
© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

School of Computer Science & Engineering
COMP3891/9283 Extended Operating Systems

2025 T2 Week 04

Scheduler Activations
Gernot Heiser

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Copyright Notice

These slides are distributed under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License

• You are free:
• to share—to copy, distribute and transmit the work
• to remix—to adapt the work

• under the following conditions:
• Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Kevin Elphinstone and Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/4.0/legalcode

COMP3891/9283 2025T2 W04: Scheduler Activations1

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Learning Outcomes

• An understanding of hybrid approaches to thread
implementation

• A high-level understanding of scheduler activations, and how
they overcome the limitations of user-level and kernel-level
threads.

COMP3891/9283 2025T2 W04: Scheduler Activations2

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Scheduler Activations: The Paper

Thomas Anderson, Brian Bershad, Edward Lazowska, and
Henry Levy. Scheduler Activations: Effective Kernel Support for
the User-Level management of Parallelism. ACM Transactions
on Computer Systems 10(1), February 1992, pp. 53-79.

COMP3891/9283 2025T2 W04: Scheduler Activations3

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

User-level Threads

Scheduler

Scheduler SchedulerScheduler

Kernel Mode

User Mode

Process A Process B Process C

COMP3891/9283 2025T2 W04: Scheduler Activations4

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

User-level Threads: Pros & Cons

üFast thread management (creation, deletion,
switching, synchronisation…)

û Blocking blocks all threads in a process
• Syscalls
• Page faults

ûNo thread-level parallelism on multiprocessor

COMP3891/9283 2025T2 W04: Scheduler Activations5

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Kernel-Level Threads

Scheduler
Kernel Mode

User Mode

Process A Process B Process C

COMP3891/9283 2025T2 W04: Scheduler Activations6

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Kernel-level Threads: Pros & Cons

û Slow thread management (creation, deletion,
switching, synchronisation…)
• System calls

üBlocking blocks only the responsible thread in a
process

üThread-level parallelism on multiprocessor

COMP3891/9283 2025T2 W04: Scheduler Activations7

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Performance

Operation FastThreads
Topaz

Threads
Ultrix

Processes
Null Fork 34 948 11300

Signal-Wait 37 441 1840

8 COMP3891/9283 2025T2 W04: Scheduler Activations

User-level
threads

Kernel-level
threads Processes

Thread operation latencies (µs) on CVAX.

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Hybrid Multithreading

Scheduler

Scheduler SchedulerScheduler

Kernel Mode

User Mode

Process A Process B Process C

COMP3891/9283 2025T2 W04: Scheduler Activations9

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Hybrid Multithreading: Pros & Cons

üCan get real thread parallelism on multiprocessor
û Blocking can still be a problem!!!

COMP3891/9283 2025T2 W04: Scheduler Activations10

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Scheduler Activations

• First proposed by [Anderson et al. 91]
• Idea: Both schedulers co-operate

• User scheduler uses system calls
• Kernel scheduler uses upcalls!

• Two important concepts
• Upcalls

• Notify user-level of kernel scheduling events
• Activations

• A new structure to support upcalls and execution
• approximately a kernel thread

• As many running activations as (allocated) processors
• Kernel controls activation creation and destruction

COMP3891/9283 2025T2 W04: Scheduler Activations11

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

User Mode

Kernel Mode

System Call
(Downcall)

User Mode

Kernel Mode

System Call
(Downcall)

Syscalls vs Upcalls

12 COMP3891/9283 2025T2 W04: Scheduler Activations

Syscall entry point

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Scheduler Activations
Instead of this:

Kernel Space

User Space

Hardware

syscall

Do this:

Kernel Space

User Space

Hardware

I/O request interrupt

upcall upcall

CPU time wasted

CPU used

COMP3891/9283 2025T2 W04: Scheduler Activations13

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Upcalls to User-level scheduler
• New (processor #)

• Allocated a new virtual CPU
• Can schedule a user-level thread

• Preempted (activation # and its machine state)
• Deallocated a virtual CPU
• Can schedule one less thread

• Blocked (activation #)
• Notifies thread has blocked
• Can schedule another user-level thread

• Unblocked (activation # and its machine state)
• Notifies a thread has become runnable
• Must decided to continue current or unblocked thread

COMP3891/9283 2025T2 W04: Scheduler Activations14

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Working principle

Preemption scenario on 2 processors

Process

User scheduler

1 2 3 4

COMP3891/9283 2025T2 W04: Scheduler Activations15

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Working principle

Preemption scenario on 2 processors

Process

new A

A

COMP3891/9283 2025T2 W04: Scheduler Activations16

1 2 3 4

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Working principle
Preemption scenario on 2 processors

Process

new B

A B

COMP3891/9283 2025T2 W04: Scheduler Activations17

1 2 3 4

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Working principle
• Preemption scenario on 2 processors

Process

A B

COMP3891/9283 2025T2 W04: Scheduler Activations18

1 2 3 4

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Working principle
Preemption scenario on 2 processors

Process

Preempt

Preempt A+B

A B

COMP3891/9283 2025T2 W04: Scheduler Activations19

1 2 3 4

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Working principle
Preemption scenario on 2 processors

Process

B

COMP3891/9283 2025T2 W04: Scheduler Activations20

1 2 3 4

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Working principle
Blocking syscall scenario on 2 processors

Process

Blocking syscall

A B

COMP3891/9283 2025T2 W04: Scheduler Activations21

1 2 3 4

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Working principle
Blocking syscall scenario on 2 processors

Process

New C + blocked B

A B C

COMP3891/9283 2025T2 W04: Scheduler Activations22

1 2 3 4

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Working principle

COMP3891/9283 2025T2 W04: Scheduler Activations23

Process

I/O completion

A B C

Blocking syscall scenario on 2 processors

1 2 3 4

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Working principle
Blocking syscall scenario on 2 processors

Process

Unblocked B + preempt C

A B C

COMP3891/9283 2025T2 W04: Scheduler Activations24

1 2 3 4

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Working principle
Blocking syscall scenario on 2 processors

Process

A B C

COMP3891/9283 2025T2 W04: Scheduler Activations25

1 2 3 4

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Scheduler Activations

• Thread management at user-level
• Fast

• Real thread parallelism via activations
• Number of activations (virtual CPUs) can equal CPUs

• Blocking (syscall or page fault) creates new
activation
• User-level scheduler can pick new runnable thread.

• Fewer stacks in kernel
• Blocked activations + number of virtual CPUs

COMP3891/9283 2025T2 W04: Scheduler Activations26

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Performance

Operation
FastThread on
Topaz Threads

FastThread on
Sched. Activ. Topaz Threads

Ultrix
Processes

Null Fork 34 37 948 11300

Signal-Wait 37 42 441 1840

27 COMP3891/9283 2025T2 W04: Scheduler Activations

Thread operation latencies (µs) on CVAX.

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Performance: Compute-Bound

COMP3891/9283 2025T2 W04: Scheduler Activations28

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Performance: I/O-Bound

COMP3891/9283 2025T2 W04: Scheduler Activations29

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Adoption

• Adopters
• BSD “Kernel Scheduled Entities”

• Reverted back to kernel threads
• Variants in Research OSs: K42, Barrelfish
• Digital UNIX
• Solaris
• Mach
• Windows 64-bit User Mode Scheduling

• Linux -> kernel threads

COMP3891/9283 2025T2 W04: Scheduler Activations30

