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Copyright Notice
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Learning Outcomes

• An understanding of the performance of i-node-based files 
systems when writing small files.

• An understanding of how a log structured file system can 
improve performance and increase reliability via improved 
consistency guarantees without the need for file system 
checkers.

• An understanding of “cleaning” and how it might detract 
from performance.
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Log-Structured File System: The Paper

Mendel Rosenblum and John K. Ousterhout:
“The Design and Implementation of a Log-Structured File 
System”
ACM Transactions on Computer Systems, Vol 10, No. 1, 
February 1992, Pages 26-52

Also, section 4.3.5 in textbook.
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Original Motivating Observations (1992)

Memory size is growing at a rapid rate
⇒ Growing proportion of file system reads will be satisfied by 

file system buffer cache
⇒ Writes will increasingly dominate reads
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Motivating Observations

• Creation/modification/deletion of small files form the 
majority of a typical workload (eg doing make)

• Workload poorly supported by traditional i-node-based file 
system (e.g. BSD FFS, ext2fs)

• Example: create 1KiB file results in: 
• 2 writes to the file i-node
• 1 write to data block
• 1 write to directory data block
• 1 write to directory i-node
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Motivating Observations

• Consistency checking required for ungraceful shutdown 
due to potential for sequence of updates to have only 
partially completed.

• File system consistency checkers are time consuming for 
large disks.

• Unsatisfactory boot times where consistency checking is 
required.
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Idea: Buffer Updates, Write Sequentially
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How to locate i-nodes scattered on disk?

• Keep a map of i-node locations
• i-node map is also “logged”
• Assumption is i-node map is heavily cached and rarely results in extra 

disk accesses

• How find i-node map?
• Alternate between two fixed locations pointing to the inode map

• Allows recovery if crash during updating map.
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Implementing Stable Storage: Challis
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• Use two disks to implement stable storage
• Problem is when a write (update) corrupts old version, without 

completing write of new version
• Solution: Write to one disk first, then to second after completion of first
• Time stamp tells which is newer

• Can do the same with disk blocks.
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LFS versus FFS: Creating Two Small Files
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Issue: Disks are Finite in Size
Need file system “cleaner” running in background
• Recovers blocks that are no longer in use by consulting 

current inode map
• Identifies unreachable blocks

• Compacts remaining blocks on disk to form contiguous 
segments for improved write performance
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Cleaner

Uses a combination of threaded log and copy and compact
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Recovery
• File system is check-pointed regularly which saves

• A pointer to the current head of the log
• The current i-node-map blocks

• On recovery, simply restart from previous checkpoint. 
• Can scan forward in log and recover any updates written after 

previous checkpoint
• Writes update the log (no update in place), so previous checkpoint is 

always consistent
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Reliability

• Updated data is written to the log, not in place.
• Reduces chance of corrupting existing data.

• Old data in log always safe.
• Crashes only affect recent data (written since last checkpoint)

• As opposed to updating (and corrupting) the root directory.
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Performance: Small-File Create-Read-Delete

Comparison between LFS and SunOS FS
• Create 10,000 1-KiB files
• Read them (in order) 
• Delete them
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LFS a clear winner?

• Authors involved in BSD-LFS 
• log structured file system for BSD 4.4
• enable direct comparison with BSD-FFS

• including recent clustering additions

• Include a critical examination of cleaning overhead
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Margo Seltzer and Keith A. Smith and Hari 
Balakrishnan and Jacqueline Chang and 
Sara Mcmains and Venkata Padmanabhan
”File System Logging Versus Clustering: A 
Performance Comparison”. USENIX. 1995.
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Clustering: Pre-allocate Sequential Blocks
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Original Sprite-LFS Benchmarks: Small File
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Large File Performance: 100 MiB file

Benchmarks:
• Create the file by sequentially writing 8 KiB units.
• Read the file sequentially in 8 KiB units.
• Write 100 KiB of data randomly in 8 KiB units.
• Read 100 KiB of data randomly in 8 KiB units.
• Re-read the file sequentially in 8 KiB units
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Large File Performance: 100 MiB file
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Observations

• Read-ahead helps in BSD sequential case, but hurts in 
random. 

• Read ahead algorithm is triggered on successful read-
ahead on sequential, turned off on a miss. Worst case for 
8KiB reads with 4KiB blocks.
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Create performance
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Metadata-cost limited:
LFS ≫ FFS

Write-bandwidth limited:
LFS ≈ FFS

# files = 32MiB/file size
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Read Performance
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Observations

• For files of less than 64 KiB, performance is comparable in 
all the file systems.

• At 64 KiB, files are composed of multiple clusters and seek 
penalties rise.

• In the range between 64 KiB and 2 MiB, LFS performance 
dominates
• because FFS is seeking between cylinder groups to distribute data 

evenly.
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Write Performance
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Delete Performance
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Transaction processing performance.
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Not Clear Winner!

• No cleaner (LFS), fresh (unfragmented) file system:
each dominates in some regions:
• Small file creates and deletes: LFS ≫ FFS
• Large-file (>0.5 MiB) creates: LFS ≈ FFS
• Read: LFS > FFS for 64 KiB – 4 MiB
• Write: LFS > FFS for ≤ 256 KiB; FFS > LFS for ≥ 256 KiB

• Cleaning overhead significantly degrades LFS performance
• Fragmentation degrades FFS performance over time
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Take-aways

• When meta-data operations are the bottleneck, LFS wins.
• Cleaning overhead degrades LFS performance significantly 

as utilisation rises.
• LFS ideas live on in more recent “snapshot”-base file 

systems.
• E.g., ZFS and BTRFS
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Journaling file systems

• Hybrid of 
• i-node based file system and
• Log-structured file system (journal)

• Two variations
• log only meta-data to journal (default)
• log-all to journal

• Need to write twice: copy from journal to i-node based 
files)

• Example – ext3
• Main advantage is guaranteed meta-data consistency
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