

Rethinking the Library OS from the Top Down

Donald E. Porter
†
, Silas Boyd-Wickizer

‡
, Jon Howell, Reuben Olinsky, Galen C. Hunt

“There is nothing new under the sun, but there are a
lot of old things we don’t know.”

– Ambrose Bierce, The Devil’s Dictionary

Abstract

This paper revisits an old approach to operating system construc-
tion, the library OS, in a new context. The idea of the library OS
is that the personality of the OS on which an application depends
runs in the address space of the application. A small, fixed set of
abstractions connects the library OS to the host OS kernel, offer-
ing the promise of better system security and more rapid inde-
pendent evolution of OS components.

We describe a working prototype of a Windows 7 library OS that
runs the latest releases of major applications such as Microsoft
Excel, PowerPoint, and Internet Explorer. We demonstrate that
desktop sharing across independent, securely isolated, library OS
instances can be achieved through the pragmatic reuse of net-
working protocols. Each instance has significantly lower overhead
than a full VM bundled with an application: a typical application
adds just 16MB of working set and 64MB of disk footprint. We
contribute a new ABI below the library OS that enables applica-
tion mobility. We also show that our library OS can address many
of the current uses of hardware virtual machines at a fraction of
the overheads. This paper describes the first working prototype of
a full commercial OS redesigned as a library OS capable of run-
ning significant applications. Our experience shows that the long-
promised benefits of the library OS approach—better protection
of system integrity and rapid system evolution—are readily ob-
tainable.

Categories and Subject Descriptors D.4 [Operating Systems]:
Organization and Design.

General Terms Experimentation, Performance.

1. Introduction

The library OS approach to OS construction was championed by
several operating system designs in the 1990s [3, 10, 13, 21]. The
idea of the library OS is that the entire personality of the OS on
which an application depends runs in its address space as a li-
brary. An OS personality is the implementation of the OS’s appli-
cation programming interfaces (APIs) and application visible
semantics; the OS services upon which applications are built.
Early proponents of the library OS approach argued primarily that

it could enable better performance through per-application cus-
tomization. For example, a disk-I/O bound application with idio-
syncratic file access patterns can realize better performance by
using a custom file system storage stack rather than using the
default sequential prefetching heuristics.

Like many of its contemporaries, the library OS approach is large-
ly forgotten, a casualty of the rise of the modern virtual machine
monitor (VMM) [8]. While most new OS designs of the time—
including library OS designs—ran only a handful of custom ap-
plications on small research prototypes, VMM systems proliferat-
ed because they could run major applications by reusing existing
feature-rich operating systems. The performance benefits offered
by library OS designs did not overcome the need for legacy com-
patibility. On the other hand, the need for security and independ-
ent system isolation has increased since the 1990s due to the rise
of the Internet.

We revisit the library OS approach to OS construction, prioritiz-
ing application compatibility, security isolation, and independent
system evolution benefits. Our goal is to realize the benefits of a
VMM, but with order-of-magnitude lower overheads. This paper
shows for the first time that it is possible to build a library OS
running major applications from a feature-rich, commercial OS.
We describe a Windows 7 library OS, called Drawbridge, running
the latest commercial releases of a large set of applications, in-
cluding Microsoft Excel, PowerPoint, Internet Explorer, and IIS.
Windows applications running on Drawbridge have access to core
Windows features and enhanced APIs including the .NET com-
mon language runtime (CLR) and DirectX.

This paper describes a new top-down approach to building library
OSes—an approach that prioritizes application compatibility and
high-level OS code reuse and avoids low-level management of the
underlying hardware by the library OS. Drawbridge demonstrates
that a small set of OS abstractions—threads, virtual memory, and
I/O streams—are sufficient to host a Windows 7 library OS and a
rich set of applications. This small set of abstractions helps sim-
plify protection of system integrity, mobility of applications, and
independent evolution of the library OS and the underlying kernel
components. Despite being strongly isolated, Drawbridge applica-
tions can still share resources, including the screen, keyboard,
mouse, and user clipboard, across independent library OS instanc-
es through the pragmatic reuse of networking protocols.

As a structuring principle, we identify three categories of services
in OS implementations: hardware services, user services, and
application services. Hardware services include the OS kernel and
device drivers, which abstract and multiplex hardware, along with
file systems and TCP/IP networking stack (see Figure 1). User
services in the OS include the graphical user interface (GUI) shell
and desktop, clipboard, search indexers, etc. Application services
in the OS include the API implementation; to an application, these

Microsoft Research

One Microsoft Way

Redmond, WA 98052

† Department of Computer Science

Stony Brook University

Stony Brook, NY 11794

‡ MIT CSAIL

32 Vassar Street

Cambridge, MA 02139

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

ASPLOS’11 March 5–11, 2011, Newport Beach, California, USA.

Copyright © 2011 ACM 978-1-4503-0266-1/11/03…$10.00.

291

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1950365.1950399&domain=pdf&date_stamp=2011-03-05

comprise the OS personality. Applications services include
frameworks, rendering engines, common UI controls, language
runtimes, etc. The application communicates with application
services, which in turn communicate with hardware and user ser-
vices.

We use these service categories to drive the refactoring of Win-
dows into the Drawbridge library OS. Drawbridge packages ap-
plication services into the library OS and leaves user and hard-
ware services in the host OS (see Figure 2). The library OS com-
municates with hardware services in the host OS through a narrow
application binary interface (ABI), which is implemented by a
platform adaptation layer and a security monitor. The library OS
communicates with user services in the host OS using the remote
desktop protocol (RDP) [28] tunneled through the ABI. Each
application runs in its own address space with its own copy of the
library OS. The security monitor virtualizes host OS resources
through its ABI with the library OS and maintains a consistent set
of abstractions across varying host OS implementations. For ex-
ample, the file system seen by an application is virtualized by the
security monitor from file systems in the host OS.

Previous library OS designs aimed to provide application-
customized performance enhancement, and thus exposed low-
level hardware abstractions to applications. Cache Kernel,
Exokernel, and Nemesis innovated by providing applications with
fine-grained, customized control of hardware resources, such as
page tables, network packets, and disk blocks [10, 13, 21]. In
contrast, Drawbridge’s differing goals (security, host independ-
ence, and migration) free it to offer higher-level abstractions.
These higher-level abstractions make it easier to share underlying
host OS resources such as buffer caches, file systems, and net-
working stacks with the library OS. By making low-level resource
management an independent concern from OS personality, each
can evolve more aggressively.

One can view a modern VMM as a mechanism for automatically
treating a conventional OS as a library OS, but the facility incurs
significant overheads. Each isolated application runs in a different
dedicated VM, each of which is managed by a separate OS in-
stance. The OS state in each VM leads to significant storage over-
heads. For example, a Windows 7 guest OS in a Hyper-V VM
consumes 512MB of RAM and 4.8GB of disk. In contrast, Draw-
bridge refactors the guest OS to extract just those APIs needed by
the application; it adds less than 16MB of working set and 64MB
of disk.

The Drawbridge approach could significantly impact desktop
computing by enabling fine-grain packaging of self-contained
application. The VMM approach allowed the construction of self-
contained application packages comprised of an application and
OS, with minimal dependencies on the underlying VMM or hard-
ware. VMM-based application packaging enabled a huge shift in
server computing through server consolidation and cloud compu-
ting [1, 25], all despite huge overheads. We believe that the finer-
grained, higher-performance application and OS packages that are
now possible with library OSes could precipitate similar shifts in
desktop and mobile computing; for example, snapshots of running
Drawbridge applications could easily move from device to device
and to the cloud because they are so small—a compressed process
snapshot of Excel is under 4MB for Drawbridge, versus nearly
150MB for a similar VM snapshot.

In summary, this paper describes the first refactoring of a widely
used, monolithic OS into a functionally-rich library OS. It con-
tributes a set of heuristics for refactoring a monolithic kernel into
a library as well as a new ABI for separating library OS from host

OS. The benefits of this design include: 1) strong encapsulation of
the host OS from the library OS, enabling rapid and independent
evolution of each; 2) migration of running state of individual ap-
plications across computers; and 3) better protection of system
and application integrity (i.e., strongly isolated processes).

The remainder of the paper is structured as follows. Section 2
provides helpful background on the Windows 7 OS architecture as
it exists prior to Drawbridge. Section 3 describes our approach for
separating the Win32 personality from the rest of Windows to
create a library OS. Section 4 describes the security monitor and
the ABI it presents to the library OS. Section 5 describes our im-
plementation of the Windows 7 library OS. Section 6 evaluates
the scalability, complexity, update surface, and overheads of our
approach through examination of the current implementation.

sh
el

l
a

p
p

lic
a

ti
o

n
 p

ro
ce

ss

rp
c
ss

application libraries

w
in
in
it

sm
ss

c
sr
ss

application .exe

API DLLs
user32, gdi32,

kernel32, ole32, …

ntdll o
th

er
 a

p
p

lic
a

ti
o

n
s

ke
rn

el device drivers
win32k

file systems

ntoskrnl

net. stacks

explorer dwm

Service category: = hardware= application= user

Figure 1. Windows 7 OS Architecture.

a
p

p
lic

a
ti

o
n

 p
ro

ce
ss

lib
ra

ry
 O

S

sh
el

l

application libraries

application .exe

API DLLs
user32, gdi32,

kernel32, ole32, …

ntdll

h
o

st
 O

S

device drivers

win32k

file systems

ntoskrnl

net. stacks

explorer dwm

RDP Client

nt emulation

security monitor

ABI

RDP

platform adaption layer

Figure 2. Drawbridge Architecture.

292

Section 7 places Drawbridge into context with related work. In
Section 8 we discuss possible impacts of the library OS approach
on end-user computing. Finally, we summarize our contributions
in Section 9.

2. Windows 7 Architecture

Refactoring a general-purpose, commercial operating system
away from its long-evolved roots into a library OS is a significant
challenge. This section outlines the key features of the Windows 7
architecture, drawing analogies between elements in Windows
and corresponding elements common to such Unix systems as
Linux. We draw these analogies to help the reader appreciate that
similar challenges exist in other large-scale OSes.

Windows is architecturally divided into dynamic link libraries
(DLLs) that load into an application’s address space, services that
run as daemon processes, the NT kernel, and drivers, which are
dynamically loaded kernel-mode components (see Figure 1).
DLLs are similar to shared object (.so) files in Unix systems. The
NT kernel implements the usual core of a monolithic operating
system: resource management, scheduling, I/O services, a hierar-
chical object namespace, and the registry, a key-value store for
configuration data. Replaceable kernel-mode components, such as
the networking stack and file systems, are loaded as drivers.

In practice, all Windows applications are programmed to the
Win32 API. While there is no official count, Win32 is known to
include over 100,000 API functions. The API is implemented as a
large collection of in-process DLLs. These DLLs access the NT
kernel indirectly through a runtime DLL, ntdll, which the kernel
inserts into every process during creation. ntdll implements the
dynamic loader for DLLs along with functionality roughly equiva-
lent to the Unix libc, including stubs for the 401 functions in the
NT system-call table. Commonly used Win32 API DLLs include:
kernel32, which provides access to kernel operations for process
control, threading, virtual memory, registry, and block and charac-
ter device I/O functionality; user32 and gdi32, which provide the
basics of windowing, drawing, and GUI; ws2_32, which provides
a sockets interface to the networking stack; and ole32, which pro-
vides access to the Component Object Model (COM) and Object
Linking and Embedding (OLE) APIs for constructing multi-
component application experiences (e.g., a PowerPoint presenta-
tion with an embedded Excel chart). These DLLs correspond to
libraries such as libX11 and the libraries that make up the GNOME
or KDE frameworks on Unix systems.

The core of Win32 is implemented in the Windows subsystem.
Divided into a kernel-mode component (win32k) and a user-mode
daemon (csrss), the Windows subsystem provides roughly the
analogue of an X server, a print server, and audio support. Most of
the implementation resides in win32k, which implements window-
ing event message queues, overlapping windows, rasterization,
font management and rendering, the mouse and keyboard input
event queues, and a shared clipboard. csrss coordinates system
initialization, shutdown, and application error reporting. Prior to
Windows NT 4.0 (1996), functionality now in win32k ran in the
csrss service daemon, but was moved to kernel mode to improve
performance and to simplify the implementation of accelerated
graphics drivers. User-mode API DLLs access win32k indirectly
through stubs in user32 and gdi32; the stubs trap into a secondary
system-call table of 827 functions from win32k.

In addition to the Windows subsystem, the implementation of the
Win32 API depends on multiple service daemons. smss performs
a role similar to Unix init, handling startup and shutdown. wininit
creates read-only shared data structures, which are subsequently

mapped into most processes and used by win32k to cache such
common objects as default fonts, internationalization tables, and
cursors. wininit also launches the components of the user’s desk-
top upon login, the analogue of an X session manager. rpcss im-
plements shared services for high-level inter-process communica-
tion, including COM and OLE, similar to D-Bus [24] in Linux.
explorer, the Windows GUI shell, launches programs and pro-
vides shared services for drag-and-drop, ―open‖ and ―save‖ dia-
logs, and file preview. dwm implements the Windows 7 composit-
ing window manager.

3. Approach

To maximize application compatibility while minimizing depend-
encies outside the library OS, we refactored Windows 7 by apply-
ing four high-level heuristics: inclusion of API DLLs based on
their usage in a representative set of applications, reuse of virtual-
ized host OS resources, resolution of dependencies through inclu-
sion or alternative implementations, and device driver emulation.
One insight we applied repeatedly in our work is the recognition
that much of the code in an OS kernel and major OS subsystems
is not relevant in the context of a library OS. For example, much
OS code ensures security and consistency when sharing re-
sources—either physical or virtual—between multiple applica-
tions and multiple users. In a library OS, these concerns are great-
ly diminished as library OS state is not shared by multiple appli-
cations or users.

Our first heuristic was to identify the API DLLs required by a
representative set of applications. Those DLLs account for over
14,000 functions of the Win32 API. We used static analysis on the
application binaries to roughly approximate the required set of
API DLLs, and then refined the set with dynamic instrumentation
by monitoring DLL load operations issued during a test runs. In
our experience, static analysis alone is either insufficient—DLLs
can be loaded without static stubs through calls to LoadLibrary
(equivalent to dlopen on Unix) with a dynamically generated
string—or overly conservative—including delay-bound DLLs
loaded only for specific OS versions.

Second, for kernel-mode dependencies, we implemented an NT
kernel emulation layer at the bottom of the library OS. This emu-
lation layer is quite thin, as many complex parts of a kernel—like
threading, virtual memory, file system, and networking—are pro-
vided by the host OS through the security monitor. The security
monitor virtualizes host resources according to a well-defined
high-level ABI independent of host OS version. Other parts of the
library OS are simpler because multi-user multiplexing is no
longer required; for this reason the Drawbridge registry imple-
mentation is 1/50th the lines of code of the Windows 7 equivalent.
While our emulation provides most of the interfaces of the NT
kernel, many calls return failure, including all requests to access
or modify other processes, and almost all ioctl requests. In theory
the ―holes‖ in our emulation of the NT kernel could cause an ap-
plication to fail unexpectedly due to an unimplemented corner
case. In practice, we find that most applications either don’t use
the unimplemented interfaces, or respond gracefully when a rare-
ly-used API returns a failure result.

Third, for dependencies on service daemons and the Windows
subsystem, we either moved code into the library OS, or altered
the API DLL to remove the dependency. As a rule of thumb, we
included code where most of the service was relevant when run-
ning a single application, and replaced code where it was need-
lessly complicated by the security or consistency demands of
supporting multiple applications and/or multiple users. For exam-

293

ple, we included almost all of win32k and rpcss, as these services
provide core functionality for applications. By contrast, we wrote
custom library OS code to replace csrss, smss, and wininit, which
primarily aid cross-application sharing of state.

Fourth, for console and human interface device dependencies, we
provide emulated device drivers. We emulate the keyboard and
mouse drivers required by the Windows subsystem with stub
drivers that provide simple input queues, and the display driver
with a stub driver that draws to an in-process frame buffer. I/O
from the emulated devices is tunneled to the desktop and the user
through stateless RDP connections. Our implementation of RDP
reuses code from the Windows 7 kernel-mode RDP server but not
the RDP device drivers, which are replaced by simpler stubs.

4. Security Monitor

The library OS interacts with the host OS through the Drawbridge
ABI, which is implemented by the security monitor. The Draw-
bridge ABI is designed to provide a small set of functions with
well-defined semantics easily supported across a wide range of
host OS implementations. The ABI’s design enables the host OS
to expose virtualized resources to the library OS with minimal
duplication of effort. We describe here first the ABI and then the
implementation of the security monitor.

In providing the ABI, the security monitor enforces a set of exter-
nal policies governing the host OS resources available to the ap-
plication. Inspired by previous work in Singularity [33], we en-
code policy in manifest files associated with the application. The
manifest whitelists the host OS resources that an application may
access, identified by URI path. We also use the manifest as a con-
venient place to store per-application configuration settings.

ABI Description

The ABI includes three calls to allocate, free, and modify the
permission bits on page-based virtual memory. Permissions in-
clude read, write, execute, and guard. Memory regions can be
unallocated, reserved, or backed by committed memory:

VOID *DkVirtualMemoryAlloc(Addr, Size, AllocType, Prot);

DkVirtualMemoryFree(Addr, Size, FreeType);

DkVirtualMemoryProtect(Addr, Size, Prot);

The ABI supports multithreading through five calls to create,
sleep, yield the scheduler quantum for, resume execution of, and
terminate threads, as well as seven calls to create, signal, and
block on synchronization objects:

DKHANDLE DkThreadCreate(Addr, Param, Flags);

DkThreadDelayExecution(Duration);

DkThreadYieldExecution();

DkThreadResume(ThreadHandle);

DkThreadExit();

DKHANDLE DkSemaphoreCreate(InitialCount, MaxCount);

DKHANDLE DkNotificationEventCreate(InitialState);

DKHANDLE DkSynchronizationEventCreate(InitialState);

DkSemaphoreRelease(SemaphoreHandle, ReleaseCount);

BOOL DkEventSet(EventHandle);

DkEventClear(EventHandle);

ULONG DkObjectsWaitAny(Count, HandleArray, Timeout);

The primary I/O mechanism in Drawbridge is an I/O stream. I/O
streams are byte streams that may be memory-mapped or sequen-
tially accessed. Streams are named by URIs. The stream ABI
includes nine calls to open, read, write, map, unmap, truncate,
flush, delete and wait for I/O streams and three calls to access
metadata about an I/O stream. The ABI purposefully does not
provide an ioctl call. Supported URI schemes include file:, pipe:,

http:, https:, tcp:, udp:, pipe.srv:, http.srv, tcp.srv:, and udp.srv:.
The latter four schemes are used to open inbound I/O streams for
server applications:

DKHANDLE DkStreamOpen(URI, AccessMode, ShareFlags,

CreateFlags, Options);

ULONG DkStreamRead(StreamHandle, Offset, Size, Buffer);

ULONG DkStreamWrite(StreamHandle, Offset, Size, Buffer);

DkStreamMap(StreamHandle, Addr, ProtFlags, Offset, Size);

DkStreamUnmap(Addr);

DkStreamSetLength(StreamHandle, Length);

DkStreamFlush(StreamHandle);

DkStreamDelete(StreamHandle);

DkStreamWaitForClient(StreamHandle);

DkStreamGetName(StreamHandle, Flags, Buffer, Size);

DkStreamAttributesQuery(URI, DK_STREAM_ATTRIBUTES *Attr);

DkStreamAttributesQueryByHandle(StreamHandle,

DK_STREAM_ATTRIBUTES *Attr);

The ABI includes one call to create a child process and one call to
terminate the running process. A child process does not inherit
any objects or memory from its parent process and the parent
process may not modify the execution of its children. A parent can
wait for a child to exit using its handle. Parent and child may
communicate through I/O streams provided by the parent to the
child at creation:

DKHANDLE DkProcessCreate(URI, Args, DKHANDLE *FirstThread);

DkProcessExit(ExitCode);

Finally, the ABI includes seven assorted calls to get wall clock
time, generate cryptographically-strong random bits, flush por-
tions of instruction caches, increment and decrement the reference
counts on objects shared between threads, and to coordinate
threads with the security monitor during process serialization:

LONG64 DkSystemTimeQuery();

DkRandomBitsRead(Buffer, Size);

DkInstructionCacheFlush(Addr, Size);

DkObjectReference(Handle);

DkObjectClose(Handle);

DkObjectsCheckpoint();

DkObjectsReload();

We believe the brevity of the Drawbridge ABI enables tractable
coding-time and run-time review of its isolation boundary. Our
largest implementation of the ABI in a security monitor is
17KLoC.

We recognize that the Drawbridge ABI could be smaller. While
size matters, we have in a few cases opted for exposing a slightly
larger set of abstractions than was strictly necessary in order to
ease porting of Windows code into the library OS. Our experience
is that a slightly larger ABI (say with a dozen more calls) makes it
easier to port existing code and makes the ported code easier to
maintain. For example, instead of exposing semaphores, notifica-
tion events, and synchronization events, we could have exposed
only a single synchronization primitive. In fact, the initial version
of the ABI had just 19 calls, with synchronization objects and I/O
streams being coalesced into a single pipe abstraction; for exam-
ple, lock release was implemented in the library OS as a one-byte
send on a pipe and acquire as a one-byte write. The ABI was
smaller, but reasoning about library OS implementation was more
torturous. The slightly larger ABI allows the security monitor to
implement virtualized resources with resources that the host OS
can more efficiently support.

Implementation

The Drawbridge ABI is implemented through two components:
the security monitor, dkmon, and the platform adaptation layer,

294

dkpal. The primary job of dkmon is to virtualize host OS resources
into the application while maintaining the security isolation
boundary between the library OS and the host OS. Although im-
plementations of dkmon and dkpal vary across different host sys-
tems, these components are responsible for maintaining strict
compatibility with the ABI specification. We currently have im-
plementations of dkmon that run Drawbridge applications as pro-
cesses on Windows 7 and Windows Server 2008 R2, on MinWin
[36] built from Windows 7, and on a pre-release of the next ver-
sion of Windows. We also have a version of dkmon that runs
Drawbridge applications in ring 0 in a raw Hyper-V VM partition,
while relying on I/O streams served from a Windows Server 2008
R2 host. Applications using the Drawbridge library OS run identi-
cally on all of these platforms.

A Drawbridge process accesses the ABI by calling dkpal. We
have three implementations of dkpal: the first, which requires no
changes to the host OS kernel, and uses four host OS calls to issue
requests over an anonymous named pipe to dkmon; the second,
which replaces the NT system-call service table on a per-process
basis using techniques developed for Xax [11]; and the third,
which makes Hyper-V hypercalls. dkmon services ABI requests
by modifying the address space and host OS handle table of the
calling process with standard Windows cross-process manipula-
tion APIs (ReadProcessMemory, VirtualAllocEx, VirtualFreeEx, and
DuplicateHandle). As an optimization, dkpal implements a few
simple ABI calls (e.g., blocking wait, thread yield) by directly
invoking compatible, host OS system calls; this is safe, as the
Drawbridge process cannot create host OS handles. dkpal current-
ly calls 15 distinct host OS system calls. Eventually, we expect to
move the data paths dkmon into the host kernel to avoid the cost
of a complete address space change to service some ABI calls,
and to harden the boundary around Drawbridge processes; this
will require an update to dkpal, but no changes in the Drawbridge
library OS.

dkmon uses host NT threads and synchronization objects—
semaphores, notification events, and synchronization events—to
implement the scheduling objects exposed through the ABI. As a
result, Drawbridge threads reside in the host kernel’s scheduling
queues and avoid unnecessary scheduling overheads.

I/O streams are used by the library OS to implement such higher-
level abstractions as files, sockets, and pipes. The security monitor
filters access to I/O streams by URI based on a manifest policy;
where access is allowed, it directs I/O to the mapped resources.
This indirection enables run-time configuration of the applica-
tion’s virtual environment, and prevents applications from inad-
vertently or maliciously accessing protected resources within the
host system’s file namespace. Unless overridden, the monitor’s
default policy only allows a Drawbridge process to access files
within the same host directory as its application image.

As an example, our library OS leverages I/O streams to emulate
NT file objects and named pipe objects, as well as a proxied inter-
face to networking sockets. In the latter case, the library OS in-
cludes a minimal version of ws2_32 that use I/O streams identified
by tcp: and udp: URIs. The security monitor backs these streams
with sockets provided by the host system’s ws2_32. The current
approach was taken as an implementation expediency; Draw-
bridge could provide better isolation by offering an IP-packet
stream interface and moving the implementation of TCP and UDP
into the library OS.

5. Windows Library OS

Refactoring Windows 7 into a library OS constituted the largest
portion of the work to realize Drawbridge. The main challenges
included: orchestrating process bootstrap with minimal changes to
existing components, emulating host kernel interfaces in user
mode on the Drawbridge ABI, porting system-wide application
services to run in-process, and enabling process serialization and
deserialization. We believe that these challenges would be typical
of the refactoring effort required to convert any complex, modern
operating system into a library OS for desktop applications, and
that our solutions would apply elsewhere. However, we also rec-
ognize that our task was made significantly easier because most
Windows applications seldom use child processes and the Win-
dows API has no fork primitive.

OS Library Bootstrap

Bootstrapping is a challenging task in any OS, balancing the de-
mands of efficiency and good engineering. For example, should
one first initialize the lock manager, which requires memory for
storage, or the memory manager, which requires locks for syn-
chronization? Some of these complexities remain for the library
OS, which aggregates per-process code and state with formerly
system-wide OS code and state.

Process Bootstrap To create a Drawbridge process, dkmon uses
the host OS’s native facilities to create a suspended process con-
taining a bootstrap loader (dkinit). Every NT process is created
with the ntdll library mapped copy-on-write, because the kernel
uses fixed offsets in the library as up-call entry points for excep-
tions. Before allowing a new process to execute, dkmon maps its
own dkntdll library into the new process’s address space and
overwrites upcall entry points in the host-provided ntdll with
jumps to dkntdll, eviscerating ntdll to a jump table and replacing it
as the dynamic loader. dkmon writes a parameter block into the
new process’s address space to communicate initialization param-
eters, such as a reference to the pipe to be used for communication
with dkmon. dkmon then resumes the suspended process, with
execution starting in ntdll and immediately jumping to dkntdll,
which sets up initial library linkage (to itself) and transfers control
to dkinit. dkinit invokes dkntdll to initialize the win32k library
(described next) and to load the application binary and its import-
ed libraries. When loading is complete, dkinit jumps to the appli-
cation’s entry point.

Win32k Bootstrap Converting win32k from a kernel subsystem
to a user-mode library required reformulating its complicated,
multi-process initialization sequence. In standard Windows, first,
the single, system-wide instance of win32k is initialized in kernel
mode. Second, wininit initiates the preloading of win32k’s caches
with shared public objects such as fonts and bitmaps. Because
win32k makes upcalls to the user32 and gdi32 user-mode libraries
to load an object into its cache, these libraries must be loaded
before filling the cache. Third, when a normal user process starts,
it loads its own copies of user32 and gdi32, which connect to
win32k and provide GUI services.

We considered refactoring the initialization of win32k, but reject-
ed that idea as it required a deeper fork of the source code than
desired and prevented sharing of code between full Windows and
Drawbridge. Instead, we opted for an approach that simulates the
full win32k bootstrapping sequence within a single process. We
exported entry points from win32k, user32, and gdi32, which are
called by dkinit for each of the boot steps.

295

Much of the effort described here can be viewed as unwinding the
complexity of the multi-server architecture of Windows into an
in-process library OS. On a full Windows system, csrss creates a
read-only, shared-memory segment to share cached bitmaps and
fonts, which is replaced in the library OS with heap allocated
objects, since all components that access it now share the same
address space and protection domain. The upcalls that torture the
win32k initialization sequence were needed only because a shared,
trusted win32k must avoid being confused into loading one princi-
pal’s objects on behalf of another; in Drawbridge, that responsibil-
ity is removed, and the corresponding complexity can be reduced.
Likewise, we removed many other access checks over shared state
from win32k, and eliminated the Windows logon session abstrac-
tion, wininit, and csrss.

Emulating NT Kernel Interfaces

To support binary compatibility with existing Windows 7 API
DLLs, we provide user-mode implementations of approximately
150 NT kernel system calls. The majority of these functions are
stubs that either trivially wrap the Drawbridge ABI (e.g., virtual
memory allocation, thread creation, etc.), return static data, or
always return an error (i.e., STATUS_NOT_IMPLEMENTED).

The remaining system calls produce higher-level NT abstractions,
such as files, locks, and timers, built entirely inside the library OS
using Drawbridge primitives. The most challenging part of this
work was building compatible semantics for the NT I/O model,
including synchronous and asynchronous I/O, ―waitable‖ file
handles, completion ports, and asynchronous procedure calls.

Additional NT emulation calls were required to win32k from ker-
nel mode to user mode. The interfaces provided to kernel-mode
libraries by the NT kernel are largely disjoint from those provided
to user-mode libraries; we added roughly 6.3KLoC to emulate
these kernel-mode calls.

Shared System Services

Windows applications depend on shared system services, accessi-
ble either through system calls or IPCs to trusted service daemons.
These include services such as the Windows registry and OLE. In
order to confine the state and dependencies of Drawbridge pro-
cesses, our library OS implements the functionality of several
such services using two design patterns: providing simple alter-
nate implementations of service functionality, and hosting extant
library code in-process.

Alternative Implementations Many Windows system services
are backed by complex and robust implementations, tuned and
hardened for a wide variety of use cases. For a few such services
like the registry, it proved more practical to reimplement the ser-
vices’ advertised interfaces within the library OS rather than port
their existing implementations.

The registry is a system-wide, hierarchical, key-value store, ac-
cessible to Windows processes through system calls. The tradi-
tional Windows registry is implemented in kernel mode with 61
KLoC; its complexity is required to implement fine-grained ac-
cess control and locking as well as transactional semantics. While
we might have replicated code for the kernel registry into the
library OS, we found that registry code is inseparably connected
to code for the kernel object namespace and the kernel scheduler.
The Drawbridge library OS instead includes a private, in-process
reimplementation of the registry, significantly simpler than the
shared kernel registry. Drawbridge’s NT emulation layer supplies
a simple 1.3 KLoC interface to this implementation, with coarse
locking and no support for transactions.

Importing Implementations In several cases, we encountered
shared Windows services whose implementations could be ported
largely intact. As an example, Drawbridge’s support for COM
required functionality traditionally provided by rpcss. Supporting
COM is an absolute requirement for rich applications in Win-
dows; a significant number of desktop- and server-class applica-
tions are formed by composing multiple COM objects through the
OLE protocol. With one exception (Reversi) each of our test ap-
plications uses OLE.

Refactoring COM followed the same basic pattern used with other
system services: shared, out-of-process components were ported
to run privately in-process and bound directly to application-side
libraries. For example, a key component of OLE is the running
object table (ROT), which provides inter- and intra-process name
resolution for COM objects. While only one instance of the ROT
is maintained per system within rpcss, in Drawbridge it runs di-
rectly within the application process and only manages local ob-
jects. Fewer than 500 lines out of 318 KLoC were changed in the
COM runtime (ole32) to make these changes.

Process Serialization

The volatile state associated with a traditional Windows process is
distributed across the NT kernel and kernel-mode drivers; shared,
out-of-process, user-mode service daemons; and the process’s
own address space. Serializing the running state of a Windows
process would require the careful cooperation of each of these
components, and significant changes to the OS. However, with
Drawbridge process isolation, a process’s transient state is either
confined to pages in its address space or can be reconstructed
from data maintained within its address space.

Due to careful design of the ABI and library OS, serializing a
Drawbridge process is relatively simple. Running win32k as a
user-mode library vastly reduced the amount of kernel state asso-
ciated with the process. The remaining out-of-process state con-
sists of resources managed by the host OS, such as files and syn-
chronization objects. To account for this, our implementation of
the ABI inserts indirection between Drawbridge system objects
and host NT system objects. This distinction enables the library
OS to easily unbind and rebind these objects at deserialization
time. Because the metadata for host kernel objects are stored with-
in a process’s address space, serialization only requires quiescing
the threads and serializing the contents of the address space. The
thread contexts need not be serialized, as the active register con-
tents are stored on their stacks during quiescence. The application
serializes itself with no involvement from the host, beyond the I/O
stream to which the serialized state is saved.

In order to quiesce the threads within a Drawbridge process, the
security monitor signals a notification event to indicate a serializa-
tion request. Threads blocked on Drawbridge ABIs are woken via
the notification event, outstanding I/O requests are completed, and
other threads are interrupted with an exception. Once notified of
the pending serialization, all threads, except one, yield indefinite-
ly. The final thread begins serializing the process to a monitor-
provided I/O stream, recording virtual memory bookkeeping in-
formation and the contents of the process’s address space. Files on
which the process depends must be migrated with the application
or accessed through a distributed file system. Network sockets are
terminated on migration causing applications to reestablish their
network connections. In a world of migrating laptops, we find that
applications are robust to network interruptions. After serializa-
tion is complete, the yielding threads are woken and the process
continues normal execution.

296

Reconstructing a Drawbridge process from its serialized state
requires adjustments to its initialization sequence. Instead of load-
ing the application binary, serialized virtual memory data are used
to restore the contents of the process’s address space, including
heap and stack memory as well as memory-mapped I/O streams.
Code in dkpal rebinds host system objects to ABI objects without
involvement from the library OS or the application. After recreat-
ing the process, the threads quiesced during serialization are un-
blocked and continue normal execution.

Limitations

The present Drawbridge system is a research prototype; it is far
from a production system. While Drawbridge supports over
14,000 Win32 API functions, this is a fraction of the total Win32
API. At the time of writing, Microsoft has no plans to productize
any of the concepts prototyped in Drawbridge.

The two holes in the current implementation are support for print-
ing and support for multi-process applications that communicate
through shared state. The challenge of printing is that most Win-
dows printer drivers actually load in-process with the application.
As our design requires leaving hardware drivers within the host
OS, they can’t be loaded into the library OS without creating un-
desirable dependencies. A possible solution is to reuse the ap-
proach of RDP 7.0, which employs a universal application printer
driver that prints to a common format, XPS, and then asks the
RDP client’s printer to print the XPS.

Solving the problem of multi-process applications is much harder,
particularly for applications that communicate through shared
state in win32k, as is done in many OLE scenarios. For example,
Microsoft Outlook can be configured to use Microsoft Word as a
text editor with the shared state passing through win32k message
queues. We have considered, but not implemented, two possible
designs. One is to load multiple applications into a single address
space. Another is to run win32k in a separate user-mode server
process that can be shared by multiple applications in the same
isolation container. The latter approach follows a pattern com-
monly used by microkernel designs.

A third weakness in the present implementation is that code paths
in many Win32 APIs ultimately lead to NT APIs that are not im-
plemented by our emulation layer. We have ported the most fre-
quently used subset of a very large API space. As we have run
new applications, the number of additions to the library OS has
diminished, but not completely disappeared. For example, after
Excel ran, getting PowerPoint to run on Drawbridge took only
two days: one to fix a bug we had introduced in win32k, and one
to implement an additional API in the NT emulation layer.

Finally, there are classes of applications that, by design, will
probably never run in Drawbridge. For example, administration
tools, that manipulate the host OS, or development tools such as
debuggers, which need unfiltered access to the environment, can-
not be run without creating hard dependencies on the host OS.

Figure 3. Screenshot of Drawbridge Applications: Clockwise from the top-left: Excel, Paint, Notepad, dkmon, Internet Explorer, WordPad,

PowerPoint, Reversi, and a CLR Demo.

297

6. Experiments

This section evaluates the theses of the Drawbridge project: that a
library OS can run rich desktop applications, that such refactoring
is feasible, that it is suitable for isolating large numbers of appli-
cations in a single computer, that it protects the integrity of the
host OS at least as well as a VMM, that it provides greater mobili-
ty for running applications, and that it enables independent evolu-
tion of host OS from library OS. We also measure the servicing
implications of the library OS.

All data were collected on an HP z800 Workstation with dual
2.4GHz Intel Xeon E5530 Quad-Core CPUs with hyper-threads
disabled, 16GB of RAM, and dual 10,000 RPM hard drives. All
Windows experiments use 64-bit Windows 7, Ultimate Edition,
with the page file disabled. All Hyper-V experiments run on 64-
bit Windows Server 2008 R2, Enterprise Edition, which shares the
same code base as Windows 7. Drawbridge and all applications
are 64-bit binaries. Windows 7 and Hyper-V were tuned for max-
imum scalability according to published best practices [27].

For most experiments, we present results for three applications:
Excel, a canonical desktop application; Internet Explorer, a web
browser and network client application; and IIS, a canonical serv-
er application. Unless stated otherwise: Excel experiments used
small (11KB), large (20MB), and huge (100MB) spreadsheets;
Internet Explorer rendered research.microsoft.com, and IIS was
serving up the default Visual Studio 2010 ASP.NET application
using CLR 4.0.

Running Applications

The primary hypothesis of Drawbridge is that a legacy OS can be
refactored into a resource-efficient library OS that supports a large
class of rich, desktop applications. Figure 3 shows a sample
screenshot with output from dkmon and seven applications run-
ning in Drawbridge: Microsoft Excel 2010, Windows 7 Paint,
Notepad, Internet Explorer 8, PowerPoint 2010, Windows 7
WordPad, a CLR demo application, and Reversi, the first game to
run on Windows. Other applications we have tested include IIS
7.5, DirectX 11 demos, and a number of in-house applications.
With the exception of disabling software licensing in Excel and
PowerPoint, all application binaries are unmodified.

To run on Drawbridge, applications were ―sequenced‖, by running
their setup programs on a desktop copy of Windows 7, and
capturing the file-system and registry changes made by the setup
program into a Drawbridge package. Tools for collecting file-
system and registry changes are well understood and deployed
with products such as Microsoft Application Virtualization (App-
V) and VMWare ThinApp [37].

Cost of Refactoring

Our hypothesis maintains that the refactoring task is tractable. Of
the 93 binaries containing executable code in the Drawbridge
library OS, 62 come directly from Windows 7 with no modifica-
tions, 12 are alternative implementations (mostly machine gener-
ated stubs), and 19 contain modifications. The changes are gener-
ally quite small when compared with the number of lines of code
that remain unchanged (see Table 1). The most significant chang-
es were in: gdi32, ntdll, and user32, which no longer trap, but now
directly call either win32k or the NT emulation layer; dxapi, dxg,
and win32k, which were kernel-mode drivers now modified to run
as user-mode DLLs; and ole32 and wininet, in which we removed
dependencies on external services. Supporting our hypothesis,
repurposing 5.6 MLoC of Windows 7 into a library OS required

less than 16 KLoC of changes (0.3% of code base) and 36 KLoC
of new code; the entire project was completed in fewer than two
person-years.

Overheads

To validate the hypothesis that Drawbridge has modest resource
overheads, we measure committed memory and start times for

Binary #if's

Changed

LoC

Total

LoC

Size

(KB)

advapi32.dll 18 720 61,975 655

dxapi.dll 88 294 3,225 18

dxg.dll 110 449 12,706 85

dxgi.dll 4 20 46,347 616

dxgkrnl.dll 1 8 518 9

gdi32.dll 9 70 43,711 374

kernel32.dll 37 262 153,905 944

kernelbase.dll 21 188 40,734 312

msvcrt.dll 1 5 70,201 590

ntdll.dll 83 4,274 148,327 1,484

ole32.dll 188 915 196,706 1,907

oleaut32.dll 5 34 84,331 763

rdp4vs.dll 5 647 50,312 261

rdpclip.dll 18 111 21,306 128

rdpvdd.dll 1 666 4,312 30

rpcrt4.dll 5 34 135,812 959

user32.dll 68 497 60,161 935

win32k.dll 685 5,341 343,082 2,845

winhttp.dll 15 1,146 6,225 40

New Implementations:
clbcatq.dll, ddraw.dll, dwmapi.dll,

iphlpapi.dll, msi.dll, netapi32.dll,

sechost.dll, secur32.dll, wininet.dll,

winspool.drv, ws2_32.dll, wtsapi32.dll

25,984 251

Unchanged:
atl.dll, comctl32.dll, comdlg32.dll,

comsvcs.dll, crypt32.dll, cryptbase.dll,

cryptsp.dll, d3d10.dll, d3d10_1.dll,

d3d10_1core.dll, d3d10core.dll,

d3d10level9.dll, d3d10ref.dll,

d3d10sdklayers.dll, d3d10warp.dll,

d3d11.dll, d3d11ref.dll, d3d11sdklayers.dll,

d3d8thk.dll, d3d9.dll, d3dcompiler_42.dll,

d3dx10_42.dll, d3dx11_42.dll, d3dx9_42.dll,

dbghelp.dll, ddrawex.dll, dui70.dll,

duser.dll, explorerframe.dll, fms.dll,

gdiplus.dll, iertutil.dll, imagehlp.dll,

mfc42u.dll, mlang.dll, msasn1.dll,

msftedit.dll, msls31.dll, mswsock.dll,

odbc32.dll, oleacc.dll, profapi.dll,

propsys.dll, psapi.dll, rdpd3d.dll,

rgb9rast.dll, rsaenh.dll, shell32.dll,

shfolder.dll, shlwapi.dll, sspicli.dll,

uiribbon.dll, urlmon.dll, userenv.dll,

usp10.dll, uxtheme.dll, version.dll,

windowscodecs.dll, winmm.dll, wintrust.dll,

wsock32.dll, xmllite.dll

3,995,244

57,912

Totals 1,362 15,681 5,505,124 71,118

Table 1. Summary of changes to Windows 7 executable binaries

to produce the Drawbridge library OS.

298

applications running natively on Windows, on Drawbridge, and
on Hyper-V. Figure 4 shows the amount of committed memory
required for each OS configuration and application. All VMs were
configured with 512MB of RAM, except Excel 100MB test,
which has 1024MB to avoid excessive paging. With 512MB, the
startup time is over 260 seconds. The additional committed
memory of Drawbridge is basically the cost of each application
running a private copy of win32k, including its fonts and graphic
object caches. Running the application in a VMM, on the other
hand, incurs the full cost of running a complete guest OS. Similar-
ly, startup times for a full guest OS are much higher than for a
library OS (see Figure 5). Ongoing execution overheads are only
slightly higher with Hyper-V (for our applications typically less
than 1%).

Figure 6 shows the aggregate effect of memory for Excel. While
Hyper-V can host only 23 isolated copies of Excel (each with a
20MB spreadsheet loaded), Drawbridge can host 104 instances on
the same hardware, compared to 142 instances if Excel is run as a
native Windows application with no isolation. Drawbridge is suf-
ficiently efficient that every application can be run in its own
isolation container. For Internet Explorer, we found that Draw-
bridge can host 527 instances, Windows can host 138, and Hyper-
V can host 22 (see Figure 7). In the case of Windows, Internet
Explorer exhausts the hard limit on GDI handles per logon session
in win32k, not physical memory. Drawbridge does not have this
limit as each library OS has its own private win32k. Finally, for
IIS, we found that Drawbridge can host 287 instances, Windows
can host 266 and Hyper-V can host 21 (see Figure 8).

In terms of disk footprint, the Drawbridge library OS is 64MB (or
83MB with DirectX 11 support) compared to 4.2GB for a guest
OS copy of Windows 7. If desired, the library OS can be further
reduced to meet the needs of a single application; a copy of the
library OS reduced to its minimum for running Reversi is under
16MB.

Protecting System Integrity

To illustrate that Drawbridge applications are isolated and cannot
harm the host OS, we performed two simple experiments and
conducted a case study based on a recently-published Internet
Explorer exploit [20]. First, we ran a toy malware program that

Figure 6. Memory committed for increasing copies of Excel, each

with a 20MB spreadsheet loaded.

Figure 7. Memory committed for increasing copies of Internet
Explorer rendering research.microsoft.com.

Figure 8. Memory committed for increasing copies of IIS.

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120 140

C
o

m
m

it
te

d
 M

em
o

ry
 (

G
B

)

Hyper-V

Drawbridge

Windows

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250 300 350 400 450 500 550

C
o

m
m

it
te

d
 M

em
o

ry
 (

G
B

)
Hyper-V

Drawbridge

Native

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250 300

C
o

m
m

it
te

d
 M

em
o

ry
 (

G
B

)

Hyper-V

Drawbridge

Native

Figure 4. Memory per application (including memory used by

library OS or guest OS).

Figure 5. Time to start application (including time to start library

OS or guest OS).

 1.0 24.0 54.5 29.0

 103.5

 418.1

 12.2 30.9 51.6 64.7
 136.5

 456.8

603 603 614 607 606

1,116

0

100

200

300

400

500

600

700

800

NoOp Internet

Explorer

IIS Excel

11KB

Excel

20MB

Excel

100MB

C
o

m
m

it
te

d
 M

em
o

ry
 (

M
B

) Windows Drawbridge Hyper-V

0.0 0.6 1.4 0.5
5.3

0.02

0.5 2.2
10.0

0.6
8.3

41.1

67 69

86

63

74

130

0
10
20
30
40
50
60
70
80
90

100

NoOp Internet

Explorer

IIS Excel

11KB

Excel

20MB

Excel

100MB

T
im

e
to

 S
ta

rt
 (

se
co

n
d

s)

299

deletes every registry key, which would normally leave a system
unusable, and found that only the malware was affected. Second,
we wrote a simple key logger using the SetWindowsHookEx func-
tion. When run outside of Drawbridge, the key logger collected
every keystroke issued. Inside Drawbridge, the key logger was
unable to obtain keystrokes in other applications.

Keetch [20] documents a set of attack vectors and attack patterns
to exploit possible weaknesses in the protected mode of Internet
Explorer. Protected mode runs a copy of Internet Explorer in a
process with restricted OS permissions. Among other restrictions,
in protected mode, Internet Explorer should not be able to write to
persistent storage. The idea of protected mode is that even if an
attacker is able to run exploit code within Internet Explorer, the
code cannot escape the low privilege process and therefore no
permanent harm can be done to the system. Keetch identifies five
attack vectors for exploit code to escape protected mode: name
squatting on the NT kernel object namespace, leaked or duplicated
handles, objects deliberately shared between low- and fully-
privileged processes, clipboard content spoofing, and spoofing of
a web server in the local-domain trusted zone through the loop-
back interface.

Drawbridge mitigates all five of the attack vectors identified by
Keetch. Each application runs with its own library OS that doesn’t
share an emulated kernel namespace, doesn’t share handles, and
doesn’t share kernel objects. Drawbridge applications can access
the clipboard and act as network servers, but only if the ability has
been whitelisted for the application. Internet Explorer on Draw-
bridge is not permitted to act as a web server, thus preventing
network spoofing. Access to the clipboard in Drawbridge is set by
RDP policy and can also be prevented. By comparison, Windows
7 running in a VMM doesn’t share its kernel namespace, doesn’t
share handles, and doesn’t share kernel objects. Furthermore, like
Drawbridge, a VMM guest OS can access the desktop clipboard
and the local network only if permitted.

Migrating Applications

One benefit of Drawbridge’s ABI is that it enables the migration
of running applications between computers and across OS re-
boots. For most Windows applications, the only alternative to
Drawbridge is to use a VMM to migrate the application and its
full operating system. To compare the cost of migration of an
application using Drawbridge versus a Windows 7 guest VM
using Hyper-V, we ran five application scenarios on each system,
triggered a memory snapshot, and then compressed the snapshot
to determine the smallest image. We disabled the page file in
Windows 7 on Hyper-V to avoid including the additional size of a
page file in the snapshot.

As Table 2 shows, Drawbridge snapshots are significantly small-
er, because it doesn’t serialize the OS with the application. In
practice, we find that application snapshots for Drawbridge are
typically in the 3-4MB range; roughly the size of an MP3, they
are easily moved over network connections. Application serializa-
tion and deserialization generally takes less than 1 second on
Drawbridge, and more than 10 seconds for Hyper-V.

Evolving the OS Kernel

By factoring the OS into three components (high-level user shell,
library OS, and low-level kernel), Drawbridge enables their inde-
pendent evolution. To validate this assertion we wrote a version of
dkpal designed to run as a Hyper-V partition in ring-0, replacing
the low-level Windows 7 kernel implementation.

hvdkpal is essentially a small OS kernel that implements the
Drawbridge ABI described in Section 4. hvdkpal implements
threading and preemptive scheduling by multiplexing Hyper-V
virtual CPUs. hvdkpal includes an implementation of futexes [14],
which it uses to provide Drawbridge events and semaphores.
Since hvdkpal runs in ring-0, it is able to manipulate page tables
directly in order to manage virtual memory. hvdkpal does not
implement a file system or networking stack; to support I/O
streams, it forwards I/O-related ABI calls to the host Windows
Server 2008 R2 kernel running in Hyper-V’s root partition. The
hvdkpal implementation is about 6,000 lines of C.

Despite the large differences between the hvdkpal kernel and the
Windows kernel applications expect, hvdkpal runs our entire suite
of unmodified Windows applications with an unmodified library
OS and an unmodified high-level user shell. The applications are
oblivious to the fact that they are running in ring-0.

We also ran our set of unmodified applications and library OS on
a MinWin [36] build of Windows. MinWin is a minimal build of
Windows with less than 48MB of binaries; it consists of the NT
kernel, the NTFS file system, TCP/IP stack, and the storage and
network drivers for a specific computer. It does not include a
shell. For our experiments, we connected the RDP client directly
to a graphics frame buffer driver. One of our colleagues has begun
to experiment with Windows 7 applications on the Barrelfish OS
[6] using the Drawbridge ABI to explore extreme hardware con-
figurations. Our experiments indicate that Drawbridge’s approach
to factoring OS components enables independent evolution of the
low-level kernel from the library OS and applications.

Servicing the Library OS

Once a month, on ―Patch Tuesday‖, Microsoft issues security
bulletins (MSRCs) describing software security vulnerabilities
and releases patches to those vulnerabilities. The amount of code
inside the library OS is smaller than the code in the full OS, so
one would expect fewer patches to affect the library OS. This

Application

Drawbridge

Snapshot

Hyper-V

Snapshot

 Excel: 11KB file opened 3.1 MB 148.6 MB

 Excel: 20MB file opened 21.2 MB 155.8 MB

 Excel: 100MB file opened 86.9 MB 313.2 MB

 Internet Explorer 3.9 MB 184.8 MB

 IIS: no site pre-loaded 1.1 MB 193.4 MB

Table 2. Comparison of compressed memory snapshots.

Figure 9. Security patches affecting binaries in Windows Server

2008 R2, Windows 7, Windows Server 2008 R2 Server Core, and

Drawbridge.

0

10

20

30

40

50

60

70

80

90

2006 2007 2008 2009 2010

R
el

ev
an

t
M

S
R

C
 P

at
ch

es
 Released MSRC Patches

Windows Server 2008 R2 Full
Windows 7
2008 R2 Server Core
Library OS

300

intuition is validated by an analysis of which binaries were affect-
ed by each security-related patch from 2006 to 2010.

As Figure 9 shows, the library OS requires significantly fewer
security updates due to its smaller code size. Compared with
Windows 7, Windows Server 2008 R2, and Windows Service
2008 R2 Server Core, the Drawbridge library OS has a much
smaller servicing footprint. Of 286 security bulletins, 254 have
resulted in patches to OS computers. Just 36% of patches, 92,
affect the library OS; the rest affect code found only in the host
OS. Furthermore, some of the patches in the library OS might be
redundant if they prevent one application from compromising
another. The comparison with Server Core installation of Win-
dows Server 2008 R2 is interesting because Server Core is posi-
tioned as a way to reduce the attack surface of servers by remov-
ing ―client‖ components such as the GUI shell. Drawbridge is
affected by roughly half as many MSRC issues as Server Core
over the same time period.

7. Related work

This section surveys related work, primarily: previous library
OSes, which adopt similar designs in service of different goals,
and virtual machines, which provide many similar benefits at a
higher cost. We briefly discuss other approaches to achieving
strongly isolated processes.

Previous Library Operating Systems

Anderson [3] initially proposed that larger portions of the OS be
factored into application libraries, primarily to improve perfor-
mance. A general-purpose OS often applies resource management
heuristics that can work at cross-purposes with a particular appli-
cation. For instance, file read-ahead is a common optimization
that is useful in the common case (sequential file access), but can
harm performance of an application that accesses its data random-
ly. This idea was brought to fruition in the Cache kernel [10],
Nemesis [21], and Exokernel [13]. The Cache kernel design fo-
cused on allowing applications fine-grained control over thread
scheduling and memory swapping. The Nemesis OS was particu-
larly focused on eliminating scheduling and performance interfer-
ence through shared resources, in order for multimedia applica-
tions to meet real-time deadlines. The Exokernel design is closest
to the bare hardware interface of a modern VMM.

Although previous library OS systems focused on performance,
rather than encapsulation of the OS personality, Drawbridge
shares with them several design points. At a high-level, the Draw-
bridge design is similar to the original Exokernel design, which
had a kernel responsible for controlling access to the low-level
hardware, and the rest of the functionality in the application li-
brary. The interface between the Exokernel and library OS was
much closer to the hardware interface of a modern virtual ma-
chine, whereas Drawbridge provides higher-level APIs of threads
and virtual memory, similar to the Cache or Nemesis kernels. The
Exokernel also allowed applications to load constrained (or
―safe‖) extensions into the kernel for management of hardware
resources that could not be reasonably exported into a non-
privileged address space. For instance, Exokernel library OSes
would install packet filters into the lower-level kernel to multiplex
the network. In contrast, both Drawbridge and the Cache kernel
delegate low-level resource management to the kernel and neither
system permits a library OS to load code into the kernel.

Relative to previous library OS designs, the first contribution of
our work is to show that a large commercial OS can in fact be
refactored into a library OS; this is in contrast to the minimal li-

brary OS implementations of previous systems. Second, Draw-
bridge incorporates an ABI design that streamlines the library OS
implementation without compromising security isolation or undu-
ly exposing implementation details of the underlying host OS. As
a proof of this point, Drawbridge is the first library OS system of
which we are aware that supports either process serialization or
migration of the guest application across diverse host systems.
Finally, the Drawbridge ABI presents higher-level abstractions
that trivially share host OS resources, such as the CPU and buffer
caches. We believe the Drawbridge ABI offers a better starting
point for library OS construction.

Virtual Machines

Virtual machines [35] are the primary success story for packaging
an application and its dependencies on a fully-featured OS into a
single self-contained unit. Research systems, such as The Collec-
tive [31], use a single virtual machine per application to encapsu-
late an application and its OS. Treating a complete legacy operat-
ing system, including the kernel, as a library for a single applica-
tion wastes substantial memory and computation. This waste
comes from an ―impedance mismatch‖ that causes lost sharing
opportunities, lost statistical multiplexing opportunities, and allo-
cation strategies designed for physical resources running against
virtual ones. Only through significant research and development
effort has this waste been reduced.

New paravirtualization approaches, which warp the VM interface
gradually farther away from a raw hardware interface, expose
instead resources that a guest operating system can use more effi-
ciently [5, 12, 17, 38, 39]. Despite significant research effort,
however, running a full legacy operating system in a VM still
incurs substantial overhead, as the legacy operating system brings
with it system management processes and large allocations of
kernel memory. Each guest can demand gigabytes of disk storage
and hundreds of megabytes of physical RAM (perhaps reduced by
clever sharing). Ultimately, paravirtualization is only chipping
away at the margins; paravirtualized VMs will not scale to the
same level as OS processes without more drastic measures.

A key contribution of Drawbridge is judicious selection of ex-
tremely paravirtualized VM abstractions in the Drawbridge ABI.
This ABI demonstrably alleviates the overheads of hardware vir-
tualization without unduly constraining OS design or compromis-
ing isolation. Roscoe et al [30] argued for research into higher-
level hypervisor abstractions, Drawbridge answers that call.

Other Approaches to Library OS Goals

OS customization Like previous library OSes, Libra [2] allows
applications to customize their OS within a virtual machine in
order to improve application performance. In Libra, an application
that needs to extend the OS runs in a separate VM. The default OS
functionality is provided by a sibling virtual machine over a
shared memory protocol, and applications can selectively service
their own requests from a custom implementation.

The performance concerns of Libra and other library OSes are
largely complementary to Drawbridge; one could imagine cus-
tomizing versions of the Drawbridge library OS with application-
specific performance optimizations. More than optimizing per-
formance, Drawbridge is concerned with encapsulating the per-
sonality of a library OS and enabling applications to run on future
host OSes.

Xax and NaCl Recent research on isolating untrusted web ap-
plications demonstrated that a limited set of OS abstractions were
sufficient for porting large libraries of legacy code, albeit not

301

entire interactive GUI applications [11]. The isolation technique
proposed in Xax, namely hardware memory protection and a lim-
ited system call table, is shared by Drawbridge; NaCl [40] uses
alternate techniques based on software fault isolation..

Stronger isolation in monolithic kernels The monolithic organ-
ization of conventional operating systems makes them difficult to
secure. In order to avoid the loss of functionality and perfor-
mance, a number of systems have attempted to augment monolith-
ic systems with additional security checks in a minimally disrup-
tive manner. For instance, the Linux VServer [32] adds additional
access control list checks and imposes a separate namespace for
kernel objects used by an isolated process. All kernel data, how-
ever, reside within a shared, monolithic kernel address space. This
approach of adding security checks and/or replicated kernel data
structures is also exemplified by SELinux [23], zones [29], jails
[34] and containers [7], however it suffers several drawbacks.

First, it is difficult to know that the job of inserting additional
checks is done, or that the set of hooks is complete in a complex
and rapidly growing kernel. Second, the abstractions to which the
hooks must be added are exactly those that were not designed to
express restrictions; therefore, the resulting mechanisms may not
lend themselves to a reasonable policy calculus. For instance, a
simple policy such as ―Do not allow the contents of file X to leave
the machine‖ must be translated into a perilous series of decisions
on whether to allow innocuous-looking accesses to local system
resources [15, 41].

It is tempting to try to paint a layer of isolation functionality onto
an existing monolithic system, but the result is hard to trust since
it requires maintaining properties across a large interface to a
large and evolving code base. Often, the structure of a monolithic
system makes it difficult even to rigorously specify isolation.
Therefore, Drawbridge avoids a monolithic organization in favor
of a library OS design, which lifts much OS functionality into the
application’s strongly isolated address space.

We hypothesize that library OSes will prove a more amenable
platform for strong security isolation than a monolithic kernel,
with a potentially simpler mapping of policies onto concrete deci-
sions that must be made in the security monitor. Previous systems
have explored policies much more thoroughly than this work, and
we defer their design to future work.

Compatibility through API emulation Several research systems
have attempted to provide compatibility with legacy OSes by
emulating their APIs [4, 16, 18]. Although emulation can work for
common, heavily used functions, it is highly prone to subtle in-
consistencies in the less used functions. Emulating the Windows
API on Unix has required a colossal effort and consistently re-
mained several releases behind Windows in terms of compatibility
[30]. Even among Unix implementations, calls such as setuid are
prone to compatibility issues [9]. In terms of compatibility, there
is simply no substitute for bundling an application with the appro-
priate components of the original OS.

Application Virtualization The need to robustly package appli-
cations without the high cost of VMM solutions has driven devel-
opment of at least two commercial products. Both App-V [26] and
ThinApp [37] virtualize calls to the file system and registry. By
doing so, they allow users to run desktop application like Mi-
crosoft Office without running a setup program. Because they
virtualize only a subset of the file system and registry, they are
easily circumvented or broken by new OS releases, and provide
no migration for live applications. However, the application ―se-

quencing‖ techniques used by these systems to create application
packages are complementary to Drawbridge.

8. Discussion

The library OS allows a new model for packaging applications
and new opportunities to reshape the computing experience. The
fundamental problem of application packaging is deciding how to
separate an application and its dependencies from their environ-
ment so the application can run predictably across a nearly infinite
variety of user deployments. An ideal packaging technology
makes it easy to deploy an application, continue the application
across changes such as an OS upgrade, relocate the application
from one computer to another, prevent the application from cor-
rupting its host, and prevent the host from corrupting the applica-
tion.

The library OS offers a new way to package applications. Appli-
cations can either be packaged with their dependent library OS, or
can contain metadata informing the host OS of their required li-
brary OS. With the latter approach, a vendor could distribute and
service a number of library OS images—say Windows XP, Win-
dows Vista, and Windows 7 library OSes—with a single host OS.

For researchers and developers, the library OS approach offers the
ability to rapidly evolve OS kernels, shells, and APIs inde-
pendently without breaking other OS components or applications.
Easily serialized applications offer opportunities to improve de-
bugging and testing through techniques such as time-travel de-
bugging, easy cloning of running application instances, and easy
release of experimental OS components. For example, colleagues
at Microsoft Research have used Drawbridge to deploy prototypes
of new Win32 APIs that enable distributed user experiences.

Application Compatibility

Maintaining compatibility with application binaries across multi-
ple OS releases is a significant challenge. While OS vendors ex-
pend significant resources maintaining compatibility, each OS
release inevitably results in a large number of broken applications.
Techniques for maintaining application compatibility in Windows
7 include one-off code in APIs; application compatibility shims,
which load as intermediate code between application and API to
alter input or output parameters; and Windows XP mode, which is
a complete VM image of the latest release of Windows XP.

Application compatibility is particularly onerous for enterprises
where one-off line-of-business (LOB) applications are abundant.
The recourses available to an enterprise when a LOB application
is broken by a new OS release are often limited as programming
staff has moved to other projects and source code may be missing.

By encapsulating the portions of the OS most likely to break ap-
plication compatibility, the library OS offers a new technique to
resolve application compatibility problems. Each application
could run with the library OS of its choice. Programmers or IT
administrators could bind an application to a known good library
OS, which would continue to run correctly on top of new host OS
releases. For example, an application packaged with a Windows
XP library OS could continue to run correctly on Windows XP,
Windows Vista, or Windows 7 host OSes. Conversely, an update
to Windows 7 could ship with library OSes for Windows XP and
Windows Vista. Users could upgrade to new OS releases uncon-
strained by the complex calculus of application compatibility.

Applications might even run on down-level OS releases. For ex-
ample, an application with the Windows 7 library OS could run on
Windows XP. Reverse compatibility is particularly useful for

302

developers of new applications as they can target the library OS
with the latest features rather than anticipating adoption curves.

Dynamic Application Relocation

With process serialization and deserialization, a running applica-
tion needs no longer be tied to the OS instance on which it started.
An application could be moved to a new OS instance by serializ-
ing its state, moving the state to a new computer as needed, and
then deserializing the state to restore the application. Drawbridge
enables new opportunities for distributed computing, cycle har-
vesting, and applications running across OS-servicing reboots.

We are currently experimenting with a distributed computing
environment based on Drawbridge in which running applications
move from computer to computer to follow the user. For example,
an application might start running a user’s desktop, then move to
the user’s smartphone during their commute (which might be
facilitated by dynamic instruction-set recompilation), and then
move to the user’s home computer. Running applications might
also move from a laptop or smartphone to the cloud or a local
server to conserve battery. While such migration is possible in
theory with VMMs, VM images are too large to make it practical.

Process checkpointing has long been used to harvest spare CPU
cycles in systems such as Condor [22] by moving background
computations to under-utilized workstations. While systems like
Condor were limited to applications without interactive user inter-
faces, with Drawbridge mainstream applications could be moved
under the control of a resource manager system to create a ―virtual
desktop cloud‖ within an institution. Users could connect to their
mobile applications through RDP proxies. Running applications
could be cloned to multiple machines or staged to disk, to improve
availability and to accommodate hardware failures or periods of
peak load. With Drawbridge’s per-application granularity, a virtu-
al desktop infrastructure could be created much more cheaply than
with VMM-based alternatives.

Serialization and deserialization of running processes offer end
users new functionality even if applications are never migrated to
a new machine. For example, instead of closing applications for
an OS reboot, the applications could be serialized to persistent
storage and then restored after the reboot.

Reducing Security Risks

The modern Internet is a place of nearly constant danger. Tech-
nical and social attacks often exploit the fact that OS security is
oriented toward protecting users from each other, and not from
their own software. While the risks of running untrusted software
can be mitigated through the use of ―sandbox VMs‖, in practice
the resource and administrative costs of a VM image are generally
too high to afford each application its own sandbox, so typical
users do not employ VMs to isolate software [19]. With the sub-
stantially lower overheads of the Drawbridge library OS design,
every desktop application could be run within its own sandbox.
Running a sandbox per application would mitigate many exploits
that attack specific application weaknesses because the exploit
could damage at most the single application in the sandbox.
Drawbridge might also reduce a large class of social exploits—
those which trick users into downloading programs—if down-
loaded programs always ran within a sandbox with a read-only
copy of the library OS.

Cloud hosting services, such as EC2 and Windows Azure, might
use the library OS design to substantially lower their per-sandbox
costs. While VMMs offer the benefits of a complete OS, and thus
will likely always have their place in server consolidation, the

library OS uses far fewer resources and thus offers lower costs,
particularly for cloud applications with low CPU utilization.

9. Conclusion

This paper provides the first existence proof that a feature-rich
operating system can be refactored to produce a library OS that is
compatible with desktop applications. Drawbridge provides a
Windows 7 library OS that can run a large set of rich desktop and
server applications such as Excel 2010, PowerPoint 2010, Internet
Explorer 8, and IIS 7.5. With the exception of changes to licens-
ing code, Windows 7 applications run in Drawbridge using un-
modified binaries.

We described our heuristics for separating the ―OS personality‖,
as captured in the API implementation layer, from the rest of
Windows 7 to produce a library OS that is 1/50th the size of the
full desktop OS, yet still provides rich application compatibility.
We believe our techniques are efficient, as we produced the entire
Drawbridge system in less than two person-years, and that the
same techniques could be applied to other operating systems.

We described our implementation and demonstrated through ex-
periments that Drawbridge can provide increased system security,
more aggressive system evolution, and greater application mobili-
ty through process serialization and deserialization. We have pro-
vided experimental data showing that the library OS design offers
significant scalability advantages over VMMs. We demonstrated
the improved flexibility for independent evolution by running the
same library OS across four host OS releases.

The library OS is very relevant today. It offers new opportunities
to significantly improve end-user computing: redefining applica-
tion packaging, increasing application compatibility across OS
releases, enabling running applications to persist across OS re-
boots and relocations, and reducing the security risks of running
untrusted software.

Acknowledgements

We wish to thank our colleagues at MSR, including Andrew
Baumann, Barry Bond, David Molnar, and Ed Nightingale who
have improved this work by contributing code, experience, and
ideas. The anonymous reviewers and our shepherd, Orran Krieger,
provided valuable feedback that significantly improved the
presentation of our work.

References

[1] Amazon. Amazon Elastic Compute Cloud (EC2). Seattle, WA, 2006.

[2] Ammons, G., Appavoo, J., Butrico, M., Da Silva, D., Grove, D.,

Kawachiya, K., Krieger, O., Rosenburg, B., Van Hensbergen, E. and

Wisniewski, R.W. Libra: A Library OS for a JVM in a Virtualized

Execution Environment. In Proceedings of the 3rd International

Conference on Virtual Execution Environments, 2007.

[3] Anderson, T.E. The Case for Application-Specific Operating

Systems. In Proceedings of the 3rd Workshop on Workstation

Operating Systems, 1992.

[4] Appavoo, J., Auslander, M., Da Silva, D., Edelsohn, D., Krieger, O.,

Ostrowski, M., Rosenburg, B., Wisniewski, R.W. and Xenidis, J.

Providing a Linux API on the Scalable K42 Kernel. In Proceedings

of the 2003 USENIX Annual Technical Conference, 2003.

[5] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A.,

Neugebauer, R., Pratt, I. and Warfield, A. Xen and the Art of

Virtualization. In Proceedings of the 19th ACM Symposium on

Operating Systems Principles, 2003.

303

[6] Baumann, A., Barham, P., Dagand, P.-E., Harris, T., Isaacs, R.,

Peter, S., Roscoe, T., Schüpbach, A. and Singhania, A. The

Multikernel: a new OS architecture for scalable multicore systems.

In Proceedings of the 22nd ACM Symposium on Operating Systems

Principles, 2009.

[7] Bhattiprolu, S., Biederman, E.W., Hallyn, S. and Lezcano, D.

Virtual servers and checkpoint/restart in mainstream Linux. SIGOPS

Operating Systems Review, 42 (5), 2008.

[8] Bugnion, E., Devine, S., Govil, K. and Rosenblum, M. Disco:

Running Commodity Operating Systems on Scalable

Multiprocessors. ACM Transactions on Computer Systems, 15 (4),

1997.

[9] Chen, H., Wagner, D. and Dean, D. Setuid Demystified. In

Proceedings of the 11th USENIX Security Symposium, USENIX

Association, 2002.

[10] Cheriton, D.R. and Duda, K.J. A Caching Model of Operating

System Kernel Functionality. In Proceedings of the 1st USENIX

Symposium on Operating Systems Design and Implementation,

1994.

[11] Douceur, J.R., Elson, J., Howell, J. and Lorch, J.R. Leveraging

Legacy Code to Deploy Desktop Applications on the Web. In

Proceedings of the 8th USENIX Symposium on Operating Systems

Design and Implementation, 2008.

[12] Eiraku, H., Shinjo, Y., Pu, C., Koh, Y. and Kato, K. Fast

Networking with Socket-Outsourcing in Hosted Virtual Machine

Environments. In Proceedings of the 24th ACM Symposium on

Applied Computing, 2009.

[13] Engler, D.R., Kaashoek, M.F. and O'Toole, J., Jr. Exokernel: an

Operating System Architecture for Application-Level Resource

Management. In Proceedings of the 15th ACM Symposium on

Operating Systems Principles, 1995.

[14] Franke, H., Russel, R. and Kirkwood, M. Fuss, Futexes and

Furwocks: Fast Userlevel Locking in Linux. In Proceedings of the

Ottawa Linux Symposium, 2002.

[15] Garfinkel, T. Traps and Pitfalls: Practical Problems in System Call

Interposition based Security Tools. In Proceedings of the Network

and Distributed Systems Security Symposium, 2003.

[16] Gerard Malan, R.R., David Golub, and Robert Brown. DOS as a

Mach 3.0 Application. In Proceedings of the USENIX Mach

Symposium, 1991.

[17] Gupta, D., Lee, S., Vrable, M., Savage, S., Snoeren, A.C., Varghese,

G., Voelker, G.M. and Vahdat, A. Difference Engine: Harnessing

Memory Redundancy in Virtual Machines. In Proceedings of the 8th

USENIX Symposium on Operating Systems Design and

Implementation, 2008.

[18] Helander, J., Unix under Mach: The Lites Server. Helsinki

University of Technology, Helsinki, 1994.

[19] Howell, J., Hunt, G.C., Molnar, D. and Porter, D.E., Living

Dangerously: A Survey of Software Download Practices. MSR-TR-

2010-51, Microsoft Research, 2010.

[20] Keetch, T., Escaping from Protected Mode Internet Explorer –

Evaluating a potential security boundary. Verizon Business,

London, UK, 2010.

[21] Leslie, I., McAuley, D., Black, R., Roscoe, T., Barham, P., Evers,

D., Fairbairns, R. and Hyden, E. The Design and Implementation of

an Operating System to Support Distributed Multimedia

Applications. IEEE Journal on Selected Areas In Communications,

14 (7), 1996.

[22] Litzkow, M., Tannenbaum, T., Basney, J. and Livny, M., Checkpoint

and Migration of UNIX Processes in the Condor Distributed

Processing System. University of Wisconsin-Madison, 1997.

[23] Loscocco, P. and Smalley, S. Integrating flexible support for

security policies into the Linux operating system. In Proceedings of

the 2001 USENIX Annual Technical Conference, 2001.

[24] Love, R. Get on the D-BUS. Linux Journal, 2005.

[25] Microsoft. Internet Information Services 7.5. Redmond, WA, 2009.

[26] Microsoft. Microsoft Application Virtualization (App-V). Redmond,

WA, 2006.

[27] Microsoft Performance Tuning Guidelines for Windows Server 2008

R2, Redmond, WA, 2009.

[28] Microsoft, Remote Desktop Protocol: Basic Connectivity and

Graphics Remoting Specification. Redmond, WA, 2010.

[29] Price, D. and Tucker, A. Solaris zones: operating system support for

server consolidation. In Proceedings of the Large Installation

Systems Administration Conference, 2004.

[30] Roscoe, T., Elphinstone, K. and Heiser, G. Hype and virtue. In

Proceedings of the 11th USENIX Workshop on Hot Topics in

Operating Systems, 2007.

[31] Sapuntzakis, C., Brumley, D., Chandra, R., Zeldovich, N., Chow, J.,

Lam, M.S. and Rosenblum, M. Virtual Appliances for Deploying

and Maintaining Software. In Proceedings of the Large Installation

Systems Administration Conference, 2003.

[32] Soltesz, S., Pötzl, H., Fiuczynski, M.E., Bavier, A. and Peterson, L.

Container-based Operating System Virtualization: A Scalable, High-

Performance Alternative to Hypervisors. In Proceedings of the 2nd

ACM SIGOPS/EuroSys European Conference on Computer Systems

2007, ACM, 2007.

[33] Spear, M.F., Roeder, T., Hodson, O., Hunt, G.C. and Levi, S.,

Solving the Starting Problem: Device Drivers as Self-Describing

Artifacts. In Proceedings of the EuroSys 2006 Conference, Leuven,

Belgium, 2006.

[34] Stokely, M. and Lee, C. The FreeBSD Handbook 3rd Edition, Vol.

1: User's Guide. FreeBSD Mall, Inc., Brentwood, CA, 2003.

[35] Sugerman, J., Venkitachalam, G. and Lim, B.-H. Virtualizing I/O

Devices on VMware Workstations Hosted Virtual Machine Monitor.

In Proceedings of the 2001 USENIX Annual Technical Conference,

2001.

[36] Torre, C. Mark Russinovich: Inside Windows 7. Channel 9,

Redmond, WA, January, 2009.

[37] VMWare. ThinApp. Palo Alto, CA, 2008.

[38] Waldspurger, C.A. Memory Resource Management in VMware ESX

Server. In Proceedings of the 5th USENIX Symposium on Operating

Systems Design and Implementation, 2002.

[39] Whitaker, A., Shaw, M. and Gribble, S.D. Scale and Performance in

the Denali Isolation Kernel. In Proceedings of the 5th USENIX

Symposium on Operating Systems Design and Implementation,

2002.

[40] Yee, B., Sehr, D., Dardyk, G., Chen, J.B., Muth, R., Orm, T.,

Okasaka, S., Narula, N., Fullagar, N. and Inc, G. Native Client: A

Sandbox for Portable, Untrusted x86 Native Code. In Proceedings of

the 30th IEEE Symposium on Security and Privacy, 2009.

[41] Zeldovich, N., Boyd-Wickizer, S., Kohler, E. and Mazières, D.

Making information flow explicit in HiStar. In Proceedings of the

8th USENIX Symposium on Operating Systems Design and

Implementation, 2006.

304

	Rethinking the Library OS from the Top Down
	Abstract
	1. Introduction
	2. Windows 7 Architecture
	3. Approach
	4. Security Monitor
	ABI Description
	Implementation

	5. Windows Library OS
	OS Library Bootstrap
	Emulating NT Kernel Interfaces
	Shared System Services
	Process Serialization
	Limitations

	6. Experiments
	Running Applications
	Cost of Refactoring
	Overheads
	Protecting System Integrity
	Migrating Applications
	Evolving the OS Kernel
	Servicing the Library OS

	7. Related work
	Previous Library Operating Systems
	Virtual Machines
	Other Approaches to Library OS Goals

	8. Discussion
	Application Compatibility
	Dynamic Application Relocation
	Reducing Security Risks

	9. Conclusion
	Acknowledgements
	References

