
Processes and Threads
Implementation
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Learning Outcomes

• An understanding of the typical implementation 
strategies of processes and threads

• Including an appreciation of the trade-offs between the 
implementation approaches

• Kernel-threads versus user-level threads

• A detailed understanding of “context switching”
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Multiprogramming Implementation

Skeleton of what lowest level of OS does when an 
interrupt occurs – a context switch
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Context Switch Terminology

• A context switch can refer to
• A switch between threads

• Involving saving and restoring of state associated with a thread
• A switch between processes

• Involving the above, plus extra state associated with a process.
• E.g. memory maps
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Context Switch Occurrence

• A switch between process/threads can happen any 
time the OS is invoked

• On a system call
• Mandatory if system call blocks or on exit();

• On an exception
• Mandatory if offender is killed

• On an interrupt
• Triggering a dispatch is the main purpose of the timer interrupt

A thread switch can happen between any two 
instructions

Note instructions do not equal program statements
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Context Switch

• Context switch must be transparent for 
processes/threads

• When dispatched again, process/thread should not notice 
that something else was running in the meantime (except 
for elapsed time)

OS must save all state that affects the thread
• This state is called the process/thread context
• Switching between process/threads consequently 

results in a context switch.
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Simplified 
Explicit
Thread 
Switch
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thread_switch(a,b)

{

thread_switch(a,b)

{

thread_switch(b,a)

{

}

}

}

Thread a Thread b



Assume Kernel-Level Threads

Scheduler
Kernel Mode

User Mode

Process A Process B Process C

Lets focus on user->kernel – switch – kernel -> user



Example Context Switch

• Running in user mode, SP points to user-level stack (not shown 
on slide)
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SP, PCRepresentation of 
Kernel Stack 

(Memory)

Process memory 
(user-mode)



Example Context Switch

• Take an exception, syscall, or interrupt, and we switch to the 
kernel stack
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SP, PC



Example Context Switch

• We push a trapframe on the stack
• Also called exception frame, user-level context….
• Includes the user-level PC and SP
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SP

trapframe



Example Context Switch

• Call ‘C’ code to process syscall, exception, or interrupt
• Results in a ‘C’ activation stack building up 
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SP

trapframe‘C’ activation stack



Example Context Switch

• The kernel decides to perform a context switch
• It chooses a target thread (or process)
• It pushes remaining kernel context onto the stack
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SP

trapframe‘C’ activation stackKernel State



Example Context Switch

• Any other existing thread must
• be in kernel mode (on a uni processor),
• and have a similar stack layout to the stack we are currently 

using
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SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

Kernel stacks of other 
threads/processes



Example Context Switch

• We save the current SP in the PCB (or TCB), and load 
the SP of the target thread.

• Thus we have switched contexts
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SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State



Example Context Switch

• Load the target thread’s previous context, and return to C
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SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stack

trapframe‘C’ activation stackKernel State



Example Context Switch

• The C continues and (in this example) returns to user mode.
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SP

trapframe‘C’ activation stackKernel State

trapframe

trapframe‘C’ activation stackKernel State



Example Context Switch

• The user-level context is restored
• The registers load with that processes previous content 
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SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State



Example Context Switch

• The user-level SP and PC is restored
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PC,SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State



The Interesting Part of a Thread Switch

• What does the “push kernel state” part do???
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SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State



Simplified OS/161 thread_switch

static

void

thread_switch(threadstate_t newstate, struct wchan *wc)

{

struct thread *cur, *next;

cur = curthread;

do {

next = threadlist_remhead(&curcpu->c_runqueue);

if (next == NULL) {

cpu_idle();

}

} while (next == NULL);

/* do the switch (in assembler in switch.S) */

switchframe_switch(&cur->t_context, &next->t_context);
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Lots of code 
removed – only 
basics of pick 

next thread and 
switch to it 

remain



OS/161 switchframe_switch

switchframe_switch:

   /*

    * a0 contains the address of the switchframe pointer in the old thread.

    * a1 contains the address of the switchframe pointer in the new thread.

    *

    * The switchframe pointer is really the stack pointer. The other

    * registers get saved on the stack, namely:

    *

    *      s0-s6, s8

    *      gp, ra

    *

    * The order must match <mips/switchframe.h>.

    *

    * Note that while we'd ordinarily need to save s7 too, because we

    * use it to hold curthread saving it would interfere with the way

    * curthread is managed by thread.c. So we'll just let thread.c

    * manage it.

    */
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OS/161 switchframe_switch

   /* Allocate stack space for saving 10 registers. 10*4 = 40 */

   addi sp, sp, -40

   /* Save the registers */

   sw   ra, 36(sp)

   sw   gp, 32(sp)

   sw   s8, 28(sp)

   sw   s6, 24(sp)

   sw   s5, 20(sp)

   sw   s4, 16(sp)

   sw   s3, 12(sp)

   sw   s2, 8(sp)

   sw   s1, 4(sp)

   sw   s0, 0(sp)

   /* Store the old stack pointer in the old thread */

   sw   sp, 0(a0)
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Save the registers 
that the ‘C’ 

procedure calling 
convention 

expects 
preserved



OS/161 switchframe_switch

   /* Get the new stack pointer from the new thread */

   lw   sp, 0(a1)

   nop           /* delay slot for load */

   /* Now, restore the registers */

   lw   s0, 0(sp)

   lw   s1, 4(sp)

   lw   s2, 8(sp)

   lw   s3, 12(sp)

   lw   s4, 16(sp)

   lw   s5, 20(sp)

   lw   s6, 24(sp)

   lw   s8, 28(sp)

   lw   gp, 32(sp)

   lw   ra, 36(sp)

   nop                  /* delay slot for load */
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OS/161 switchframe_switch

   /* and return. */

   j ra

   addi sp, sp, 40      /* in delay slot */
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Simplified 
Explicit
Thread 
Switch
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thread_switch(a,b)

{

thread_switch(a,b)

{

thread_switch(b,a)

{

}

}

}

Thread a Thread b
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