Australia’s

School of Computer Science & Engineering
sty COMP3891/9283 Extended Operating Systems

2025 T2 Week 04
Scheduler Activations

Gernot Heiser

R
© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

YYYYYY

1

Copyright Notice

These slides are distributed under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License

* You are free:
* to share—to copy, distribute and transmit the work
* to remix—to adapt the work

e under the following conditions:

e Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Kevin Elphinstone and Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/4.0/legalcode

p-— 18
COMP3891/9283 2025T2 W04: Scheduler Activations © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW
YYYYYY

Learning Outcomes

* An understanding of hybrid approaches to thread
implementation

* A high-level understanding of scheduler activations, and how
they overcome the limitations of user-level and kernel-level
threads.

p-— 18
2 COMP3891/9283 2025T2 W04: Scheduler Activations © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW
YYYYYY

Scheduler Activations: The Paper

Thomas Anderson, Brian Bershad, Edward Lazowska, and
Henry Levy. Scheduler Activations: Effective Kernel Support for
the User-Level management of Parallelism. ACM Transactions
on Computer Systems 10(1), February 1992, pp. 53-79.

YYYYYY

R
3 COMP3891/9283 2025T2 W04: Scheduler Activations © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

User-level Threads

User Mode

-

[Scheduler]

\ Process A

~

Kernel Mode

4)

[Scheduler]

\ Procegs B /

~

[Scheduler]

rocess C /

[Scheduler }

4

COMP3891/9283 2025T2 W04: Scheduler Activations

o
© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

YYYYYY

5

User-level Threads: Pros & Cons

v Fast thread management (creation, deletion,
switching, synchronisation...)

x Blocking blocks all threads in a process

e Syscalls
* Page faults

x No thread-level parallelism on multiprocessor

COMP3891/9283 2025T2 WO04: Scheduler Activations

i1
© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

YYYYYY

Kernel-Level Threads

User Mode

¢ N N 4 O

gl | 1

\ Proc \ Procesg B J

Scheduler]

Kernel Mode

o
6 COMP3891/9283 2025T2 W04: Scheduler Activations © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW
YYYYYY

Kernel-level Threads: Pros & Cons

x Slow thread management (creation, deletion,
switching, synchronisation...)
 System calls

v'Blocking blocks only the responsible thread in a
process

v'Thread-level parallelism on multiprocessor

YYYYYY

p-— 18
7 COMP3891/9283 2025T2 W04: Scheduler Activations © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

8

Performance

Thread operation latencies (us) on CVAX.

Topaz Ultrix
Operation | FastThreads Threads Processes

Null Fork 11300
Signal-Wait 37 441 1840
COMP3891/9283 2025T2 WO04: Scheduler Activations © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

Hybrid Multithreading

User Mode

(e N

[Scheduler]

\ Proces

-

[Scheduler }

\ Process B J

|

~

[Scheduler }

ss C

/

[Scheduler]

Kernel Mode

9

COMP3891/9283 2025T2 W04: Scheduler Activations

o
© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

YYYYYY

10

Hybrid Multithreading: Pros & Cons

v" Can get real thread parallelism on multiprocessor
x Blocking can still be a problem!!!

COMP3891/9283 2025T2 W04: Scheduler Activations

i1
© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

YYYYYY

Scheduler Activations

* First proposed by [Anderson et al. 91]

* |[dea: Both schedulers co-operate

* User scheduler uses system calls
* Kernel scheduler uses upcalls!

* Two important concepts
e Upcalls
* Notify user-level of kernel scheduling events

e Activations

* A new structure to support upcalls and execution

e approximately a kernel thread
* As many running activations as (allocated) processors
* Kernel controls activation creation and destruction

o]

11 COMP3891/9283 2025T2 W04: Scheduler Activations © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

SYDNEY

Syscalls vs Upcalls

User Mode User Mode
=7
fSyscaII entry point] [/

Kernel Mode Kernel Mode
System Call System Call
(Downcall) (Downcall)
12 COMP3891/9283 2025T2 W04: Scheduler Activations © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

Scheduler Activations

Instead of this: CPU time wasted

User Space == ————— ——

/O request __ interrupt

Kernel Space

Hardware 8

Do this:
User Space _ 9PU used
Kernel Space fupcall [uPcall
Hardware \8 f
13 COMP3891/9283 2025T2 WO04: Scheduler Activations © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

YYYYYY

14

Upcalls to User-level scheduler

(processor #)
e Allocated a new virtual CPU
e Can schedule a user-level thread

(activation # and its machine state)
e Deallocated a virtual CPU
e Can schedule one less thread

(activation #)
* Notifies thread has blocked
e Can schedule another user-level thread

(activation # and its machine state)
* Notifies a thread has become runnable
e Must decided to continue current or unblocked thread

COMP3891/9283 2025T2 WO04: Scheduler Activations

i1
© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

YYYYYY

Working principle

Preemption scenario on 2 processors

Process

D

15 COMP3891/9283 2025T2 W04: Scheduler Activations © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

16

Working principle

Preemption scenario on 2 processors

Process

25

COMP3891/9283 2025T2 WO04: Scheduler Activations © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

YYYYYY

Working principle

Preemption scenario on 2 processors

Process

2 5

17 COMP3891/9283 2025T2 W04: Scheduler Activations © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

Working principle

* Preemption scenario on 2 processors

Process

5

18 COMP3891/9283 2025T2 W04: Scheduler Activations © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

Working principle

Preemption scenario on 2 processors

Process

5

Preempt

19 COMP3891/9283 2025T2 WO04: Scheduler Activations

Working principle

Preemption scenario on 2 processors

Process

5

20 COMP3891/9283 2025T2 WO04: Scheduler Activations © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

Working principle

Blocking syscall scenario on 2 processors

Blocking syscall

21 COMP3891/9283 2025T2 WO04: Scheduler Activations

Working principle

Blocking syscall scenario on 2 processors

Process

22 COMP3891/9283 2025T2 WO04: Scheduler Activations © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

Working principle

Blocking syscall scenario on 2 processors

I/O completion

23 COMP3891/9283 2025T2 WO04: Scheduler Activations © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

Working principle

Blocking syscall scenario on 2 processors

Process

24 COMP3891/9283 2025T2 WO04: Scheduler Activations © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

Working principle

Blocking syscall scenario on 2 processors

Process

%

25 COMP3891/9283 2025T2 WO04: Scheduler Activations

26

Scheduler Activations

* Thread management at user-level
* Fast

* Real thread parallelism via activations
* Number of activations (virtual CPUs) can equal CPUs

* Blocking (syscall or page fault) creates new
activation
* User-level scheduler can pick new runnable thread.

 Fewer stacks in kernel
* Blocked activations + number of virtual CPUs

COMP3891/9283 2025T2 WO04: Scheduler Activations

i1
© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

YYYYYY

Performance

Thread operation latencies (us) on CVAX.

FastThread on | FastThread on Ultrix
Operation | Topaz Threads | Sched. Activ. | Topaz Threads | Processes
Null Fork 11300
Signal-Wait 37 42 441 1840

27 COMP3891/9283 2025T2 WO04: Scheduler Activations © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

Performance: Compute-Bound

-0~ Topaz threads
“# orig FastThrds
¥ new FastThrds

4-
2 2™
3
b
8 2 —
)}
i
0 T T T T !
1 2 3 4 5 o

number of processors

Fig. 2. Speedup of N-Body application versus number of processors, 100% of memory available.

28 COMP3891/9283 2025T2 W04: Scheduler Activations © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW
SYDNEY

Performance: |/O-Bound

100 7
- 1 0 Topaz threads
§ 80 ~ 5rig FastThrds
- 1 ¥ new FastThrds
) .
v 60
-~ -
4
o 40
0
et 4
5 -
0 20
v y
by
v 0+ T

|
100% 90% 80% 70% 60% 50% 40%

% avallable memory

Fig. 3. Execution time of N-Body application versus amount of available memory, 6
processors.

R

20 COMP3891/9283 2025T2 W04: Scheduler Activations © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

SYDNEY

B

30

Adoption

* Adopters
* BSD “Kernel Scheduled Entities”

* Reverted back to kernel threads
 Variants in Research OSs: K42, Barrelfish

* Digital UNIX

* Solaris

* Mach

* Windows 64-bit User Mode Scheduling

e Linux -> kernel threads

COMP3891/9283 2025T2 WO04: Scheduler Activations

i1
© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

YYYYYY

