
Processes and Threads
Implementation

1

Learning Outcomes

• An understanding of the typical implementation
strategies of processes and threads

• Including an appreciation of the trade-offs between the
implementation approaches

• Kernel-threads versus user-level threads

• A detailed understanding of “context switching”

2

Multiprogramming Implementation

Skeleton of what lowest level of OS does when an
interrupt occurs – a context switch

3

Context Switch Terminology

• A context switch can refer to
• A switch between threads

• Involving saving and restoring of state associated with a thread
• A switch between processes

• Involving the above, plus extra state associated with a process.
• E.g. memory maps

4

Context Switch Occurrence

• A switch between process/threads can happen any
time the OS is invoked

• On a system call
• Mandatory if system call blocks or on exit();

• On an exception
• Mandatory if offender is killed

• On an interrupt
• Triggering a dispatch is the main purpose of the timer interrupt

A thread switch can happen between any two
instructions

Note instructions do not equal program statements

5

Context Switch

• Context switch must be transparent for
processes/threads

• When dispatched again, process/thread should not notice
that something else was running in the meantime (except
for elapsed time)

OS must save all state that affects the thread
• This state is called the process/thread context
• Switching between process/threads consequently

results in a context switch.

6

Simplified
Explicit
Thread
Switch

7

thread_switch(a,b)

{

thread_switch(a,b)

{

thread_switch(b,a)

{

}

}

}

Thread a Thread b

Assume Kernel-Level Threads

Scheduler
Kernel Mode

User Mode

Process A Process B Process C

Lets focus on user->kernel – switch – kernel -> user

Example Context Switch

• Running in user mode, SP points to user-level stack (not shown
on slide)

9

SP, PCRepresentation of
Kernel Stack

(Memory)

Process memory
(user-mode)

Example Context Switch

• Take an exception, syscall, or interrupt, and we switch to the
kernel stack

10

SP, PC

Example Context Switch

• We push a trapframe on the stack
• Also called exception frame, user-level context….
• Includes the user-level PC and SP

11

SP

trapframe

Example Context Switch

• Call ‘C’ code to process syscall, exception, or interrupt
• Results in a ‘C’ activation stack building up

12

SP

trapframe‘C’ activation stack

Example Context Switch

• The kernel decides to perform a context switch
• It chooses a target thread (or process)
• It pushes remaining kernel context onto the stack

13

SP

trapframe‘C’ activation stackKernel State

Example Context Switch

• Any other existing thread must
• be in kernel mode (on a uni processor),
• and have a similar stack layout to the stack we are currently

using

14

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

Kernel stacks of other
threads/processes

Example Context Switch

• We save the current SP in the PCB (or TCB), and load
the SP of the target thread.

• Thus we have switched contexts

15

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

Example Context Switch

• Load the target thread’s previous context, and return to C

16

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stack

trapframe‘C’ activation stackKernel State

Example Context Switch

• The C continues and (in this example) returns to user mode.

17

SP

trapframe‘C’ activation stackKernel State

trapframe

trapframe‘C’ activation stackKernel State

Example Context Switch

• The user-level context is restored
• The registers load with that processes previous content

18

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

Example Context Switch

• The user-level SP and PC is restored

19

PC,SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

The Interesting Part of a Thread Switch

• What does the “push kernel state” part do???

20

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

Simplified OS/161 thread_switch

static

void

thread_switch(threadstate_t newstate, struct wchan *wc)

{

struct thread *cur, *next;

cur = curthread;

do {

next = threadlist_remhead(&curcpu->c_runqueue);

if (next == NULL) {

cpu_idle();

}

} while (next == NULL);

/* do the switch (in assembler in switch.S) */

switchframe_switch(&cur->t_context, &next->t_context);

} 21

Lots of code
removed – only
basics of pick

next thread and
switch to it

remain

OS/161 switchframe_switch

switchframe_switch:

 /*

 * a0 contains the address of the switchframe pointer in the old thread.

 * a1 contains the address of the switchframe pointer in the new thread.

 *

 * The switchframe pointer is really the stack pointer. The other

 * registers get saved on the stack, namely:

 *

 * s0-s6, s8

 * gp, ra

 *

 * The order must match <mips/switchframe.h>.

 *

 * Note that while we'd ordinarily need to save s7 too, because we

 * use it to hold curthread saving it would interfere with the way

 * curthread is managed by thread.c. So we'll just let thread.c

 * manage it.

 */

22

OS/161 switchframe_switch

 /* Allocate stack space for saving 10 registers. 10*4 = 40 */

 addi sp, sp, -40

 /* Save the registers */

 sw ra, 36(sp)

 sw gp, 32(sp)

 sw s8, 28(sp)

 sw s6, 24(sp)

 sw s5, 20(sp)

 sw s4, 16(sp)

 sw s3, 12(sp)

 sw s2, 8(sp)

 sw s1, 4(sp)

 sw s0, 0(sp)

 /* Store the old stack pointer in the old thread */

 sw sp, 0(a0)

23

Save the registers
that the ‘C’

procedure calling
convention

expects
preserved

OS/161 switchframe_switch

 /* Get the new stack pointer from the new thread */

 lw sp, 0(a1)

 nop /* delay slot for load */

 /* Now, restore the registers */

 lw s0, 0(sp)

 lw s1, 4(sp)

 lw s2, 8(sp)

 lw s3, 12(sp)

 lw s4, 16(sp)

 lw s5, 20(sp)

 lw s6, 24(sp)

 lw s8, 28(sp)

 lw gp, 32(sp)

 lw ra, 36(sp)

 nop /* delay slot for load */

24

OS/161 switchframe_switch

 /* and return. */

 j ra

 addi sp, sp, 40 /* in delay slot */

25

Simplified
Explicit
Thread
Switch

26

thread_switch(a,b)

{

thread_switch(a,b)

{

thread_switch(b,a)

{

}

}

}

Thread a Thread b

	Processes and Threads Implementation
	Learning Outcomes
	Multiprogramming Implementation
	Context Switch Terminology
	Context Switch Occurrence
	Context Switch
	Simplified Explicit Thread Switch
	Assume Kernel-Level Threads
	Example Context Switch
	Example Context Switch (2)
	Example Context Switch (3)
	Example Context Switch (4)
	Example Context Switch (5)
	Example Context Switch (6)
	Example Context Switch (7)
	Example Context Switch (8)
	Example Context Switch (9)
	Example Context Switch (10)
	Example Context Switch (11)
	The Interesting Part of a Thread Switch
	Simplified OS/161 thread_switch
	OS/161 switchframe_switch
	OS/161 switchframe_switch (2)
	OS/161 switchframe_switch (3)
	OS/161 switchframe_switch (4)
	Simplified Explicit Thread Switch (2)

