
Concurrency and
Synchronisation

Part II

1

Learning Outcomes

•Understand concurrency is an issue in operating
systems and multithreaded applications
•Know the concept of a critical region.
•Understand how mutual exclusion of critical regions

can be used to solve concurrency issues
• Including how mutual exclusion can be implemented

correctly and efficiently.
•Be able to identify and solve a producer consumer

bounded buffer problem.
•Understand and apply standard synchronisation

primitives to solve synchronisation problems.

2

Textbook

• Sections 2.3 - 2.3.7 & 2.5

3

Accessing Critical Regions

Mutual exclusion using critical regions

4

 A critical region is a region of code where shared resources are
accessed.

Test-and-Set

•We can use test-and-set to implement lock() and
unlock() primitives
•Pros
• Simple (easy to show it’s correct)
• Available at user-level
• To any number of processors
• To implement any number of lock variables

•Cons
• Busy waits (also termed a spin lock)
• Consumes CPU
• Starvation is possible when a process leaves its critical section and

more than one process is waiting.

5

Tackling the Busy-Wait Problem

• Sleep / Wakeup
• The idea
• When process is waiting for an event, it calls sleep to block, instead of

busy waiting.
• The event happens, the event generator (another process) calls wakeup

to unblock the sleeping process.
• Waking a ready/running process has no effect.

6

The Producer-Consumer Problem

•Also called the bounded buffer problem
•A producer produces data items and stores the items

in a buffer
•A consumer takes the items out of the buffer and

consumes them.

7

X X X

Producer

Consumer

Issues

•We must keep an accurate count of items in buffer
• Producer
• should sleep when the buffer is full,
• and wakeup when there is empty space in the buffer

• The consumer can call wakeup when it consumes the first entry of the full buffer
• Consumer
• should sleep when the buffer is empty
• and wake up when there are items available

• Producer can call wakeup when it adds the first item to the buffer

8

X X X

Producer

Consumer

Pseudo-code for producer and consumer

int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep(prod);

insert_item(item);

count++;

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0)

sleep(con);

remove_item();

count--;

if (count == N-1)

wakeup(prod);

}

}

9

Problems

int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep(prod);

insert_item(item);

count++;

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0)

sleep(con);

remove_item();

count--;

if (count == N-1)

wakeup(prod);

}

}

10

Concurrent uncontrolled
access to the buffer

Problems

int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep(prod);

insert_item(item);

count++;

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0)

sleep(con);

remove_item();

count--;

if (count == N-1)

wakeup(prod);

}

}

11

Concurrent uncontrolled
access to the counter

Proposed Solution

• Lets use a locking primitive based on test-and-set to protect
the concurrent access

12

Proposed solution?

int count = 0;

lock_t buf_lock;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep(prod);

acquire_lock(buf_lock)

insert_item(item);

count++;

release_lock(buf_lock)

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0)

sleep(con);

acquire_lock(buf_lock)

remove_item();

count--;

release_lock(buf_lock);

if (count == N-1)

wakeup(prod);

}

}

13

Problematic execution sequence

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep(prod);

acquire_lock(buf_lock)

insert_item(item);

count++;

release_lock(buf_lock)

if (count == 1)

wakeup(con);

con() {

while(TRUE) {

if (count == 0)

sleep(con);

acquire_lock(buf_lock)

remove_item();

count--;

release_lock(buf_lock);

if (count == N-1)

wakeup(prod);

}

}

14

wakeup without a
matching sleep is lost

Problem

• The test for some condition
and actually going to sleep
needs to be atomic
• The following does not

work:

acquire_lock(buf_lock)

...

if (count == N)

sleep(prod);

...

release_lock(buf_lock)

The lock is held while asleep
 count will never change

acquire_lock(buf_lock)

...

if (count == N - 1)

wakeup(prod);

...

release_lock(buf_lock)

15

Semaphores

• Dijkstra (1965) introduced two primitives that are more
powerful than simple sleep and wakeup alone.
• P(): proberen, from Dutch to test.
• V(): verhogen, from Dutch to increment.
• Also called wait & signal, down & up.

16

How do they work

• If a resource is not available, the corresponding semaphore
blocks any process waiting for the resource
• Blocked processes are put into a process queue maintained

by the semaphore (avoids busy waiting!)
•When a process releases a resource, it signals this by means

of the semaphore
• Signalling resumes a blocked process if there is any, or stores

the signal to be read by the next waiting task
•Wait (P) and signal (V) operations cannot be interrupted
• Complex coordination can be implemented by multiple

semaphores

17

Semaphore Implementation

•Define a semaphore as a record
typedef struct {
 int count;
 struct process *L;
} semaphore;

•Assume two simple operations:
• sleep suspends the process that invokes it.
•wakeup(P) resumes the execution of a blocked process P.

18

• Semaphore operations now defined as
wait(S):
while (S.count <= 0) {
 add this process to S.L;
 sleep;
}

 S.count --;

signal(S):
S.count++;
if (S.count <= 1) {
 remove a process P from S.L;
 wakeup(P);
}
• Each primitive is atomic

• E.g. interrupts are disabled for each code fragment

19

Semaphore Implementation of a Mutex

/* initialise mutex */

semaphore mutex;

mutex.count = 1;

/* enter the critcal region */

wait(mutex);

critical();

/* exit the critical region */

signal(mutex);

20

A semaphore can restrict
a region to access by N
threads.

If N=1, this implements
mutual exclusion.

– A mutex object.
– Also called a lock.

Solving the producer-consumer problem
with semaphores

#define N = 4

semaphore mutex = 1;

/* count empty slots */

semaphore empty = N;

/* count full slots */

semaphore full = 0;

21

Solving the producer-consumer problem
with semaphores

prod() {

while(TRUE) {

item = produce();

wait(empty);

wait(mutex);

 insert_item();

signal(mutex);

signal(full);

}

}

con() {

while(TRUE) {

wait(full);

wait(mutex);

remove_item();

signal(mutex);

signal(empty);

}

}

22

Summarising Semaphores

• Semaphores can be used to solve a variety of concurrency
problems
• However, programming with them can be error-prone
• E.g. must signal for every wait for mutexes
• Too many, or too few signals or waits, or signals and waits in the wrong

order, can have catastrophic results

23

Monitors

•To ease concurrent programming, Hoare (1974)
proposed monitors.
• A higher level synchronisation primitive
• Programming language construct

• Idea
• A set of procedures, variables, data types are grouped in a

special kind of module, a monitor.
• Variables and data types only accessed from within the monitor

• Only one process/thread can be in the monitor at any one
time
• Mutual exclusion is implemented by the compiler (which should be

less error prone)

24

Monitor

• When a thread calls
a monitor procedure
that has a thread
already inside, it is
queued and it sleeps
until the current
thread exits the
monitor.

25

Monitors

Example of a monitor
26

Simple example

monitor counter {

int count;

procedure inc() {

count = count + 1;

}

procedure dec() {

count = count –1;

}

}

Note: “paper” language
• Compiler guarantees only

one thread can be active in
the monitor at any one time
• Easy to see this provides

mutual exclusion
• No race condition on count.

• For instance, synchronized
methods in Java.

27

How do we block waiting for an event?

•We can use locks to block waiting for an object, held by
another task
•We can use semaphores to solve the producer/consumer

problem directly
•We would like a mechanism to block waiting for a kind of

event (and also respect mutual exclusion)
– e.g. in the producer-consumer problem
– A blocked consumer is not waiting on just one producer

• Condition Variables

28

Condition Variable

• To allow a process to wait within the monitor, a condition variable
must be declared, as

condition x, y;
• Condition variable can only be used with the operations wait and

signal.
• The operation

x.wait();
• means that the process invoking this operation is suspended until another process invokes
• Another thread can enter the monitor while original is suspended

x.signal();
• The x.signal operation resumes exactly one suspended process. If no process is

suspended, then the signal operation has no effect.

29

Condition Variables

30

Monitors

•Outline of producer-consumer problem with monitors
• only one monitor procedure active at one time
• buffer has N slots 31

OS/161 Provided Synchronisation Primitives

• Locks
• Semaphores
• Condition Variables

32

Locks

• Functions to create and destroy locks

struct lock *lock_create(const char *name);

void lock_destroy(struct lock *);

• Functions to acquire and release them

void lock_acquire(struct lock *);

void lock_release(struct lock *);

33

Example use of locks

int count;

struct lock *count_lock

main() {

count = 0;

count_lock =

lock_create(“count
lock”);

if (count_lock == NULL)

panic(“I’m dead”);

stuff();

}

procedure inc() {

lock_acquire(count_lock);

count = count + 1;

lock_release(count_lock);

}

procedure dec() {

lock_acquire(count_lock);

count = count –1;

lock_release(count_lock);

}

34

Semaphores

struct semaphore *sem_create(const char *name, int
initial_count);

void sem_destroy(struct semaphore *);

void P(struct semaphore *);

void V(struct semaphore *);

35

Example use of Semaphores

int count;

struct semaphore
*count_mutex;

main() {

count = 0;

count_mutex =

sem_create(“count”,
1);

if (count_mutex == NULL)

panic(“I’m dead”);

stuff();

}

procedure inc() {

P(count_mutex);

count = count + 1;

V(count_mutex);

}

procedure dec() {

P(count_mutex);

count = count –1;

V(count_mutex);

}

36

Condition Variables

struct cv *cv_create(const char *name);

void cv_destroy(struct cv *);

void cv_wait(struct cv *cv, struct lock *lock);
• Releases the lock and blocks
• Upon resumption, it re-acquires the lock
• Note: we must recheck the condition we slept on

void cv_signal(struct cv *cv, struct lock *lock);

void cv_broadcast(struct cv *cv, struct lock *lock);
• Wakes one/all, does not release the lock
• First “waiter” scheduled after signaller releases the lock will re-

acquire the lock

Note: All three functions must hold the lock passed in.

37

Condition Variables and Bounded Buffers

Non-solution
lock_acquire(c_lock)
if (count == 0)

sleep();
remove_item();
count--;
lock_release(c_lock)
;

Solution
lock_acquire(c_lock)

while (count == 0)

cv_wait(c_cv, c_lock);

remove_item();

count--;

lock_release(c_lock);

38

Alternative Producer-Consumer Solution Using OS/161
CVs

int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

lock_aquire(l)

while (count == N)

 cv_wait(full,l);

insert_item(item);

count++;

cv_signal(empty,l);

lock_release(l)

}

}

con() {

while(TRUE) {

lock_acquire(l)

while (count == 0)

 cv_wait(empty,l);

item = remove_item();

count--;

cv_signal(full,l);

lock_release(l);

consume(item);

}

}

39

Dining Philosophers

•Philosophers eat/think
•Eating needs 2 forks
•Pick one fork at a time
•How to prevent deadlock

40

Dining Philosophers

Solution to dining philosophers problem (part 1)41

Dining Philosophers

A nonsolution to the dining philosophers problem

42

Dining Philosophers

Solution to dining philosophers problem (part 2)43

44

The Readers and Writers Problem
•Models access to a database

• E.g. airline reservation system
• Can have more than one concurrent reader
• To check schedules and reservations

• Writers must have exclusive access
• To book a ticket or update a schedule

45

The Readers and Writers Problem

A solution to the readers and writers problem46

	Concurrency and Synchronisation
	Learning Outcomes
	Textbook
	Accessing Critical Regions
	Test-and-Set
	Tackling the Busy-Wait Problem
	The Producer-Consumer Problem
	Issues
	Pseudo-code for producer and consumer
	Problems
	Problems (2)
	Proposed Solution
	Proposed solution?
	Problematic execution sequence
	Problem
	Semaphores
	How do they work
	Semaphore Implementation
	Slide 19
	Semaphore Implementation of a Mutex
	Solving the producer-consumer problem with semaphores
	Solving the producer-consumer problem with semaphores (2)
	Summarising Semaphores
	Monitors
	Monitor
	Monitors (2)
	Simple example
	How do we block waiting for an event?
	Condition Variable
	Condition Variables
	Monitors (3)
	OS/161 Provided Synchronisation Primitives
	Locks
	Example use of locks
	Semaphores (2)
	Example use of Semaphores
	Condition Variables (2)
	Condition Variables and Bounded Buffers
	Alternative Producer-Consumer Solution Using OS/161 CVs
	Dining Philosophers
	Dining Philosophers (2)
	Dining Philosophers (3)
	Dining Philosophers (4)
	Slide 44
	The Readers and Writers Problem
	The Readers and Writers Problem (2)

