
Case study: ext3 FS



2

Some commentary on ext2

• It is a fairly complicated data structure
– Custom data formats
– Non-standard allocation approach

• It is mostly just a data structure

– Lays out logical data in a memory array

– Similarities to standard in-memory structures
● Allocation
● Depth of lookup trees



3

ext2: Prefix Trees

• Recall the lookup process for double/triple indirect blocks

• This is a prefix tree
– Index each node 

by digits of the key

• Also used in virtual 
memory

• Once used in 
telephones

– (02) 94XXXXXX



Brief Journaling Intro

2

3 1

dir entries i-nodes data blocks

• Example: deleting a file
1.Remove the directory entry

2.Mark the i-node as free

3.Mark disk blocks as free



5

Concurrency in File Systems

• No OS permits concurrent access to a file system

• Consistency issues are a bit like concurrency issues
– Two instances of OS X accessing stored data
– In this case, there is no way to go back to instance 1



Brief Journaling Intro

2

3 1

dir entries i-nodes data blocks

1.Remove the directory entry
2.Mark the i-node as free
3.Mark disk blocks as free

1. Write to journal

2. Perform updates

3. Remove journal entry



7

The ext3 file system

• Design goals

– Add journaling capability to the ext2 FS

– Backward and forward compatibility with ext2
• Existing ext2 partitions can be mounted as ext3

– Leverage the proven ext2 performance

– Reuse most of the ext2 code base

– Reuse ext2 tools, including e2fsck



8

The ext3 journal

Option1: Journal FS data 
structure updates

• Example:
– Start transaction

– Delete dir entry

– Delete i-node

– Release blocks 32, 17, 60

– End transaction

Option2: Journal disk block 
updates

• Example:
– Start transaction

– Update block #n1 (contains 
the dir entry)

– Update block #n2 (i-node 
allocation bitmap)

– Update block #n3 (data block 
allocation bitmap)

– Add transaction

Question: which approach is better?



9

The ext3 journal

Option1: Journal FS data 
structure updates

✔ Efficient use of journal space; 
hence faster journaling

✘ Individual updates are applied 
separately

✘ The journaling layer must 
understand FS semantics

Option2: Journal disk block 
updates

✗ Even a small update adds a whole 
block to the journal

✔ Multiple updates to the same 
block can be aggregated into a 
single update

✔ The journaling layer is FS-
independent (easier to implement)

Ext3 implements Option 2



10

Journaling Block Device (JBD)

• The ext3 journaling layer is called 
Journaling Block Device (JBD)

• JBD interface

– Start a new transaction

– Update a disk block as part of a 
transaction

– Complete a transaction
• Completed transactions are 

buffered in RAM

ext3fs

JBD

start, update, 
complete

Block 
device

Journal



11

Journaling Block Device (JBD)

• JBD interface (continued)

– Commit: write transaction data to the 
journal (persistent storage)

• Multiple FS transactions are 
committed in one go

– Checkpoint: flush the journal to the 
disk 

• Used when the journal is full or the 
FS is being unmounted

ext3fs

JBD

start, update, 
complete

Block 
device

Journal



12

Transaction lifecycle

in progress

completed

committed

checkpointed

Updates are written to the journal and
marked as committed. Transaction can be 
replayed after an unclean unmount

Updates are buffered in RAM

Updates are buffered in RAM; no additional 
updates are allowed in the same transaction

Updates are written to the file system; the 
transaction is removed from the journal



13

Journaling modes

• Ext3 supports two journaling modes

– Metadata+data
• Enforces atomicity of all FS operations

– Metadata journaling
• Metadata is journalled
• Data blocks are written directly to the disk
• Improves performance
• Enforces file system integrity
• Does not enforce atomicity of write's

– New file content can be stale blocks



14

JBD
• JBD can keep the journal on a block device or in a file

– Enables compatibility with ext2 (the journal is just a 
normal file)

• JBD is independent of ext3-specific data structures

– Separation of concerns
• The FS maintains on-disk data and metadata
• JBD takes care of journaling

– Code reuse
• JBD can be used by any other FS that requires 

journaling



15

File Systems

• We’re done with the file-system content of the course

• The user-facing file API

• The system layers:
– File tables
– VFS
– File Systems
– Buffer Cache

• Locality and performance

• Consistency issues and solutions


	Case study: ext3 FS
	Slide 2
	Slide 3
	Brief Journaling Intro
	Slide 5
	Brief Journaling Intro (2)
	The ext3 file system
	The ext3 journal
	The ext3 journal (2)
	Journaling Block Device (JBD)
	Journaling Block Device (JBD) (2)
	Transaction lifecycle
	Journaling modes
	JBD
	Slide 15

