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Learning Outcomes

• An understanding of hybrid approaches to thread 
implementation

• A high-level understanding of scheduler activations, and how 
they overcome the limitations of user-level and kernel-level 
threads.
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Scheduler Activations: The Paper

Thomas Anderson, Brian Bershad, Edward Lazowska, and 
Henry Levy. Scheduler Activations: Effective Kernel Support for 
the User-Level management of Parallelism. ACM Transactions 
on Computer Systems 10(1), February 1992, pp. 53-79.
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User-level Threads

Scheduler

Scheduler SchedulerScheduler

Kernel Mode

User Mode

Process A Process B Process C
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User-level Threads: Pros & Cons

üFast thread management (creation, deletion, 
switching, synchronisation…)

û Blocking blocks all threads in a process
• Syscalls
• Page faults

ûNo thread-level parallelism on multiprocessor
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Kernel-Level Threads

Scheduler
Kernel Mode

User Mode
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Kernel-level Threads: Pros & Cons

û Slow thread management (creation, deletion, 
switching, synchronisation…)
• System calls

üBlocking blocks only the responsible thread in a 
process

üThread-level parallelism on multiprocessor
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Performance

Operation FastThreads
Topaz

Threads
Ultrix

Processes
Null Fork 34 948 11300

Signal-Wait 37 441 1840
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User-level 
threads

Kernel-level 
threads Processes

Thread operation latencies (µs) on CVAX.
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Hybrid Multithreading
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Hybrid Multithreading: Pros & Cons

üCan get real thread parallelism on multiprocessor
û Blocking can still be a problem!!!
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Scheduler Activations

• First proposed by [Anderson et al. 91]
• Idea: Both schedulers co-operate

•  User scheduler uses system calls
•  Kernel scheduler uses upcalls!

• Two important concepts 
• Upcalls

• Notify user-level of kernel scheduling events
• Activations

• A new structure to support upcalls and execution
• approximately a kernel thread

• As many running activations as (allocated) processors
• Kernel controls activation creation and destruction
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User Mode

Kernel Mode

System Call 
(Downcall)

User Mode

Kernel Mode

System Call 
(Downcall)

Syscalls vs Upcalls
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Syscall entry point
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Scheduler Activations
Instead of this:

Kernel Space

User Space

Hardware

syscall

Do this:

Kernel Space

User Space

Hardware

I/O request interrupt

upcall upcall

CPU time wasted

CPU used
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Upcalls to User-level scheduler
• New (processor #)

• Allocated a new virtual CPU
• Can schedule a user-level thread

• Preempted (activation # and its machine state)
• Deallocated a virtual CPU
• Can schedule one less thread

• Blocked (activation #)
• Notifies thread has blocked
• Can schedule another user-level thread

• Unblocked  (activation # and its machine state)
• Notifies a thread has become runnable
• Must decided to continue current or unblocked thread
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Working principle

Preemption scenario on 2 processors

Process

User scheduler

1      2      3     4
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Working principle

Preemption scenario on 2 processors

Process

new A

A
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Working principle
Preemption scenario on 2 processors

Process

new B

A B
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Working principle
• Preemption scenario on 2 processors

Process

A B
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Working principle
Preemption scenario on 2 processors

Process

Preempt

Preempt A+B

A B
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Working principle
Preemption scenario on 2 processors

Process

B
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Working principle
Blocking syscall scenario on 2 processors

Process

Blocking syscall

A B
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Working principle
Blocking syscall scenario on 2 processors

Process

New C + blocked B

A B C
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Working principle
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Process

I/O completion

A B C

Blocking syscall scenario on 2 processors
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Working principle
Blocking syscall scenario on 2 processors

Process

Unblocked B + preempt C

A B C
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Working principle
Blocking syscall scenario on 2 processors

Process

A B C
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Scheduler Activations

• Thread management at user-level
• Fast

• Real thread parallelism via activations
• Number of activations (virtual CPUs) can equal CPUs

• Blocking (syscall or page fault) creates new 
activation
• User-level scheduler can pick new runnable thread.

• Fewer stacks in kernel
• Blocked activations + number of virtual CPUs

COMP3891/9283 2025T2 W04: Scheduler Activations26



© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Performance

Operation
FastThread on
Topaz Threads

FastThread on
Sched. Activ. Topaz Threads

Ultrix
Processes

Null Fork 34 37 948 11300

Signal-Wait 37 42 441 1840
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Thread operation latencies (µs) on CVAX.
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Performance: Compute-Bound
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Performance: I/O-Bound
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Adoption

• Adopters
• BSD “Kernel Scheduled Entities”

• Reverted back to kernel threads
• Variants in Research OSs: K42, Barrelfish
• Digital UNIX
• Solaris
• Mach
• Windows 64-bit User Mode Scheduling

• Linux -> kernel threads
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