
Concurrency and 
Synchronisation

Part II
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Learning Outcomes

•Understand concurrency is an issue in operating 
systems and multithreaded applications
•Know the concept of a critical region.
•Understand how mutual exclusion of critical regions 

can be used to solve concurrency issues
• Including how mutual exclusion can be implemented 

correctly and efficiently.
•Be able to identify and solve a producer consumer 

bounded buffer problem.
•Understand and apply standard synchronisation 

primitives to solve synchronisation problems.
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Textbook

• Sections 2.3 - 2.3.7 & 2.5

3



Accessing Critical Regions

Mutual exclusion using critical regions
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 A critical region is a region of code where shared resources are 
accessed.



Test-and-Set

•We can use test-and-set to implement lock() and 
unlock() primitives
•Pros
• Simple (easy to show it’s correct)
• Available at user-level 
• To any number of processors
• To implement any number of lock variables

•Cons
• Busy waits (also termed a spin lock)
• Consumes CPU
• Starvation is possible when a process leaves its critical section and 

more than one process is waiting.
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Tackling the Busy-Wait Problem

• Sleep / Wakeup
• The idea
• When process is waiting for an event, it calls sleep to block, instead of 

busy waiting.
• The event happens, the event generator (another process) calls wakeup 

to unblock the sleeping process.
• Waking a ready/running process has no effect.
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The Producer-Consumer Problem

•Also called the bounded buffer problem
•A producer produces data items and stores the items 

in a buffer
•A consumer takes the items out of the buffer and 

consumes them.
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Issues

•We must keep an accurate count of items in buffer
• Producer 
• should sleep when the buffer is full,
• and wakeup when there is empty space in the buffer

• The consumer can call wakeup when it consumes the first entry of the full buffer
• Consumer 
• should sleep when the buffer is empty
• and wake up when there are items available

• Producer can call wakeup when it adds the first item to the buffer
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Pseudo-code for producer and consumer

int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep(prod);

insert_item(item);

count++;

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0) 

sleep(con);

remove_item();

count--;

if (count == N-1)

wakeup(prod);

}

}
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Problems

int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep(prod);

insert_item(item);

count++;

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0) 

sleep(con);

remove_item();

count--;

if (count == N-1)

wakeup(prod);

}

}
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Problems

int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep(prod);

insert_item(item);

count++;

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0) 

sleep(con);

remove_item();

count--;

if (count == N-1)

wakeup(prod);

}

}
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Proposed Solution

• Lets use a locking primitive based on test-and-set to protect 
the concurrent access
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Proposed solution?

int count = 0; 

lock_t buf_lock;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep(prod);

acquire_lock(buf_lock)

insert_item(item);

count++;

release_lock(buf_lock)

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0) 

sleep(con);

acquire_lock(buf_lock)

remove_item();

count--;

release_lock(buf_lock);

if (count == N-1)

wakeup(prod);

}

}

13



Problematic execution sequence

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep(prod);

acquire_lock(buf_lock)

insert_item(item);

count++;

release_lock(buf_lock)

if (count == 1)

wakeup(con);

con() {

while(TRUE) {

if (count == 0) 

sleep(con);

acquire_lock(buf_lock)

remove_item();

count--;

release_lock(buf_lock);

if (count == N-1)

wakeup(prod);

}

}
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wakeup without a 
matching sleep is lost



Problem

• The test for some condition 
and actually going to sleep 
needs to be atomic
• The following does not 

work:

acquire_lock(buf_lock)

...

if (count == N)

sleep(prod);

...

release_lock(buf_lock)

The lock is held while asleep 
 count will never change

acquire_lock(buf_lock)

...

if (count == N - 1)

wakeup(prod);

...

release_lock(buf_lock)
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Semaphores

• Dijkstra (1965) introduced two primitives that are more 
powerful than simple sleep and wakeup alone.
• P(): proberen, from Dutch to test.
• V(): verhogen, from Dutch to increment.
• Also called wait & signal, down & up.
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How do they work

• If a resource is not available, the corresponding semaphore 
blocks any process waiting for the resource
• Blocked processes are put into a process queue maintained 

by the semaphore (avoids busy waiting!)
•When a process releases a resource, it signals this by means 

of the semaphore
• Signalling resumes a blocked process if there is any, or stores 

the signal to be read by the next waiting task
•Wait (P) and signal (V) operations cannot be interrupted
• Complex coordination can be implemented by multiple 

semaphores
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Semaphore Implementation

•Define a semaphore as a record
typedef struct {
   int count;
   struct process *L;
} semaphore;

•Assume two simple operations:
• sleep suspends the process that invokes it.
•wakeup(P) resumes the execution of a blocked process P.
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• Semaphore operations now defined as 
wait(S):
while (S.count <= 0) { 
  add this process to S.L;
 sleep;
}

  S.count --;

signal(S):
S.count++;
if (S.count <= 1) {
  remove a process P from S.L;
  wakeup(P);
}
• Each primitive is atomic

• E.g. interrupts are disabled for each code fragment
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Semaphore Implementation of a Mutex

/* initialise mutex */

semaphore mutex;

mutex.count = 1;

/* enter the critcal region */

wait(mutex); 

critical();

/* exit the critical region */

signal(mutex);
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A semaphore can restrict 
a region to access by N 
threads.

If N=1, this implements 
mutual exclusion.

– A mutex object.
– Also called a lock.



Solving the producer-consumer problem 
with semaphores

#define N = 4

semaphore mutex = 1;

/* count empty slots */

semaphore empty = N;

/* count full slots */

semaphore full = 0; 
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Solving the producer-consumer problem 
with semaphores

prod() {

while(TRUE) {

item = produce();

wait(empty);

wait(mutex);

      insert_item();

signal(mutex);

signal(full);

}

}

con() {

while(TRUE) {

wait(full);

wait(mutex);

remove_item();

signal(mutex);

signal(empty);

}

}
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Summarising Semaphores

• Semaphores can be used to solve a variety of concurrency 
problems
• However, programming with them can be error-prone
• E.g. must signal for every wait for mutexes
• Too many, or too few signals or waits, or signals and waits in the wrong 

order, can have catastrophic results
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Monitors

•To ease concurrent programming, Hoare (1974) 
proposed monitors.
• A higher level synchronisation primitive
• Programming language construct

• Idea
• A set of procedures, variables, data types are grouped in a 

special kind of module, a monitor.
• Variables and data types only accessed from within the monitor

• Only one process/thread can be in the monitor at any one 
time
• Mutual exclusion is implemented by the compiler (which should be 

less error prone) 
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Monitor

• When a thread calls 
a monitor procedure 
that has a thread 
already inside, it is 
queued and it sleeps 
until the current 
thread exits the 
monitor.
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Monitors

Example of a monitor
26



Simple example

monitor counter {

int count;

procedure inc() {

count = count + 1;

}

procedure dec() {

count = count –1;

}

}

Note:  “paper” language
• Compiler guarantees only 

one thread can be active in 
the monitor at any one time
• Easy to see this provides 

mutual exclusion
• No race condition on count.

• For instance, synchronized 
methods in Java. 
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How do we block waiting for an event?

•We can use locks to block waiting for an object, held by 
another task
•We can use semaphores to solve the producer/consumer 

problem directly
•We would like a mechanism to block waiting for a kind of 

event (and also respect mutual exclusion)
– e.g. in the producer-consumer problem
– A blocked consumer is not waiting on just one producer

• Condition Variables
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Condition Variable

• To allow a process to wait within the monitor, a condition variable 
must be declared, as

condition x, y;
• Condition variable can only be used with the operations wait and 

signal.
• The operation

x.wait();
• means that the process invoking this operation is suspended until another process invokes
• Another thread can enter the monitor while original is suspended

x.signal();
• The x.signal operation resumes exactly one suspended process.  If no process is 

suspended, then the signal operation has no effect.
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Condition Variables
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Monitors

•Outline of producer-consumer problem with monitors
• only one monitor procedure active at one time
• buffer has N slots 31



OS/161 Provided Synchronisation Primitives

• Locks
• Semaphores
• Condition Variables
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Locks

• Functions to create and destroy locks

struct lock *lock_create(const char *name);

void         lock_destroy(struct lock *);

• Functions to acquire and release them

void         lock_acquire(struct lock *);

void         lock_release(struct lock *);
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Example use of locks

int count;

struct lock *count_lock

main() {

count = 0;

count_lock = 

lock_create(“count 
lock”);

if (count_lock == NULL)

panic(“I’m dead”);

stuff();

}

procedure inc() {

lock_acquire(count_lock);

count = count + 1;

lock_release(count_lock);

}

procedure dec() {

lock_acquire(count_lock);

count = count –1;

lock_release(count_lock);

}
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Semaphores

struct semaphore *sem_create(const char *name, int 
initial_count);

void              sem_destroy(struct semaphore *);

void              P(struct semaphore *);

void              V(struct semaphore *);
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Example use of Semaphores

int count;

struct semaphore 
*count_mutex;

main() {

count = 0;

count_mutex = 

sem_create(“count”, 
1);

if (count_mutex == NULL)

panic(“I’m dead”);

stuff();

}

procedure inc() {

P(count_mutex);

count = count + 1;

V(count_mutex);

}

procedure dec() {

P(count_mutex);

count = count –1;

V(count_mutex);

}

36



Condition Variables

struct cv *cv_create(const char *name);

void       cv_destroy(struct cv *);

void       cv_wait(struct cv *cv, struct lock *lock);
• Releases the lock and blocks
• Upon resumption, it re-acquires the lock
• Note: we must recheck the condition we slept on

void       cv_signal(struct cv *cv, struct lock *lock);

void       cv_broadcast(struct cv *cv, struct lock *lock);
• Wakes one/all, does not release the lock
• First “waiter” scheduled after signaller releases the lock will re-

acquire the lock 

Note: All three functions must hold the lock passed in.
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Condition Variables and Bounded Buffers

Non-solution
lock_acquire(c_lock) 
if (count == 0) 

sleep();
remove_item();
count--;
lock_release(c_lock)
;

Solution
lock_acquire(c_lock) 

while (count == 0) 

cv_wait(c_cv, c_lock);

remove_item();

count--;

lock_release(c_lock);
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Alternative Producer-Consumer Solution Using OS/161 
CVs

int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

lock_aquire(l) 

while (count == N)

    cv_wait(full,l);

insert_item(item);

count++;

cv_signal(empty,l);

lock_release(l)

}

}

con() {

while(TRUE) {

lock_acquire(l)

while (count == 0) 

         cv_wait(empty,l);

item = remove_item();

count--;

cv_signal(full,l);

lock_release(l);

consume(item); 

}

}

39



Dining Philosophers

•Philosophers eat/think
•Eating needs 2 forks
•Pick one fork at a time 
•How to prevent deadlock 
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Dining Philosophers

Solution to dining philosophers problem (part 1)41



Dining Philosophers

A nonsolution to the dining philosophers problem
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Dining Philosophers

Solution to dining philosophers problem (part 2)43
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The Readers and Writers Problem
•Models access to a database

• E.g. airline reservation system
• Can have more than one concurrent reader
• To check schedules and reservations

• Writers must have exclusive access
• To book a ticket or update a schedule
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The Readers and Writers Problem

A solution to the readers and writers problem46
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