
Concurrency and
Synchronisation

Part II

1

Learning Outcomes

• Understand concurrency is an issue in operating
systems and multithreaded applications

• Know the concept of a critical region.
• Understand how mutual exclusion of critical regions

can be used to solve concurrency issues
• Including how mutual exclusion can be implemented

correctly and efficiently.
• Be able to identify and solve a producer consumer

bounded buffer problem.
• Understand and apply standard synchronisation

primitives to solve synchronisation problems.

2

Textbook

• Sections 2.3 - 2.3.7 & 2.5

3

Accessing Critical Regions

Mutual exclusion using critical regions

4

 A critical region is a region of code where shared resources are
accessed.

Test-and-Set

• We can use test-and-set to implement lock() and
unlock() primitives

• Pros
• Simple (easy to show it’s correct)
• Available at user-level

• To any number of processors
• To implement any number of lock variables

• Cons
• Busy waits (also termed a spin lock)

• Consumes CPU
• Starvation is possible when a process leaves its critical section and

more than one process is waiting.

5

Tackling the Busy-Wait Problem

• Sleep / Wakeup
• The idea

• When process is waiting for an event, it calls sleep to block, instead of
busy waiting.

• The event happens, the event generator (another process) calls wakeup
to unblock the sleeping process.

• Waking a ready/running process has no effect.

6

The Producer-Consumer Problem

• Also called the bounded buffer problem
• A producer produces data items and stores the items

in a buffer
• A consumer takes the items out of the buffer and

consumes them.

7

X X X

Producer

Consumer

Issues

• We must keep an accurate count of items in buffer
• Producer

• should sleep when the buffer is full,
• and wakeup when there is empty space in the buffer

• The consumer can call wakeup when it consumes the first entry of the full buffer
• Consumer

• should sleep when the buffer is empty
• and wake up when there are items available

• Producer can call wakeup when it adds the first item to the buffer

8

X X X

Producer

Consumer

Pseudo-code for producer and consumer

int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep(prod);

insert_item(item);

count++;

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0)

sleep(con);

remove_item();

count--;

if (count == N-1)

wakeup(prod);

}

}

9

Problems

int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep(prod);

insert_item(item);

count++;

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0)

sleep(con);

remove_item();

count--;

if (count == N-1)

wakeup(prod);

}

}

10

Concurrent uncontrolled
access to the buffer

Problems

int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep(prod);

insert_item(item);

count++;

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0)

sleep(con);

remove_item();

count--;

if (count == N-1)

wakeup(prod);

}

}

11

Concurrent uncontrolled
access to the counter

Proposed Solution

• Lets use a locking primitive based on test-and-set to protect
the concurrent access

12

Proposed solution?

int count = 0;

lock_t buf_lock;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep(prod);

acquire_lock(buf_lock)

insert_item(item);

count++;

release_lock(buf_lock)

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0)

sleep(con);

acquire_lock(buf_lock)

remove_item();

count--;

release_lock(buf_lock);

if (count == N-1)

wakeup(prod);

}

}

13

Problematic execution sequence

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep(prod);

acquire_lock(buf_lock)

insert_item(item);

count++;

release_lock(buf_lock)

if (count == 1)

wakeup(con);

con() {

while(TRUE) {

if (count == 0)

sleep(con);

acquire_lock(buf_lock)

remove_item();

count--;

release_lock(buf_lock);

if (count == N-1)

wakeup(prod);

}

}

14

wakeup without a
matching sleep is lost

Problem

• The test for some condition
and actually going to sleep
needs to be atomic

• The following does not
work:

acquire_lock(buf_lock)

...

if (count == N)

sleep(prod);

...

release_lock(buf_lock)

The lock is held while asleep
 count will never change

acquire_lock(buf_lock)

...

if (count == N - 1)

wakeup(prod);

...

release_lock(buf_lock)

15

Semaphores

• Dijkstra (1965) introduced two primitives that are more
powerful than simple sleep and wakeup alone.

• P(): proberen, from Dutch to test.
• V(): verhogen, from Dutch to increment.
• Also called wait & signal, down & up.

16

How do they work

• If a resource is not available, the corresponding semaphore
blocks any process waiting for the resource

• Blocked processes are put into a process queue maintained
by the semaphore (avoids busy waiting!)

• When a process releases a resource, it signals this by means
of the semaphore

• Signalling resumes a blocked process if there is any, or stores
the signal to be read by the next waiting task

• Wait (P) and signal (V) operations cannot be interrupted
• Complex coordination can be implemented by multiple

semaphores

17

Semaphore Implementation

• Define a semaphore as a record
typedef struct {
 int count;
 struct process *L;
} semaphore;

• Assume two simple operations:
• sleep suspends the process that invokes it.
• wakeup(P) resumes the execution of a blocked process P.

18

• Semaphore operations now defined as
wait(S):
while (S.count <= 0) {
 add this process to S.L;
 sleep;
}

 S.count --;

signal(S):
S.count++;
if (S.count <= 1) {
 remove a process P from S.L;
 wakeup(P);
}

• Each primitive is atomic
• E.g. interrupts are disabled for each code fragment

19

Semaphore Implementation of a Mutex

/* initialise mutex */

semaphore mutex;

mutex.count = 1;

/* enter the critcal region */

wait(mutex);

critical();

/* exit the critical region */

signal(mutex);

20

A semaphore can restrict
a region to access by N
threads.

If N=1, this implements
mutual exclusion.

– A mutex object.
– Also called a lock.

Solving the producer-consumer problem
with semaphores

#define N = 4

semaphore mutex = 1;

/* count empty slots */

semaphore empty = N;

/* count full slots */

semaphore full = 0;

21

Solving the producer-consumer problem
with semaphores

prod() {

while(TRUE) {

item = produce();

wait(empty);

wait(mutex);

 insert_item();

signal(mutex);

signal(full);

}

}

con() {

while(TRUE) {

wait(full);

wait(mutex);

remove_item();

signal(mutex);

signal(empty);

}

}

22

Summarising Semaphores

• Semaphores can be used to solve a variety of concurrency
problems

• However, programming with them can be error-prone
• E.g. must signal for every wait for mutexes

• Too many, or too few signals or waits, or signals and waits in the wrong
order, can have catastrophic results

23

Monitors

• To ease concurrent programming, Hoare (1974)
proposed monitors.

• A higher level synchronisation primitive
• Programming language construct

• Idea
• A set of procedures, variables, data types are grouped in a

special kind of module, a monitor.
• Variables and data types only accessed from within the monitor

• Only one process/thread can be in the monitor at any one
time

• Mutual exclusion is implemented by the compiler (which should be
less error prone)

24

Monitor

• When a thread calls
a monitor procedure
that has a thread
already inside, it is
queued and it sleeps
until the current
thread exits the
monitor.

25

Monitors

Example of a monitor
26

Simple example

monitor counter {

int count;

procedure inc() {

count = count + 1;

}

procedure dec() {

count = count –1;

}

}

Note: “paper” language
• Compiler guarantees only

one thread can be active in
the monitor at any one time

• Easy to see this provides
mutual exclusion

• No race condition on count.

• For instance, synchronized
methods in Java.

27

How do we block waiting for an event?

• We can use locks to block waiting for an object, held by
another task

• We can use semaphores to solve the producer/consumer
problem directly

• We would like a mechanism to block waiting for a kind of
event (and also respect mutual exclusion)

– e.g. in the producer-consumer problem
– A blocked consumer is not waiting on just one producer

• Condition Variables

28

Condition Variable

• To allow a process to wait within the monitor, a condition variable
must be declared, as

condition x, y;
• Condition variable can only be used with the operations wait and

signal.
• The operation

x.wait();
• means that the process invoking this operation is suspended until another process invokes
• Another thread can enter the monitor while original is suspended

x.signal();
• The x.signal operation resumes exactly one suspended process. If no process is

suspended, then the signal operation has no effect.

29

Condition Variables

30

Monitors

• Outline of producer-consumer problem with monitors
• only one monitor procedure active at one time
• buffer has N slots 31

OS/161 Provided Synchronisation Primitives

• Locks
• Semaphores
• Condition Variables

32

Locks

• Functions to create and destroy locks

struct lock *lock_create(const char *name);

void lock_destroy(struct lock *);

• Functions to acquire and release them

void lock_acquire(struct lock *);

void lock_release(struct lock *);

33

Example use of locks

int count;

struct lock *count_lock

main() {

count = 0;

count_lock =

lock_create(“count
lock”);

if (count_lock == NULL)

panic(“I’m dead”);

stuff();

}

procedure inc() {

lock_acquire(count_lock);

count = count + 1;

lock_release(count_lock);

}

procedure dec() {

lock_acquire(count_lock);

count = count –1;

lock_release(count_lock);

}

34

Semaphores

struct semaphore *sem_create(const char *name, int
initial_count);

void sem_destroy(struct semaphore *);

void P(struct semaphore *);

void V(struct semaphore *);

35

Example use of Semaphores

int count;

struct semaphore
*count_mutex;

main() {

count = 0;

count_mutex =

sem_create(“count”,
1);

if (count_mutex == NULL)

panic(“I’m dead”);

stuff();

}

procedure inc() {

P(count_mutex);

count = count + 1;

V(count_mutex);

}

procedure dec() {

P(count_mutex);

count = count –1;

V(count_mutex);

}

36

Condition Variables

struct cv *cv_create(const char *name);
void cv_destroy(struct cv *);

void cv_wait(struct cv *cv, struct lock *lock);
• Releases the lock and blocks
• Upon resumption, it re-acquires the lock

• Note: we must recheck the condition we slept on

void cv_signal(struct cv *cv, struct lock *lock);
void cv_broadcast(struct cv *cv, struct lock *lock);

• Wakes one/all, does not release the lock
• First “waiter” scheduled after signaller releases the lock will re-

acquire the lock

Note: All three functions must hold the lock passed in.

37

Condition Variables and Bounded Buffers

Non-solution
lock_acquire(c_lock)
if (count == 0)

sleep();
remove_item();
count--;
lock_release(c_lock)
;

Solution
lock_acquire(c_lock)

while (count == 0)

cv_wait(c_cv, c_lock);

remove_item();

count--;

lock_release(c_lock);

38

Alternative Producer-Consumer Solution Using OS/161
CVs

int count = 0;
#define N 4 /* buf size */
prod() {
while(TRUE) {

item = produce()
lock_aquire(l)
while (count == N)
 cv_wait(full,l);
insert_item(item);
count++;
cv_signal(empty,l);
lock_release(l)

}
}

con() {
while(TRUE) {

lock_acquire(l)
while (count == 0)

 cv_wait(empty,l);
item = remove_item();
count--;
cv_signal(full,l);
lock_release(l);
consume(item);

}
}

39

Dining Philosophers

• Philosophers eat/think
• Eating needs 2 forks
• Pick one fork at a time
• How to prevent deadlock

40

Dining Philosophers

Solution to dining philosophers problem (part 1)41

Dining Philosophers

A nonsolution to the dining philosophers problem

42

Dining Philosophers

Solution to dining philosophers problem (part 2)43 44

The Readers and Writers Problem
• Models access to a database

• E.g. airline reservation system
• Can have more than one concurrent reader

• To check schedules and reservations
• Writers must have exclusive access

• To book a ticket or update a schedule

45

The Readers and Writers Problem

A solution to the readers and writers problem46

The Sleeping Barber Problem

47

The Sleeping Barber Problem

48Solution to sleeping barber problem.

See the textbook

FYI

• Counting semaphores versus binary semaphores:
• In a counting semaphore, count can take arbitrary integer values
• In a binary semaphore, count can only be 0 or 1

• Can be easier to implement
• Counting semaphores can be implemented in terms of binary

semaphores (how?)

• Strong semaphores versus weak semaphores:
• In a strong semaphore, the queue adheres to the FIFO policy
• In a weak semaphore, any process may be taken from the queue
• Strong semaphores can be implemented in terms of weak semaphores

(how?)

49

Concurrency on a shared data structure

Two processes want to access shared memory at same time

50

We have a
race

condition

Making Single-Threaded Code Multithreaded

Conflicts between threads over the use of a global variable

51

A Producer-Consumer Solution Using OS/161 CVs

int count = 0;
#define N 4 /* buf size */
prod() {
while(TRUE) {
item = produce()
lock_aquire(l)
while (count == N)
 cv_wait(full,l);
insert_item(item);
count++;
if (count == 1)

cv_signal(empty,l);
lock_release(l)
}

}

con() {

while(TRUE) {

lock_acquire(l)

while (count == 0)

 cv_wait(empty,l);

item = remove_item();

count--;

if (count == N-1)

 cv_signal(full,l);

lock_release(l);

consume(item);

}

}

52

Peterson’s Solution

• For the curious
• Avoids strict alternation

• see the textbook
• or Internet

53

