disks

an order of magnitude more efficiently than current file systems.

Log-structured file systems are based on the assumption that files are

cached in main memory and that increasing memory sizes will make the

caches more and more effective at satisfying read requests [18]. As a result,

disk traffic will become dominated by writes. A log-structured file system

writes all new information to disk in a sequential structure called the log.

This approach increases write performance dramatically by eliminating al-

most all seeks. The sequential nature of the log also permits much faster

crash recovery: current Unix file systems typically must scan the entire disk

to restore consistency after a crash, but a log-structured file system need only

examine the most recent portion of the log.

The notion of logging is not new, and a number of recent file systems have

incorporated a log as an auxiliary structure to speed up writes and crash

recovery [8, 9]. However, these other systems use the log only for temporary

storage; the permanent home for information is in a traditional random-access

storage structure on disk. In contrast, a log-structured file system stores

data permanently in the log: there is no other structure on disk. The log con-

tains indexing information so that files can be read back with efficiency

comparable to current file systems.

For a log-structured file system to operate efficiently, it must ensure that

there are always large extents of free space available for writing new data.

This is the most difficult challenge in the design of a log-structured file

system. In this paper we present a solution based on large extents called

segments, where a segment cleaner process continually regenerates empty

segments by compressing the live data from heavily fragmented segments.

We used a simulator to explore different cleaning policies and discovered a

simple but effective algorithm based on cost and benefit: it segregates older,

more slowly changing data from younger rapidly changing data and treats

them differently during cleaning.

We have constructed a prototype log-structured file system called Sprite

LFS, which is now in production use as part of the Sprite network operating

system [17]. Benchmark programs demonstrate that the raw writing speed of

Sprite LFS is more than an order of magnitude greater than that of Unix for

small files. Even for other workloads, such as those including reads and

large-file accesses, Sprite LFS is at least as fast as Unix in all cases but one

(files read sequentially after being written randomly). We also measured the

long-term overhead for cleaning in the production system. Overall, Sprite

LFS permits about 65-75% of a disk’s raw bandwidth to be used for writing

new data (the rest is used for cleaning). For comparison, Unix systems can

only utilize 5-1090 of a disk’s raw bandwidth for writing new data; the rest of

the time is spent seeking.

The remainder of this paper is organized into six sections. Section 2

reviews the issues in designing file systems for computers of the 1990s.

Section 3 discusses the design alternatives for a log-structured file system
and derives the structure of Sprite LFS, with particular focus on the cleaning

mechanism. Section 4 describes the crash recovery system for Sprite LFS.
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Section 5 evaluates Sprite LFS using benchmark programs and long-term

measurements of cleaning overhead. Section 6 compares Sprite LFS to other

file systems, and Section 7 concludes.

2. DESIGN FOR FILE SYSTEMS OF THE 1990’s

File system design is governed by two general forces: technology, which

provides a set of basic building blocks, and workload, which determines a set

of operations that must be carried out efficiently. This section summarizes

technology changes that are underway and describes their impact on file

system design. It also describes the workloads that influenced the design of

Sprite LFS and shows how current file systems are ill-equipped to deal with

the workloads and technology changes.

2.1 Technology

Three components of technology are particularly significant for file system

design: processors, disks, and main memory. Processors are significant be-

cause their speed is increasing at a nearly exponential rate, and the improve-

ments seem likely to continue through much of the 1990s. This puts pressure

on all the other elements of the computer system to speed up as well, so that

the system doesn’t become unbalanced.

Disk technology is also improving rapidly, but the improvements have

been primarily in the areas of cost and capacity rather than performance.

There are two components of disk performance: transfer bandwidth and

access time. Although both of these factors are improving, the rate of

improvement is much slower than for CPU speed. Disk transfer bandwidth

can be improved substantially with the use of disk arrays and parallel-head

disks [19], but no major improvements seem likely for access time (it is

determined by mechanical motions that are hard to improve). If an applica-

tion causes a sequence of small disk transfers separated by seeks, then the

application is not likely to experience much speedup over the next ten years,

even with faster processors.

The third component of technology is main memory, which is increasing in

size at an exponential rate. Modern file systems cache recently used file data

in main memory, and larger main memories make larger file caches possible.

This has two effects on file system behavior. First, larger file caches alter the

workload presented to the disk by absorbing a greater fraction of the read

requests [2, 18]. Most write requests must eventually be reflected on disk for

safety, so disk traffic (and disk performance) will become more and more
dominated by writes.

The second impact of large file caches is that they can serve as write

buffers where large numbers of modified blocks can be collected before

writing any of them to disk. Buffering may make it possible to write the

blocks more efficiently, for example by writing them all in a single sequential

transfer with only one seek. Of course, write-buffering has the disadvantage

of increasing the amount of data lost during a crash. For this paper we will

assume that crashes are infrequent and that it is acceptable to lose a few
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seconds or minutes of work in each crash; for applications that require better

crash recovery, nonvolatile RAM may be used for the write buffer.

2.2 Workloads

Several different file system workloads are common in computer applica-

tions. One of the most difficult workloads for file system designs to handle

efficiently is found in office and engineering environments. Office and engi-

neering applications tend to be dominated by accesses to small files; several

studies have measured mean file sizes of only a few kilobytes [2, 10, 18, 231.

Small files usually result in small random disk 1/0s, and the creation and

deletion times for such files are often dominated by updates to file system

“ metadata” (the data structures used to locate the attributes and blocks of

the file).

Workloads dominated by sequential accesses to large files, such as those

found in supercomputing environments, also pose interesting problems, but

not for file system software. A number of techniques exist for ensuring that

such files are laid out sequentially on disk, so 1/0 performance tends to be

limited by the bandwidth of the 1/0 and memory subsystems rather than the

file allocation policies. In designing a log-structured file system we decided to

focus on the efficiency of small-file accesses, and leave it to hardware design-

ers to improve bandwidth for large-file accesses. Fortunately, the techniques

used in Sprite LFS work well for large files as well as small ones.

2.3 Problems with Existing File Systems

Current file systems suffer from two general problems that make it hard for

them to cope with the technologies and workloads of the 1990s. First, they

spread information around the disk in a way that causes too many small

accesses. For example, the Berkeley Unix fast file system (Unix FFS) [121 is

quite effective at laying out each file sequentially on disk, but it physically

separates different files. Furthermore, the attributes (” inode”) for a file are

separate from the file’s contents, as is the directory entry containing the file’s

name. It takes at least five separate disk 1/0s, each preceded by a seek, to

create a new file in Unix FFS: two different accesses to the file’s attributes

plus one access each for the file’s data, the directory’s data, and the directory’s

attributes. When writing small files in such a system, less than 5% of the

disk’s potential bandwidth is used for new data; the rest of the time is spent

seeking.

The second problem with current file systems is that they tend to write

synchronously: the application must wait for the write to complete, rather

than continuing while the write is handled in the background. For example

even though Unix FFS writes file data blocks asynchronously, file system

metadata structures such as directories and inodes are written syn-

chronously. For workloads with many small files, the disk traffic is domi-

nated by the synchronous metadata writes. Synchronous writes couple the

application’s performance to that of the disk and make it hard for the

application to benefit from faster CPUS. They also defeat the potential use of
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the file cache as a write buffer. Unfortunately, network file systems like NFS

[21] have introduced additional synchronous behavior where it did not used

to exist. This has simplified crash recovery, but it has reduced write

performance.

Throughout this paper we use the Berkeley Unix fast file system (Unix

FFS) as an example of current file system design and compare it to log-struc-

tured file systems. The Unix FFS design is used because it is well docu-

mented in the literature and used in several popular Unix operating systems.

The problems presented in this section are not unique to Unix FFS and can

be found in most other file systems.

3. LOG-STRUCTURED FILE SYSTEMS

The fundamental idea of a log-structured file system is to improve write

performance by buffering a sequence of file system changes in the file cache

and then writing all the changes to disk sequentially in a single disk write

operation. The information written to disk in the write operation includes file

data blocks, attributes, index blocks, directories and almost all the other

information used to manage the file system. For workloads that contain

many small files, a log-structured file system converts the many small

synchronous random writes of traditional file systems into large asyn-

chronous sequential transfers that can utilize nearly 100~o of the raw disk

bandwidth.

Although the basic idea of a log-structured file system is simple, there are

two key issues that must be resolved to achieve the potential benefits of the

logging approach. The first issue is how to retrieve information from the log;

this is the subject of Section 3.1 below. The second issue is how to manage

the free space on disk so that large extents of free space are always available

for writing new data. This is a much more difficult issue; it is the topic of

Sections 3.2-3.6. Table I contains a summary of the on-disk data structures

used by Sprite LFS to solve the above problems; the data structures are

discussed in detail in later sections of the paper.

3.1 File Location and Reading

Although the term “log-structured” might suggest that sequential scans are

required to retrieve information from the log, this is not the case in Sprite

LFS. Our goal was to match or exceed the read performance of Unix FFS. To

accomplish this goal, Sprite LFS outputs index structures in the log to permit

random-access retrievals. The basic structures used by Sprite LFS are identi-

cal to those used in Unix FFS; for each file there exists a data structure

called an inode, which contains the file’s attributes (type, owner, permis-

sions, etc. ) plus the disk addresses of the first ten blocks of the file; for files

larger than ten blocks, the inode also contains the disk addresses of one or

more indirect blocks, each of which contains the addresses of more data or

indirect blocks. Once a file’s inode has been found, the number of disk 1/0s

required to read the file is identical in Sprite LFS and Unix FFS.

In Unix FFS each inode is at a fixed location on disk; given the identifying

number for a file, a simple calculation yields the disk address of the file’s
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Table I. Summary of the Major Data Structures Stored on Disk by Sprite LFS.

Data structure Purpose Location Section

Incde Locatesblocks of file, holds protection bits, modify time, etc. Log 3.1
Inmfe map Locates posiuon of mode in log, holds time of fast accessPIUS Log 3.1

version number.
Indirect block Locatesblocks of large files. Log 3.1
Segmentsummary Identifies contents of segment(file number and offset for each Log 3.2

block).
Segmentusage!able Counts live bytes still left in segmen!s,stomalastwrite timefor Log 3.6

data in segments.
Superblock Hotds static configuration information such as numlxr of seg- Fixcd None

mentsand segmentsize.
Checkpoint region Locates blocks of inode map and segmentusagetable, identifies Fixed 4.1

last checkpoint in log.
Dmxtory changelog Records directory opxations to maintain consistency of refer- Log 4.2

encecounts in inodes.

For each data structure the table indicates the purpose served by the data structure in Sprite

LFS. The table also indicates whether the data structure is stored in the log or at a fixed position

on disk and where in the paper the data structure is discussed in detail. Inodes, indirect blocks,

and superblocks are similar. to the Unix FFS data structures with the same names. Note that

Sprite LFS contains neither a bitmap or a free list.

inode. In contrast, Sprite LFS doesn’t place inodes at fixed positions; they are

written to the log. Sprite LFS uses a data structure called an inode map to

maintain the current location of each inode. Given the identifying number

for a file, the inode map must be indexed to determine the disk address of the

inode. The inode map is divided into blocks that are written to the log; a fixed

checkpoint region on each disk identifies the locations of all the inode map

blocks. Fortunately, inode maps are compact enough to keep the active

portions cached in main memory: inode map lookups rarely require disk

accesses.

Figure 1 shows the disk layouts that would occur in Sprite LFS and Unix

FFS after creating two new files in different directories. Although the two

layouts have the same logical structure, the log-structured file system pro-

duces a much more compact arrangement. As a result, the write performance

of Sprite LFS is much better than Unix FFS, while its read performance is

just as good.

3.2 Free Space Management: Segments

The most difficult design issue for log-structured file systems is the manage-

ment of free space. The goal is to maintain large free extents for writing new

data. Initially all the free space is in a single extent on disk, but by the time

the log reaches the end of the disk the free space will have been fragmented

into many small extents corresponding to the files that were deleted or

overwritten.

From this point on, the file system has two choices: threading and copying.

These are illustrated in Figure 2. The first alternative is to leave the live

data in place and thread the log through the free extents. Unfortunately,
threading will cause the free space to become severely fragmented, so that

large contiguous writes won’t be possible and a log-structured file system will
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dirl dir2 filel file2
‘1 &.* ~=

Lag +
~ ........

Disk &w ~: ;::;I ,, !!J~: ,,,, Disk,::: ~

Sprite LFS
+ ‘?

filel file2 dirl dir2 Unix FFS

Fig. 1. A comparison between Sprite LFS and Unix FFS. This example shows the modified disk
blocks written by Sprite LFS and Unix FFS when creating two single-block files named dirl /filel

and dlr2 /flle2. Each system must write new data blocks and inodes for file 1 and flle2, plus new

data blocks and inodes for the containing directories. Unix FFS requires ten nonsequential

writes for the new information (the inodes for the new files are each written twice to ease

recovery from crashes), while Sprite LFS performs the operations in a single large write. The

same number of disk accesses will be required to read the files in the two systems. Sprite LFS

also writes out new inode map blocks to record the new inode locations

Block Key:
Threaded log

la Old log end New log end
Old datablock

New datablock II

Prcwously deleted
II

Copy and Compact

Old log end New log end

Fig, 2. Possible free space management solutions for log-structured file systems, In a log-struc-
tured file system, free space for the log can be generated either by copying the old blocks or by

threading the log around the old blocks. The left side of the figure shows the threaded log

approach where the log skips over the active blocks and overwrites blocks of files that have been
deleted or overwritten. Pointers between the blocks of the log are mamtained so that the log can

be followed during crash recovery The right side of the figure shows the copying scheme where

log space is generated by reading the section of disk after the end of the log and rewriting the
active blocks of that section along with the new data into the newly generated space.

be no faster than traditional file systems. The second alternative is to copy

live data out of the log in order to leave large free extents for writing. For

this paper we will assume that the live data is written back in a compacted

form at the head of the log; it could also be moved to another log-structured

file system to form a hierarchy of logs, or it could be moved to some totally

different file system or archive. The disadvantage of copying is its cost,
particularly for long-lived files; in the simplest case where the log works

circularly across the disk and live data is copied back into the log, all of the

long-lived files will have to be copied in every pass of the log across the disk.

Sprite LFS uses a combination of threading and copying. The disk is

divided into large fixed-size extents called segments. Any given segment is

always written sequentially from its beginning to its end, and all live data

must be copied out of a segment before the segment can be rewritten.

However, the log is threaded on a segment-by-segment basis; if the system
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can collect long-lived data together into segments, those segments can be

skipped over so that the data doesn’t have to be copied repeatedly. The

segment size is chosen large enough that the transfer time to read or write a

whole segment is much greater than the cost of a seek to the beginning of the

segment. This allows whole-segment operations to run at nearly the full

bandwidth of the disk, regardless of the order in which segments are ac-

cessed. Sprite LFS currently uses segment sizes of either 512 kilobytes or one

megabyte.

3.3 Segment Cleaning Mechanism

The process of copying live data out of a segment is called segment cleaning.

In Sprite LFS it is a simple three-step process: read a number of segments

into memory, identify the live data, and write the live data back to a smaller

number of clean segments. After this operation is complete, the segments

that were read are marked as clean, and they can be used for new data or for

additional cleaning.

As part of segment cleaning it must be possible to identify which blocks of

each segment are live, so that they can be written out again. It must also be

possible to identify the file to which each block belongs and the position of

the block within the file; this information is needed in order to update the

file’s inode to point to the new location of the block. Sprite LFS solves both of

these problems by writing a segment summary block as part of each segment.

The summary block identifies each piece of information that is written in the

segment; for example, for each file data block the summary block contains

the file number and block number for the block. Segments can contain

multiple segment summary blocks when more than one log write is needed to

fill the segment. (Partial-segment writes occur when the number of dirty

blocks buffered in the file cache is insufficient to fill a segment). Segment

summary blocks impose little overhead during writing, and they are useful

during crash recovery (see Section 4) as well as during cleaning.

Sprite LFS also uses the segment summary information to distinguish live

blocks from those that have been overwritten or deleted. Once a block’s

identity is known, its liveness can be determined by checking the file’s inode

or indirect block to see if the appropriate block pointer still refers to this

block. It it does, then the block is live; if it doesn’t, then the block is dead.

Sprite LFS optimizes this check slightly by keeping a version number in

the inode map entry for each file; the version number is incremented when-

ever the file is deleted or truncated to length zero, The version number com-

bined with the inode number form a unique identifier (uid) for the contents

of the file. The segment summary block records this uid for each block

in the segment; if the uid of a block does not match the uid currently stored

in the inode map when the segment is cleaned, the block can be discarded

immediately without examining the file’s inode.

This approach to cleaning means that there is no free-block list or bitmap
in Sprite. In addition to saving memory and disk space, the elimination of

these data structures also simplifies crash recovery. If these data structures
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existed, additional code would be needed to log changes to the structures and

restore consistency after crashes.

3.4 Segment Cleaning Policies

Given the basic mechanism described above, four policy issues must be

addressed:

(1) When should the segment cleaner execute? Some possible choices are for

it to run continuously in background at low priority, or only at night, or

only when disk space is nearly exhausted.

(2) How many segments should it clean at a time? Segment cleaning offers

an opportunity to reorganize data on disk; the more segments cleaned at

once, the more opportunities to rearrange.

(3) Which segments should be cleaned? An obvious choice is the ones that are

most fragmented, but this turns out not to be the best choice.

(4) How should the live blocks be grouped when they are written out? One

possibility is to try to enhance the locality of future reads, for example by

grouping files in the same directory together into a single output seg-

ment. Another possibility is to sort the blocks by the time they were last

modified and group blocks of similar age together into new segments; we

call this approach age sort.

In our work so far we have not methodically addressed the first two of the

above policies. Sprite LFS starts cleaning segments when the number of

clean segments drops below a threshold value (typically a few tens of seg-

ments). It cleans a few tens of segments at a time until the number of clean

segments surpasses another threshold value (typically 50– 100 clean seg-

ments). The overall performance of Sprite LFS does not seem to be very

sensitive to the exact choice of the threshold values. In contrast, the third

and fourth policy decisions are critically important: in our experience they

are the primary factors that determine the performance of a log-structured

file system. The remainder of Section 3 discusses our analysis of which

segments to clean and how to group the live data.

We use a term called write cost to compare cleaning policies. The write cost

is the average amount of time the disk is busy per byte of new data written,

including all the cleaning overheads. The write cost is expressed as a

multiple of the time that would be required if there were no cleaning

overhead and the data could be written at its full bandwidth with no seek

time or rotational latency. A write cost of 1.0 is perfect: it would mean that

new data could be written at the full disk bandwidth and there is no cleaning

overhead. A write cost of 10 means that only one-tenth of the disk’s maxi-

mum bandwidth is actually used for writing new data; the rest of the disk

time is spent in seeks, rotational latency, or cleaning.

For a log-structured file system with large segments, seek and rotational

latency are negligible both for writing and for cleaning, so the write cost is

the total number of bytes moved to and from the disk divided by the number

of those bytes that represent new data. This cost is determined by the
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utilization (the fraction of data still live) in the segments that are cleaned. In

the steady state, the cleaner must generate one clean segment for every

segment of new data written. To do this, it reads N segments in their entirety

and writes out N* u segments of live data (where u is the utilization of the

segments and O < u < 1). This creates N*(1 – u) segments of contiguous free

space for new data. Thus

total bytes read and written
write cost =

new data written

read segs + write live + write new
—

new data written

N+ N*u+N*(l–u) 2
— —— (1)

N*(l-zL) ‘I-u

In the above formula we made the conservative assumption that a segment

must be read in its entirety to recover the live blocks; in practice it may be

faster to read just the live blocks, particularly if the utilization is very low

(we haven’t tried this in Sprite LFS). If a segment to be cleaned has no live

blocks (u = O) then it need not be read at all and the write cost is 1.0.

Figure 3 graphs the write cost as a function of u. For reference, Unix FFS

on small file workloads utilizes at most 5 – 109ZO of the disk bandwidth, for a

write cost of 10–20 (see Ousterhout [16] and Figure 8 in Section 5.1 for

specific measurements). With logging, delayed writes, and disk request sort -

ing this can probably be improved to about 2590 of the bandwidth [24] or a

write cost of 4. Figure 3 suggests that the segments cleaned must have a

utilization of less than .8 in order for a log-structured file system to outper-

form the current Unix FFS; the utilization must be less than .5 to outperform

an improved Unix FFS.

It is important to note that the utilization discussed above is not the

overall fraction of the disk containing live data; it is just the fraction of live

blocks in segments that are cleaned. Variations in file usage will cause some

segments to be less utilized than others, and the cleaner can choose the least

utilized segments to clean; these will have lower utilization than the overall

average for the disk.

Even so, the performance of a log-structured file system can be improved by

reducing the overall utilization of the disk space. With less of the disk in use,

the segments that are cleaned will have fewer live blocks, resulting in a

lower write cost. Log-structured file systems provide a cost-performance

trade-off if disk space is underutilized, higher performance can be achieved

but at a high cost per usable byte; if disk capacity utilization is increased,

storage costs are reduced but so is performance. Such a trade-off between

performance and space utilization is not unique to log-structured file sys-

tems. For example, Unix FFS only allows 9070 of the disk space to be

occupied by files. The remaining 10’%o is kept free to allow the space alloca-

tion algorithm to operate efficiently.
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Write cost
~4co . . . . . . . . . . . .. L.......L...-[......J. ........ ..

12.0 --”/
/,

~_ Log-structured

/:

lo.o--” ------------ --.--.—— ————
~ FFs today

go .... ~..

6.0 --~
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4.0 --”;-””-”---------”--------”-----------------------+-.-------------------
! F’FS improved

2.0...’ :---

O.-J -- ~. . . . . . . .. T...... ....r.........f.........1.... .. .... ...
0.0 0.2 0.4 0.6 0:8 1:0

Fraction alive in segment cleaned (u)

Fig, 3. Write cost as a function of u for small files In a log-structured file system, the write
cost depends strongly on the utilization of the segments that are cleaned, The more live data in

segments cleaned, the more disk bandwidth that is needed for cleaning and not available for

writing new data. The figure also shows two reference points: ‘ ‘FFS to day,” which represents
Unix FFS today, and “FFS Improved,” which is our estimate of the best performance possible in

an improved Unix FFS. Write cost for Umx FFS is not sensitive to the amount of disk space in

use,

The key to achieving high performance at low cost in a log-structured file

system is to force the disk into a bimodal segment distribution where most of

the segments are nearly full, a few are empty or nearly empty, and the

cleaner can almost always work with the empty segments. This allows a high

overall disk capacity utilization yet provides a low write cost. The following

section describes how we achieve such bimodal distribution in Sprite LFS.

3.5 Simulation Results

We built a simple file system simulator so that we could analyze different

cleaning policies under controlled conditions. The simulator’s model does not

reflect actual file system usage patterns (its model is much harsher than

reality), but it helped us to understand the effects of random access patterns

and locality, both of which can be exploited to reduce the cost of cleaning.

The simulator models a file system as a fixed number of 4-kbyte files, with

the number chosen to produce a particular overall disk capacity utilization.

At each step, the simulator overwrites one of the files with new data, using

one of two pseudo-random access patterns:

Uniform Each file has equal likelihood of being selected in each step.

Hot-and-cold Files are divided into two groups. One group contains 10% of

the files; it is called hot because its files are selected 90% of

the time. The other group is called cold; it contains 90% of

the files but they are selected only 107o of the time. Within

groups each file is equally likely to be selected. This access

pattern models a simple form of locality.
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Fig. 4. Initial simulation results. The curves labeled “FFS today” and “FFS improved” are

reproduced from Figure 3 for comparison, The curve labeled “No variance” shows the write cost
that would occur if all segments always had exactly the same utilization. The “LFS uniform”

curve represents a log-structured file system with uniform access pattern and a greedy cleaning

policy: the cleaner chooses the least-utilized segments. The “LFS hot-and-cold” curve represents

a log-structured file system with locality of file access. It uses a greedy cleaning policy and the

cleaner also sorts the live data by age before writing it out again. The x-axis is overall disk

capacity utilization, which is not necessarily the same as the utilization of the segments being
cleaned.

In this approach the overall disk capacity utilization is constant and no read

traffic is modeled. The simulator runs until all clean segments are ex-

hausted, then simulates the actions of a cleaner until a threshold number of

clean segments is available again. In each run the simulator was allowed to

run until the write cost stabilized and all cold-start variance had been

removed.

Figure 4 superimposes the results from two sets of simulations onto the

curves of Figure 3. In the “LFS uniform” simulations the uniform access

pattern was used. The cleaner used a simple greedy policy where it always

chose the least-utilized segments to clean. When writing out live data the

cleaner did not attempt to reorganize the data: live blocks were written out in

the same order that they appeared in the segments being cleaned (for a

uniform access pattern there is no reason to expect any improvement from

reorganization).

Even with uniform random access patterns, the variance in segment uti-

lization allows a substantially lower write cost than would be predicted from

the overall disk capacity utilization and formula (1). For example, at 75%

overall disk capacity utilization, the segments cleaned have an average

utilization of only 55%. At overall disk capacity utilization under 2090 the

write cost drops below 2.0; this means that some of the cleaned segments

have no live blocks at all and hence don’t need to be read in.

The “LFS hot-and-cold” curve shows the write cost when there is locality in

the access patterns, as described above. The cleaning policy for this curve

was the same as for “LFS uniform” except that the live blocks were sorted by
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age before writing them out again. This means that long-lived (cold) data

tends to be segregated in different segments from short-lived (hot) data; we

thought that this approach would lead to the desired bimodal distribution of

segment utilizations.

Figure 4 shows the surprising result that locality and “better” grouping

result in worse performance than a system with no locality! We tried varying

the degree of locality (e.g., 95% of accesses to 5% of data) and found that

performance got worse and worse as the locality increased. Figure 5 shows

the reason for this nonintuitive result. Under the greedy policy, a segment

doesn’t get cleaned until it becomes the least utilized of all segments. Thus

every segment’s utilization eventually drops to the cleaning threshold, in-

cluding the cold segments. Unfortunately, the utilization drops very slowly in

cold segments, so these segments tend to linger just above the cleaning point

for a very long time. Figure 5 shows that many more segments are clustered

around the cleaning point in the simulations with locality than in the

simulations without locality. The overall result is that cold segments tend to

tie up large numbers of free blocks for long periods of time.

After studying these figures we realized that hot and cold segments must

be treated differently by the cleaner. Free space in a cold segment is more

valuable than free space in a hot segment because once a cold segment has

been cleaned it will take a long time before it reaccumulates the unusable

free space. Said another way, once the system reclaims the free blocks from a

segment with cold data it will get to “keep” them a long time before the cold

data becomes fragmented and “takes them back again. ” In contrast, it is less

beneficial to clean a hot segment because the data will likely die quickly and

the free space will rapidly reaccumulate; the system might as well delay the

cleaning a while and let more of the blocks die in the current segment. The

value of a segment’s free space is based on the stability of the data in the

segment. Unfortunately, the stability cannot be predicted without knowing

future access patterns. Using an assumption that the older the data in a

segment the longer it is likely to remain unchanged, the stability can be

estimated by the age of data.

To test this theory we simulated a new policy for selecting segments to

clean. The policy rates each segment according to the benefit of cleaning the

segment and the cost of cleaning the segment and chooses the segments with

the highest ratio of benefit to cost. The benefit has two components: the

amount of free space that will be reclaimed and the amount of time the space

is likely to stay free. The amount of free space is just 1 – u, where u is the

utilization of the segment. We used the most recent modified time of any

block in the segment (i.e., the age of the youngest block) as an estimate of

how long the space is likely to stay free. The benefit of cleaning is the

space-time product formed by multiplying these two components. The cost of

cleaning the segment is 1 + u (one unit of cost to read the segment, u to

write back the live data). Combining all these factors, we get

benefit free space generated* age of data (1 - u)*age
— ——

cost – cost l+U “
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Fig. 5. Segment utilization distributions with greedy cleaner. These figures show distributions
of segment utilizations of the disk during the simulation. The distribution is computed by
measuring the utilizations of all segments on the disk at the points during the simulation when
segment cleaning was initiated. The distribution shows the utilizations of the segments avail-
able to the cleaning algorithm. Each of the distributions corresponds to an overall disk capacity
utilization of 75Y0. The “Uniform” curve Corresponds to ‘ ‘LFS uniform” in F@re 4 and
“H&aml-colcl” corresponds to “LFS hot-and-cold” in Figure 4. Locality causes the distribution to

be more skewed towards the utilization at which cleaning occurs; as a result, segments are
cleaned at a higher average utilization.
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Fig. 6. Segment utilization distribution with cost-benefit policy. This figure shows the distribu-

tion of segment utilizations from the simulation of a hot-and-cold access pattern with 75% overall
disk capacity utilization. The “LFS Cost-Benefit” curve shows the segment distribution occur-
ring when the cost-benefit policy is used to select segments to clean and live blocks are grouped

by age before being rewritten. Because of this bimodal segment distribution, most of the
segments cleaned had utilizations around 15!%. For comparison, the distribution produced by the
greedy method selection policy is shown by the “LFS Greedy” curve reproduced from Figure 5.
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Fig. 7. Write cost, including cost-benefit pohcy. This graph compares the write cost of the
greedy policy with that of the cost-benefit policy for the hot-and-cold access pattern The
cost-benefit policy is substantially better than the g-reedy policy, particularly for disk capacity

utilizations above 6070.

We call this policy the cost-benefit policy; it allows cold segments to be

cleaned at a much higher utilization than hot segments.

We reran the simulations under the hot-and-cold access pattern with the

cost-benefit policy and age-sorting on the live data. As can be seen from

Figure 6, the cost-benefit policy produced the bimodal distribution of seg-

ments that we had hoped for. The cleaning policy cleans cold segments at

about 7570 utilization but waits until hot segments reach a utilization of

about 15$Z0 before cleaning them. Since 90’%0 of the writes are to hot files, most

of the segments cleaned are hot. Figure 7 shows that the cost-benefit policy

reduces the write cost by as much as 5070 over the greedy policy, and a

log-structured file system out-performs the best possible Unix FFS even at

relatively high disk capacity utilizations. We simulated a number of other

degrees and kinds of locality and found that the cost-benefit policy gets even

better as locality increases.

The simulation experiments convinced us to implement the cost-benefit

approach in Sprite LFS. As will be seen in Section 5.2, the behavior of actual

file systems in Sprite LFS is even better than predicted in Figure 7.

3.6 Segment Usage Table

In order to support the cost-benefit cleaning policy, Sprite LFS maintains a

data structure called the segment usage table. For each segment, the table

records the number of live bytes in the segment and the most recent modified

time of any block in the segment. These two values are used by the segment

cleaner when choosing segments to clean. The values are initially set when

the segment is written, and the count of live bytes is decremented when files

are deleted or blocks are overwritten. If the count falls to zero then the
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segment can be reused without cleaning. The blocks of the segment usage

table are written to the log, and the addresses of the blocks are stored in the

checkpoint regions (see Section 4 for details).

In order to sort live blocks by age, the segment summary information

records the age of the youngest block written to the segment. At present

Sprite LFS does not keep modified times for each block in a file; it keeps a

single modified time for the entire file. This estimate will be incorrect for

files that are not modified in their entirety. We plan to modify the segment

summary information to include modified times for each block.

4. CRASH RECOVERY

When a system crash occurs, the last few operations performed on the disk

may have left it in an inconsistent state (for example, a new file may have

been written without writing the directory containing the file); during reboot

the operating system must review these operations in order to correct any

inconsistencies. In traditional Unix file systems without logs, the system

cannot determine where the last changes were made, so it must scan all of

the metadata structures on disk to restore consistency. The cost of these

scans is already high (tens of minutes in typical configurations), and it is

getting higher as storage systems expand.

In a log-structured file system the locations of the last disk operations are

easy to determine: they are at the end of the log. Thus it should be possible to

recover very quickly after crashes. This benefit of logs is well known and has

been used to advantage both in database systems [6] and in other file systems

[3, 8, 91. Like many other logging systems, Sprite LFS uses a two-pronged

approach to recovery: checkpoints, which define consistent states of the file

system, and roll-forward, which is used to recover information written since

the last checkpoint.

4.1 Checkpoints

A checkpoint is a position in the log at which all of the file system structures

are consistent and complete. Sprite LFS uses a two-phase process to create a

checkpoint. First, it writes out all modified information to the log, including

file data blocks, indirect blocks, inodes, and blocks of the inode map and

segment usage table. Second, it writes a checkpoint region to a special fixed

position on disk. The checkpoint region contains the addresses of all the

blocks in the inode map and segment usage table, plus the current time and a

pointer to the last segment written.

During reboot, Sprite LFS reads the checkpoint region and uses that

information to initialize its main-memory data structures. In order to handle

a crash during a checkpoint operation there are actually two checkpoint

regions, and checkpoint operations alternate between them. The checkpoint

time is in the last block of the checkpoint region, so if the checkpoint fails the

time will not be updated. During reboot, the system reads both checkpoint

regions and uses the one with the most recent time.
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Sprite LFS performs checkpoints at periodic intervals as well as when the

file system is unmounted or the system is shut down. A long interval

between checkpoints reduces the overhead of writing the checkpoints but

increases the time needed to roll forward during recovery; a short checkpoint

interval improves recovery time but increases the cost of normal operation.

Sprite LFS currently uses a checkpoint interval of thirty seconds, which is

probably much too short. An alternative to periodic checkpointing is to

perform checkpoints after a given amount of new data has been written to

the log; this would set a limit on recovery time while reducing the checkpoint

overhead when the file system is not operating at maximum throughput.

4.2 Roll-Forward

In principle it would be safe to restart after crashes by simply reading the

latest checkpoint region and discarding any data in the log after that

checkpoint. This would result in instantaneous recovery but any data written

since the last checkpoint would be lost. In order to recover as much informa-

tion as possible, Sprite LFS scans through the log segments that were written

after the last checkpoint. This operation is called roll-forward.

During roll-forward Sprite LFS uses the information in segment summary

blocks to recover recently written file data. When a summary block indicates

the presence of a new inode, Sprite LFS updates the inode map it read from

the checkpoint, so that the inode map refers to the new copy of the inode.

This automatically incorporates the file’s new data blocks into the recovered

file system. If data blocks are discovered for a file without a new copy of’ the

file’s inode, then the roll-forward code assumes that the new version of the

file on disk is incomplete and it ignores the new data blocks.

The roll-forward code also adjusts the utilizations in the segment usage

table read from the checkpoint. The utilizations of the segments written since

the checkpoint will be zero; they must be adjusted to reflect the live data left

after roll-forward. The utilizations of older segments will also have to be

adjusted to reflect file deletions and overwrites (both of these can be identi-

fied by the presence of new inodes in the log).

The final issue in roll-forward is how to restore consistency between

directory entries and inodes. Each inode contains a count of the number of

directory entries referring to that inode; when the count drops to zero the file

is deleted. Unfortunately, it is possible for a crash to occur when an inode has

been written to the log with a new reference count while the block containing

the corresponding directory entry has not yet been written, or vice versa.

To restore consistency between directories and inodes, Sprite LFS outputs a

special record in the log for each directory change. The record includes an

operation code (create, link, rename or unlink), the location of the directory

entry (i-number for the directory and the position within the directory), the

contents of the directory entry (name and i-number), and the new reference

count for the inode named in the entry. These records are collectively called

the directory operation log; Sprite LFS guarantees that each directory opera-

tion log entry appears in the log before the corresponding directory block or

inode.
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During roll-forward, the directory operation log is used to ensure consis-

tency between directory entries and inodes: if a log entry appears but the

inode and directory block were not both written, roll-forward updates the

directory and/or inode to complete the operation. Roll-forward operations can

cause entries to be added to or removed from directories and reference counts

on inodes to be updated. The recovery program appends the changed directo-

ries, inodes, inode map, and segment usage table blocks to the log and writes

a new checkpoint region to include them. The only operation that can’t be

completed is the creation of a new file for which the inode is never written; in

this case the directory entry will be removed. In addition to its other

functions, the directory log made it easy to provide an atomic rename

operation.

The interaction between the directory operation log and checkpoints in-

troduced additional synchronization issues into Sprite LFS. In particular,

each checkpoint must represent a state where the directory operation

log is consistent with the inode and directory blocks in the log. This

required additional synchronization to prevent directory modifications while

checkpoints are being written.

5. EXPERIENCE WITH THE SPRITE LFS

We began the implementation of Sprite LFS in late 1989 and by mid-1990 it

was operational as part of the Sprite network operating system. Since the fall

of 1990 it has been used to manage five different disk partitions, which are

used by about thirty users for day-to-day computing. All of the features

described in this paper have been implemented in Sprite LFS, but roll-

forward has not yet been installed in the production system. The pro-

duction disks use a short checkpoint interval (30 seconds) and discard all the

information after the last checkpoint when they reboot.

When we began the project we were concerned that a log-structured file

system might be substantially more complicated to implement than a tradi-

tional file system. In reality, however, Sprite LFS turns out to be no more

complicated than Unix FFS [12]: Sprite LFS has additional complexity for the

segment cleaner, but this is compensated by the elimination of the bitmap

and layout policies required by Unix FFS; in addition, the checkpointing and

roll-forward code in Sprite LFS is no more complicated than the fsck code [131

that scans Unix FFS disks to restore consistency. Logging file systems like

Episode [91 or Cedar [81 are likely to be somewhat more complicated than

either Unix FFS or Sprite LFS, since they include both logging and layout

code.

In everyday use Sprite LFS does not feel much different to the users than

the Unix FFS-like file system in Sprite. The reason is that the machines

being used are not fast enough to be disk-bound with the current workloads.

For example, on the modified Andrew benchmark [16], Sprite LFS is only

20’% faster than SunOS using the configuration presented in Section 5.1.

Most of the speedup is attributable to the removal of the synchronous writes

in Sprite LFS. Even with the synchronous writes of Unix FFS, the bench-
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mark has a CPU utilization of over 80%, limiting the speedup possible from

changes in the disk storage management.

5.1 Micro-Benchmarks

We used a collection of small benchmark programs to measure the best-case

performance of Sprite LFS and compare it to SunOS 4.0.3, whose file system

is based on Unix FFS. The benchmarks are synthetic so they do not represent

realistic workloads, but they illustrate the strengths and weaknesses of the

two file systems. The machine used for both systems was a Sun-4\260 (8.7

integer SPECmarks) with 32 megabytes of memory, a Sun SCS13 HBA, and a

Wren IV disk (1.3 MBytes/see maximum transfer bandwidth, 17.5 millisec-

onds average seek time). For both LFS and SunOS, the disk was formatted

with a file system having around 300 megabytes of usable storage. An

eight-kilobyte block size was used by SunOS while Sprite LFS used a

four-kilobyte block size and a one-megabyte segment size. In each case the

system was running multiuser but was otherwise quiescent during the test.

For Sprite LFS no cleaning occurred during the benchmark runs so the

measurements represent best-care performance; see Section 5.2 below for

measurements of cleaning overhead.

Figure 8 shows the results of a benchmark that creates, reads, and deletes

a large number of small files. Sprite LFS is almost ten times as fast as

SunOS for the create and delete phases of the benchmark. Sprite LFS is also

faster for reading the files back; this is because the files are read in the same

order created and the log-structured file system packs the files densely in the

log. Furthermore, Sprite LFS only kept the disk 17% busy during the create

phase while saturating the CPU. In contrast, SunOS kept the disk busy 85%

of the time during the create phase, even though only about 1.2~0 of the

disk’s potential bandwidth was used for new data. This means that the

performance of Sprite LFS will improve by another factor of 4-6 as CPUS get

faster (see Figure 8b). Almost no improvement can be expected in SunOS.

Although Sprite was designed for efficiency on workloads with many small

file accesses, Figure 9 shows that it also provides competitive performance for

large files. Sprite LFS has a higher write bandwidth than SunOS in all cases.

It is substantially faster for random writes because it turns them into

sequential writes to the log; it is also faster for sequential writes because it

groups many blocks into a single large 1/0, whereas SunOS performs individ-

ual disk operations for each block (a newer version of SunOS groups writes

[14] and should therefore have performance equivalent to Sprite LFS). The

read performance is similar in the two systems except for the case of reading

a file sequentially after it has been written randomly; in this case the reads

require seeks in Sprite LFS, so its performance is substantially lower than

SunOS.

Figure 9 illustrates the fact that a log-structured file system produces a

different form of locality on disk than traditional file systems. A traditional

file system achieves logical locality by assuming certain access patterns

(sequential reading of files, a tendency to use multiple files within a direc-

tory, etc.); it then pays extra on writes, if necessary, to organize information
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Fig. 8. Small-file performance under Sprite LFS and SunOS. (a) measures a benchmark that

created 10000 one-kilobyte files, then read them back in the same order as created, then deleted
them. Speed is measured by the number of files per second for each operation on the two file
systems. The logging approach in Sprite LFS provides an order-of-magnitude speedup for
creation and deletion. (h) estimates the performance of each system for creating files on faster
computers with the same disk. In SunOS the disk was 8570 saturated in (a), so faster processors

will not improve performance much. In Sprite LFS the disk was only 17% saturated in (a) while
the CPU was 100% utilized; as a consequence 1/0 performance will scale with CPU speed,

optimally on disk for the assumed read patterns. In contrast, a log-structured

file system achieves temporal locality: information that is created or modified

at the same time will be grouped closely on disk. If temporal locality matches

logical locality, as it does for a file that is written sequentially and then read

sequentially, then a log-structured file system should have about the same

performance on large files as a traditional file system. If temporal locality

differs from logical locality then the systems will perform differently. Sprite

LFS handles random writes more efficiently because it writes them sequen-

tially on disk. SunOS pays more for the random writes in order to achieve

logical locality, but then it handles sequential rereads more efficiently.

Random reads have about the same performance in the two systems, even

though the blocks are laid out very differently. However, if the nonsequential

reads occurred in the same order as the nonsequential writes then Sprite

would have been much faster.

5.2 Cleaning Overheads

The micro-benchmark results of the previous section give an optimistic view

of the performance of Sprite LFS because they do not include any cleaning

overheads (the write cost during the benchmark runs was 1. O). In order to
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Fig. 9. Large-file performance under Sprite LFS and SunOS. The figure shows the speed of a

benchmark that creates a 100-Mbyte file with sequential writes, then reads the file back
sequentially, then writes 100 Mbytes randomly to the existing file, then reads 100 Mbytes
randomly from the file, and finally reads the file sequentially again, The bandwidth of each of

the five phases is shown separately, Sprite LFS has a higher write bandwidth and the same read

bandwidth as SunOS with the exception of sequential reading of a file that was written
randomly.

assess the cost of cleaning and the effectiveness of the cost-benefit cleaning

policy, we recorded statistics about our production log-structured file systems

over a period of several months. Five systems were measured:

/user6 Home directories for Sprite developers. Workload consists of

program development, text processing, electronic communica-

tion and simulations.

Ipcs Home directories and project area for research on parallel

processing and VLSI circuit design.

/src / kernel Sources and binaries for the Sprite kernel.

/swap2 Sprite client workstation swap files. Workload consists of

virtual memory backing store for 40 diskless Sprite workst a -

tions. Files tend to be large, sparse and accessed consequen-

tially.

Itmp Temporary file storage area for 40 Sprite workstations.

Table II shows statistics gathered during cleaning over a four-month

period. In order to eliminate start-up effects, we waited several months after

putting the file systems into use before beginning the measurements. The

behavior of the production file systems has been substantially better than

predicted by the simulations in Section 3. Even though the overall disk

capacity utilizations ranged from 11 – ‘75Y0, more than half of the segments

cleaned were totally empty. Even the nonempty segments have utilizations

far less than the average disk utilizations. The overall write costs ranged

ACM Transactions on Computer Systems, Vol 10, No 1, February 1992



The Design and Implementation of a Log-Structured File System . 47

Table II. Segment Cleaning Statistics and Write Costs for Production File Systems.

I File system I ::

Write cost in Smite LFS file systems
—..

Avg File Avg Write
In Use

Segments Write

~i7~ Traffic Cleaned Empty Atg cost
<B 3.2 MB/hoor 75% 10732 69% .133 1.4

52% .137 1.6

1 /sw;p2 309 MB 68.1 KB 13.3 MB/hour 65% 4701 66% .535 1.6

For each Sprite LFS file system the table lists the disk size, the average file size, the average

daily write traffic rate, the average disk capacity utilization, the total number of segments

cleaned over a four-month period, the fraction of the segments that were empty when cleaned,
theaverage utilization of thenonempty segments that were cleaned, and the overall write cost
fortheperiod of the measurements. These write cost figures imply that the cleaning overhead

limits the long-term write performance to about 70% of the maximum sequential write band-

width.
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Fig. 10. Segment utilization in the /user6 tile system. This figure shows the distribution of

segment utilizations in a recent snapshot of the /user6 disk. The distribution shows large
numbers of fully utilized segments and totally empty segments.

from 1.2 to 1.6, in comparison to write costs of 2.5-3 in the corresponding

simulations. Figure 10 shows the distribution of segment utilizations,

gathered in a recent snapshot of the /user6 disk.

We believe that there are two reasons why cleaning costs are lower in

Sprite LFS than in the simulations. First, all the files in the simulations

were just a single block long. In practice, there are a substantial number of

longer files, and they tend to be written and deleted as a whole. This results

in greater locality within individual segments. In the best case where a file is

much longer than a segment, deleting the file will produce one or more

totally empty segments. The second difference between simulation and real-

ity is that the simulated reference patterns were evenly distributed within
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the hot and cold file groups. In practice there are large numbers of files that

are almost never written (cold segments in reality are much colder than the

cold segments in the simulations). A log-structured file system will isolate

the very cold files in segments and never clean them. In the simulations,

every segment eventually received modifications and thus had to be cleaned.

If the measurements of Sprite LFS in Section 5.1 were a bit over-optimistic,

the measurements in this section are, if anything, over-pessimistic. In prac-

tice it may be possible to perform much of the cleaning at night or during

other idle periods, so that clean segments are available during bursts of

activity. We do not yet have enough experience with Sprite LFS to know if

this can be done. In addition, we expect the performance of Sprite LFS to

improve as we gain experience and tune the algorithms. For example, we

have not yet carefully analyzed the policy issue of how many segments to

clean at a time, but we think it may impact the system’s ability to segregate

hot data from cold data.

5.3 Crash Recovery

Although the crash recovery code has not been installed on the production

system, the code works well enough to time recovery of various crash

scenarios. The time to recover depends on the checkpoint interval and the

rate and type of operations being performed. Table III shows the recovery

time for different file sizes and amounts of file data recovered. The different

crash configurations were generated by running a program that created one,

ten, or fifty megabytes of fixed-size files before the system was crashed. A

special version of Sprite LFS was used that had an infinite checkpoint

interval and never wrote directory changes to disk. During the recovery

roll-forward, the created files had to be added to the inode map, the directory

entries created, and the segment usage table updated.

Table III shows that recovery time varies with the number and size of files

written between the last checkpoint and the crash. Recovery times can be

bounded by limiting the amount of data written between checkpoints. From

the average file sizes and daily write traffic in Table II, a checkpoint interval

as large as an hour would result in average recovery times of around one

second. Using the maximum observed write rate of 150 megabytes/hour,

maximum recovery time would grow by one second for every 70 seconds of

checkpoint interval length.

5.4 Other Overheads in Sprite LFS

Table IV shows the relative importance of the various kinds of data written

to disk, both in terms of how much of the live blocks they occupy on disk and

in terms of how much of the data written to the log they represent. More

than ggy. of the live data on disk consists of file data blocks and indirect

blocks. However, about 13% of the information written to the log consists of

inodes, inode map blocks, and segment map blocks, all of which tend to be

overwritten quickly. The inode map alone accounts for more than 770 of all

the data written to the log. We suspect that this is because of the short
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Table III. Recovery Time for Various Crash Configurations.

Sprite LFS ~covery time in seconds

File File Data Recovered

Size 1 MB 10 MB 50 MB

1 KB 1 21 132

10KB <1 I 3 I 17

100KB <1 1 8 I
The table shows the speed of recovery of one, ten, and fifty megabytes of fixed-size files. The
system measured was the same one used in Section 5.1. Recovery time is dominated by the

number of files to be recovered.

Table IV. Disk Space and Log Bandwidth Usage of /user6.

Sprite LFS /user 6 file system contents

Block type Live data [ Log bandwidth

Data blocks* 98.0% 85.2%

Indirect blocks* 1.0% 1.6%

Inode blocks* 0.2% 2.7%

For each block type, the table lists the percentage of the disk space in use on disk (Live data) and

the percentage of the log bandwidth consumed writing this block type (Log bandwidth). The

block types marked with ‘*’ have equivalent data structures in Unix FFS.

checkpoint interval currently used in Sprite LFS, which forces metadata to

disk more often than necessary. We expect the log bandwidth overhead for

metadata to drop substantially when we install roll-forward recovery and

increase the checkpoint interval.

6. RELATED WORK

The log-structured file system concept and the Sprite LFS design borrow

ideas from many different storage management systems. File systems with

log-like structures have appeared in several proposals for building file sys-

tems on write-once media [5, 20]. Besides writing all changes in an append-

only fashion, these systems maintain indexing information much like the

Sprite LFS inode map and inodes for quickly locating and reading files. They

differ from Sprite LFS in that the write-once nature of the media made it

unnecessary for the file systems to reclaim log space.

The segment cleaning approach used in Sprite LFS acts much like scaveng-

ing garbage collectors developed for programming languages [1]. The cost-be-

nefit segment selection and the age sorting of blocks during segment cleaning

in Sprite LFS separates files into generations much like generational garbage
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collection schemes [11]. A significant difference between these garbage collec-

tion schemes and Sprite LFS is that efficient random access is possible in the

generational garbage collectors, whereas sequential accesses are necessary to

achieve high performance in a file system. Also, Sprite LFS can exploit the

fact that blocks can belong to at most one file at a time to use much simpler

algorithms for identifying garbage than used in the systems for programming

languages.

The logging scheme used in Sprite LFS is similar to schemes pioneered in

database systems. Almost all database systems use write-ahead logging for

crash recovery and high performance [6], but differ from Sprite LFS in how

they use the log. Both Sprite LFS and the database systems view the log as

the most up-to-date “truth” about the state of the data on disk. The main

difference is that database systems do not use the log as the final repository

for data: a separate data area is reserved for this purpose. The separate data

area of these database systems means that they do not need the segment

cleaning mechanisms of the Sprite LFS to reclaim log space. The space

occupied by the log in a database system can be reclaimed when the logged

changes have been written to their final locations. Since all read requests are

processed from the data area, the log can be greatly compacted without

hurting read performance. Typically only the changed bytes are written to

database logs rather than entire blocks as in Sprite LFS.

The Sprite LFS crash recovery mechanism of checkpoints and roll forward

using a “redo log” is similar to techniques used in database systems and

object repositories [151. The implementation in Sprite LFS is simplified

because the log is the final home of the data. Rather than redoing the

operation to the separate data copy, Sprite LFS recovery ensures that the

indexes point at the newest copy of the data in the log.

Collecting data in the file cache and writing it to disk in large writes is

similar to the concept of group commit in database systems [4] and to

techniques used in main-memory database systems [7, 22].

7. CONCLUSION

The basic principle behind a log-structured file system is a simple one: collect

large amounts of new data in a file cache in main memory, then write the

data to disk in a single large 1/0 that can use all of the disk’s bandwidth.

Implementing this idea is complicated by the need to maintain large free

areas on disk, but both our simulation analysis and our experience with

Sprite LFS suggest that low cleaning overheads can be achieved with a
simple policy based on cost and benefit. Although we developed a log-struc-

tured file system to support workloads with many small files, the approach

also works very well for large-file accesses. In particular, there is essentially

no cleaning overhead at all for very large files that are created and deleted in

their entirety.

The bottom line is that a log-structured file system can use disks an order

of magnitude more efficiently than existing file systems. This should make it

possible to take advantage of several more generations of faster processors
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before 1/0 limitations once again threaten the scalability of computer

systems.
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