
© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

School of Computer Science & Engineering
COMP3891/9283 Extended Operating Systems

2025 T2 Week 05

Log-Structured File Systems
Gernot Heiser

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Copyright Notice

These slides are distributed under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License

• You are free:
• to share—to copy, distribute and transmit the work
• to remix—to adapt the work

• under the following conditions:
• Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Kevin Elphinstone and Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/4.0/legalcode

COMP3891/9283 2025T2 W05: Log-Structured File Systems1

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Learning Outcomes

• An understanding of the performance of i-node-based files
systems when writing small files.

• An understanding of how a log structured file system can
improve performance and increase reliability via improved
consistency guarantees without the need for file system
checkers.

• An understanding of “cleaning” and how it might detract
from performance.

COMP3891/9283 2025T2 W05: Log-Structured File Systems2

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Log-Structured File System: The Paper

Mendel Rosenblum and John K. Ousterhout:
“The Design and Implementation of a Log-Structured File
System”
ACM Transactions on Computer Systems, Vol 10, No. 1,
February 1992, Pages 26-52

Also, section 4.3.5 in textbook.

3 COMP3891/9283 2025T2 W05: Log-Structured File Systems

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Original Motivating Observations (1992)

Memory size is growing at a rapid rate
⇒ Growing proportion of file system reads will be satisfied by

file system buffer cache
⇒ Writes will increasingly dominate reads

4 COMP3891/9283 2025T2 W05: Log-Structured File Systems

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Motivating Observations

• Creation/modification/deletion of small files form the
majority of a typical workload (eg doing make)

• Workload poorly supported by traditional i-node-based file
system (e.g. BSD FFS, ext2fs)

• Example: create 1KiB file results in:
• 2 writes to the file i-node
• 1 write to data block
• 1 write to directory data block
• 1 write to directory i-node

5 COMP3891/9283 2025T2 W05: Log-Structured File Systems

Super
Block

Group
Descrip-

tors

Data
Block

Bitmap

i-node
Bitmap

Inode
Table Data blocks

5 writes scattered
within group!

Syncronous writes
for consistency!

Metadata writes
dominate cost!

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Motivating Observations

• Consistency checking required for ungraceful shutdown
due to potential for sequence of updates to have only
partially completed.

• File system consistency checkers are time consuming for
large disks.

• Unsatisfactory boot times where consistency checking is
required.

6 COMP3891/9283 2025T2 W05: Log-Structured File Systems

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Idea: Buffer Updates, Write Sequentially

7 COMP3891/9283 2025T2 W05: Log-Structured File Systems

Data i-node Dir Meta-
Data

Disk

Writes purely
sequential!

Disk

Write
data Write

inode
Write dir

entry

Write dir
inode

Log of writes

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

How to locate i-nodes scattered on disk?

• Keep a map of i-node locations
• i-node map is also “logged”
• Assumption is i-node map is heavily cached and rarely results in extra

disk accesses

• How find i-node map?
• Alternate between two fixed locations pointing to the inode map

• Allows recovery if crash during updating map.

8 COMP3891/9283 2025T2 W05: Log-Structured File Systems

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Implementing Stable Storage: Challis

9 COMP3891/9283 2025T2 W05: Log-Structured File Systems

• Use two disks to implement stable storage
• Problem is when a write (update) corrupts old version, without

completing write of new version
• Solution: Write to one disk first, then to second after completion of first
• Time stamp tells which is newer

• Can do the same with disk blocks.

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

LFS versus FFS: Creating Two Small Files

10 COMP3891/9283 2025T2 W05: Log-Structured File Systems

Data i-node Dir i-node
map

Disk

Disk

dir1

file1 file2

dir1

LFS

FFS

file2file1

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Issue: Disks are Finite in Size
Need file system “cleaner” running in background
• Recovers blocks that are no longer in use by consulting

current inode map
• Identifies unreachable blocks

• Compacts remaining blocks on disk to form contiguous
segments for improved write performance

11 COMP3891/9283 2025T2 W05: Log-Structured File Systems

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Cleaner

Uses a combination of threaded log and copy and compact

12 COMP3891/9283 2025T2 W05: Log-Structured File Systems

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Recovery
• File system is check-pointed regularly which saves

• A pointer to the current head of the log
• The current i-node-map blocks

• On recovery, simply restart from previous checkpoint.
• Can scan forward in log and recover any updates written after

previous checkpoint
• Writes update the log (no update in place), so previous checkpoint is

always consistent

13 COMP3891/9283 2025T2 W05: Log-Structured File Systems

Checkpoint
Location

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Reliability

• Updated data is written to the log, not in place.
• Reduces chance of corrupting existing data.

• Old data in log always safe.
• Crashes only affect recent data (written since last checkpoint)

• As opposed to updating (and corrupting) the root directory.

14 COMP3891/9283 2025T2 W05: Log-Structured File Systems

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Performance: Small-File Create-Read-Delete

Comparison between LFS and SunOS FS
• Create 10,000 1-KiB files
• Read them (in order)
• Delete them

15 COMP3891/9283 2025T2 W05: Log-Structured File Systems

Order-of-magnitude
performance

improvement for
small writes

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

LFS a clear winner?

• Authors involved in BSD-LFS
• log structured file system for BSD 4.4
• enable direct comparison with BSD-FFS

• including recent clustering additions

• Include a critical examination of cleaning overhead

16 COMP3891/9283 2025T2 W05: Log-Structured File Systems

Margo Seltzer and Keith A. Smith and Hari
Balakrishnan and Jacqueline Chang and
Sara Mcmains and Venkata Padmanabhan
”File System Logging Versus Clustering: A
Performance Comparison”. USENIX. 1995.

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Clustering: Pre-allocate Sequential Blocks

COMP3891/9283 2025T2 W05: Log-Structured File Systems

Disk

Write A
Write B Write C

Write A

17

Flushing to disk
mostly sequential!

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Original Sprite-LFS Benchmarks: Small File

18 COMP3891/9283 2025T2 W05: Log-Structured File Systems

Clustering

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Large File Performance: 100 MiB file

Benchmarks:
• Create the file by sequentially writing 8 KiB units.
• Read the file sequentially in 8 KiB units.
• Write 100 KiB of data randomly in 8 KiB units.
• Read 100 KiB of data randomly in 8 KiB units.
• Re-read the file sequentially in 8 KiB units

19 COMP3891/9283 2025T2 W05: Log-Structured File Systems

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Large File Performance: 100 MiB file

20 COMP3891/9283 2025T2 W05: Log-Structured File Systems

Writes effectively
sequential

Read-ahead
hurts random
performance

Read-ahead improves
performance of

sequential reads

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Observations

• Read-ahead helps in BSD sequential case, but hurts in
random.

• Read ahead algorithm is triggered on successful read-
ahead on sequential, turned off on a miss. Worst case for
8KiB reads with 4KiB blocks.

21 COMP3891/9283 2025T2 W05: Log-Structured File Systems

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Create performance

22 COMP3891/9283 2025T2 W05: Log-Structured File Systems

Metadata-cost limited:
LFS ≫ FFS

Write-bandwidth limited:
LFS ≈ FFS

files = 32MiB/file size

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Read Performance

23 COMP3891/9283 2025T2 W05: Log-Structured File Systems

Files read in creation order

Small-file cost similar

Multiple clusters ⇒
higher seek latency

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Observations

• For files of less than 64 KiB, performance is comparable in
all the file systems.

• At 64 KiB, files are composed of multiple clusters and seek
penalties rise.

• In the range between 64 KiB and 2 MiB, LFS performance
dominates
• because FFS is seeking between cylinder groups to distribute data

evenly.

24 COMP3891/9283 2025T2 W05: Log-Structured File Systems

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Write Performance

25 COMP3891/9283 2025T2 W05: Log-Structured File Systems

Files re-written in
creation order

FFS: no synchronous writes
LFS must invalidate

dead blocks

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Delete Performance

26 COMP3891/9283 2025T2 W05: Log-Structured File Systems

All files deleted

Performance dominated by
meta-data updates

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Transaction processing performance.

27 COMP3891/9283 2025T2 W05: Log-Structured File Systems

Random access

No cleaner: LFS
writes sequential

With cleaner: similar
performance

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Not Clear Winner!

• No cleaner (LFS), fresh (unfragmented) file system:
each dominates in some regions:
• Small file creates and deletes: LFS ≫ FFS
• Large-file (>0.5 MiB) creates: LFS ≈ FFS
• Read: LFS > FFS for 64 KiB – 4 MiB
• Write: LFS > FFS for ≤ 256 KiB; FFS > LFS for ≥ 256 KiB

• Cleaning overhead significantly degrades LFS performance
• Fragmentation degrades FFS performance over time

28 COMP3891/9283 2025T2 W05: Log-Structured File Systems

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Take-aways

• When meta-data operations are the bottleneck, LFS wins.
• Cleaning overhead degrades LFS performance significantly

as utilisation rises.
• LFS ideas live on in more recent “snapshot”-base file

systems.
• E.g., ZFS and BTRFS

29 COMP3891/9283 2025T2 W05: Log-Structured File Systems

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Journaling file systems

• Hybrid of
• i-node based file system and
• Log-structured file system (journal)

• Two variations
• log only meta-data to journal (default)
• log-all to journal

• Need to write twice: copy from journal to i-node based
files)

• Example – ext3
• Main advantage is guaranteed meta-data consistency

30 COMP3891/9283 2025T2 W05: Log-Structured File Systems

