Concurrency and
Synchronisation

Part Il

1 UNSW

Textbook

* Sections 2.3-2.3.7 & 2.5

3 UNSW

Test-and-Set

*We can use test-and-set to implement lock() and
unlock() primitives

*Pros
* Simple (easy to show it’s correct)
* Available at user-level
* To any number of processors
* To implement any number of lock variables
*Cons
* Busy waits (also termed a spin lock)
* Consumes CPU

* Starvation is possible when a process leaves its critical section and
more than one process is waiting.

Learning Outcomes

* Understand concurrency is an issue in operating
systems and multithreaded applications

*Know the concept of a critical region.

* Understand how mutual exclusion of critical regions
can be used to solve concurrency issues
* Including how mutual exclusion can be implemented
correctly and efficiently.
*Be able to identify and solve a producer consumer
bounded buffer problem.

*Understand and apply standard synchronisation
primitives to solve synchronisation problems.

Accessing Critical Regions

= A critical region is a region of code where shared resources are
accessed.

A enters critical region
Aleaves critical region

Process A

| |
|
| B leaves

|
| Battempisto B enters
critical region

enter critical | critical region

V region h
)

I F

P

I I

B blocked '

T T Te

Process B

[T

Time ——>

Mutual exclusion using critical regions

4 g UNSW
Tackling the Busy-Wait Problem
* Sleep / Wakeup
* The idea
* When process is waiting for an event, it calls sleep to block, instead of
busy waiting.

* The event happens, the event generator (another process) calls wakeup
to unblock the sleeping process.

* Waking a ready/running process has no effect.

The Producer-Consumer Problem

* Also called the bounded buffer problem

* A producer produces data items and stores the items
in a buffer

* A consumer takes the items out of the buffer and
consumes them.

Producer

Consumer

7 Eunsw

Pseudo-code for producer and consumer

int count = 0; con() {
#define N 4 /* buf size */ while(TRUE) {
prod() { if (count == @)
while(TRUE) { sleep(con);
item = produce() remove_item();
if (count == N) count--;
sleep(prod); if (count == N-1)
insert_item(item); wakeup (prod);
count++; }
if (count == 1) 3
wakeup(con);
}
}
9 FEUNSW
Problems
int count = 0; con() {
#define N 4 /* buf size */ while(TRUE) {
prod() { if (count == 0)
while(TRUE) { sleep(con);
item = produce() remove_item();
if (count == N) count--;
sleep(prod); if (count == N-1)
insert_item(ieem); wakeup(prod) :
q_:ount++; } Concurrent uncontrolled
if (count == 1) 3 access to the counter
wakeup(con);
}
}

1 B uNsw

Issues

* We must keep an accurate count of items in buffer
* Producer
* should sleep when the buffer is full,
« and wakeup when there is empty space in the buffer
* The consumer can call wakeup when it consumes the first entry of the full buffer
¢ Consumer
* should sleep when the buffer is empty
* and wake up when there are items available
* Producer can call wakeup when it adds the first item to the buffer

Producer
-
Consumer 8 @UNSW
Problems
int count = 0; con() {
#define N 4 /* buf size */ while(TRUE) {
prod() { if (count == 0)
while(TRUE) { sleep(con);
item = produce() remove_item();
if (count == N) count--;
sleep(prod count == N-1)
insert_item(item); orod):
4+
(-:oun i - } Concurrent uncontrolled
if (count == 1) } access to the buffer

wakeup(con);

10 Fusw

Proposed Solution

* Lets use a locking primitive based on test-and-set to protect
the concurrent access

12 % UNSW

Proposed solution?

int count = 0;
lock_t buf_lock;
#define N 4 /* buf size */
prod() {
while(TRUE) {
item = produce()
if (count == N)
sleep(prod);
acquire_lock(buf_lock)
insert_item(item);

while(TRUE) {

if (count == 0)
sleep(con);
acquire_lock(buf_lock)

remove_item();
count--;
release_lock(buf_lock);

Problematic execution sequence

prod() {
while(TRUE) {

item = produce()

if (count == N)
sleep(prod);

acquire_lock(buf_lock)

insert_item(item);

count++;

release_lock(buf_lock)

if (count == 1)
wakeup(con);

con() {

while(TRUE) {
if (count == @)

wakeup without a
matching sleep is lost

sleep(con) ;
acquire_lock(buf_lock)
remove_item();

count++; if (count == N-1)

release_lock(buf lock) wakeup(prod) ;

if (count == 1) }

wakeup(con); }
}
}
13 B UNSW

Problem

* The test for some condition ~ The lock is held while asleep
and actually going to sleep = count will never change
needs to be atomic

* The following does not
work:

acquire_lock(buf_lock) acquire_lock(buf_lock)

if (count == N) if (count == N - 1)
sleep(prod); wakeup(prod);

release_lock(buf_lock) release_lock(buf_lock)

How do they work

* If a resource is not available, the corresponding semaphore
blocks any process waiting for the resource

* Blocked processes are put into a process queue maintained
by the semaphore (avoids busy waiting!)

* When a process releases a resource, it signals this by means
of the semaphore

* Signalling resumes a blocked process if there is any, or stores
the signal to be read by the next waiting task

* Wait (P) and signal (V) operations cannot be interrupted

* Complex coordination can be implemented by multiple
semaphores

count--;

release_lock(buf_lock);
if (count == N-1)
wakeup(prod) ;

}

14 & UNSW

Semaphores

* Dijkstra (1965) introduced two primitives that are more
powerful than simple sleep and wakeup alone.
* P(): proberen, from Dutch to test.
* V(): verhogen, from Dutch to increment.
* Also called wait & signal, down & up.

Semaphore Implementation

* Define a semaphore as a record
typedef struct {
int count;

struct process *L;
} semaphore;

* Assume two simple operations:
* sleep suspends the process that invokes it.
» wakeup(P) resumes the execution of a blocked process P.

18 o UNSW

* Semaphore operations now defined as
wait(S):
while (S.count <=0) {

add this process to S.L;
sleep;

}

S.count --;

signal(S):
S.count++;

if (S.count <= 1) {

remove a process P from S.L;
wakeup(P);

}
* Each primitive is atomic
* E.g. interrupts are disabled for each code fragment

Solving the producer-consumer problem
with semaphores

#define N = 4
semaphore mutex = 1;

/* count empty slots */
semaphore empty = N;

/* count full slots */
semaphore full = 0;

Summarising Semaphores

* Semaphores can be used to solve a variety of concurrency
problems

* However, programming with them can be error-prone
* E.g. must signal for every wait for mutexes

* Too many, or too few signals or waits, or signals and waits in the wrong
order, can have catastrophic results

Semaphore Implementation of a Mutex

/* initialise mutex */ A semaphore can restrict
semaphore mutex; a region to access by N
mutex.count = 1;

threads.

/* enter the critcal region */
wait(mutex);

If N=1, this implements

- mutual exclusion.
critical();

— A mutex object.
/* exit the critical region */

.) - Also called a lock.
signal(mutex);

20 B UNSW

Solving the producer-consumer problem
with semaphores

prod() { con() {
while(TRUE) { while(TRUE) {
item = produce(); wait(full);
wait(empty); wait(mutex);
wait(mutex); remove_item();
insert_item(); signal(mutex);
signal(mutex); signal(empty);
signal(full); }
} }
}
22 o UNSW
Monitors

*To ease concurrent programming, Hoare (1974)
proposed monitors.
* A higher level synchronisation primitive
* Programming language construct
*Idea
* A set of procedures, variables, data types are grouped in a
special kind of module, a monitor.
* Variables and data types only accessed from within the monitor
* Only one process/thread can be in the monitor at any one
time
¢ Mutual exclusion is implemented by the compiler (which should be
less error prone)

Monitor

entry queue

* When a thread calls
a monitor procedure
that has a thread
already inside, it is
queued and it sleeps
until the current
thread exits the
monitor.

shared data

operations

initialization
code

Simple example

monitor counter { Note: “paper” language

int count; * Compiler guarantees only
procedure inc() { one thread can be active in
count = count + 1; the monitor at any one time
} * Easy to see this provides
procedure dec() { mutual exclusion
count = count -1; * No race condition on count.
} * For instance, synchronized
} methods in Java.
27 B UNSW

Condition Variable

* To allow a process to wait within the monitor, a condition variable
must be declared, as
condition x, y;
* Condition variable can only be used with the operations wait and
signal.
* The operation
x.wait();

* means that the process invoking this operation is suspended until another process invokes
* Another thread can enter the monitor while original is suspended
x.signal();

* The x.signal operation resumes exactly one suspended process. If no process is
suspended, then the signal operation has no effect.

29 FUNSw

Monitors

monitor example
integer i;
condition c;

procedure producer();

end;

procedure consumer();

end;
end monitor:

Example of a monitor
26 B UNSW

How do we block waiting for an event?

* We can use locks to block waiting for an object, held by
another task

* We can use semaphores to solve the producer/consumer
problem directly

* We would like a mechanism to block waiting for a kind of
event (and also respect mutual exclusion)

- e.g. in the producer-consumer problem
— A blocked consumer is not waiting on just one producer
* Condition Variables

28 BUNSW

Condition Variables

entry queue

shared data

i

operations

lqueues associated with
X, y conditions

initialization
code

30 s UNSW

Monitors

monitor ProducerConsumer

rocedure producer;
condition full, empty; P e

- . begin
integer m"f”') . while true do
procedure insert(item: integer); begin
htglﬂ.f N then wait(ful): item = produce_item;
H.couns=.V then wail (full); ProducerConsumer.insert(item)
insert_item(item);
end
count = count + 1; end;
" il count = 1 then signal(empty) procedure consumer;
Fn 7[‘ p) begin
hun.c ion remove: integer; while (rue do
egm‘l‘ 0 th it(g
y -) . Y
i wlml_ e‘.'l wa ?‘”WD)' item = ProducerConsumer.remove;
remove = remove _itent; consume _item(item)
count := count — 1; end
if count = N — 1 then signal(full) end:
end; |
count :=0;

end monitor;

*Qutline of producer-consumer problem with monitors
* only one monitor procedure active at one time

* buffer has N slots 81

Locks
* Functions to create and destroy locks

struct lock *lock_create(const char *name);
void lock_destroy(struct lock *);

* Functions to acquire and release them

void lock_acquire(struct lock *);
void lock_release(struct lock *);

Semaphores

struct semaphore *sem_create(const char *name, int
initial_count);

void sem_destroy(struct semaphore *);
void P(struct semaphore *);
void V(struct semaphore *);

35@

0S/161 Provided Synchronisation Primitives

* Locks
* Semaphores
* Condition Variables

Example use of locks

int count;
struct lock *count_lock

main() {
count = 0;
count_lock =

lock_create(“count
lock”);

if (count_lock == NULL)
panic(“I'm dead”);
stuff();
}

32 d

procedure inc() {
lock_acquire(count_1lock);
count = count + 1;
lock_release(count_lock);

}

procedure dec() {
lock_acquire(count_1lock);
count = count -1;
lock_release(count_lock);

}

34@

Example use of Semaphores

int count;

struct semaphore
*count_mutex;

main() {
count = 0;
count_mutex =
sem_create(“count”,
1);
if (count_mutex == NULL)
panic(“I'm dead”);
stuff();
}

procedure inc() {
P(count_mutex);
count = count + 1;
V(count_mutex);

}

procedure dec() {
P(count_mutex);
count = count -1;
V(count_mutex);

3

UNSW

UNSW

36 T UNSW

Condition Variables

struct cv *cv_create(const char *name);
void cv_destroy(struct cv *);

void cv_wait(struct cv *cv, struct lock *lock);
* Releases the lock and blocks
* Upon resumption, it re-acquires the lock
* Note: we must recheck the condition we slept on

void cv_signal(struct cv *cv, struct lock *lock);
void cv_broadcast(struct cv *cv, struct lock *lock);
* Wakes one/all, does not release the lock

* First “waiter” scheduled after signaller releases the lock will re-
acquire the lock

Note: All three functions must hold the lock passed in.

37 UNSW

élternative Producer-Consumer Solution Using OS/161
Vs

int count = 0;
#define N 4 /* buf size */

Condition Variables and Bounded Buffers

Non-solution
lock_acquire(c_lock)
if (count == 0)
sleep();
remove_item();
count--;
lock_release(c_lock)

r

Dining Philosophers

¢ Philosophers eat/think

Solution
lock_acquire(c_lock)
while (count == 0)

cv_wait(c_cv, c_lock);
remove_item();
count--;
lock_release(c_lock);

2 UNsw

38

prod() {
while(TRUE) {

con() {
while(TRUE) {

¢ Eating needs 2 forks

item = produce() lock_acquire(1)
lock_aquire(1) while (count == 0)
while (count == N) cv_wait(empty, 1);

cv_wait(full, 1); item = remove_item();
insert_item(item); count--;
count++; cv_signal(full,l);

cv_signal(empty, 1);
lock_release(1)

lock_release(1);
consume (item);

} }
} }
39
Dining Philosophers
#define N 5 /* number of philosophers */

#define LEFT i+N-1)%N /* number of i’s left neighbor */

#define RIGHT (i+1)%N /* number of i’s right neighbor */

#define THINKING 0 /* philosopher is thinking */

#define HUNGRY 1 /* philosopher is trying to get forks */
#define EATING 2 /* philosopher is eating */

typedef int semaphore; /* semaphores are a special kind of int */

int state[N]; /* array to keep track of everyone’s state */
semaphore mutex = 1; /* mutual exclusion for critical regions */
semaphore s[N]; /* one semaphore per philosopher */

void philosopher(int i) /* i philosopher number, from 0 to N-1 */

while (TRUE) { /* repeat forever */
think(); /* philosopher is thinking */
take _forks(i); /* acquire two forks or block */
eat(); /* yum-yum, spaghetti */
put_forks(i); /* put both forks back on table */

Solution to dining philosophers problem (par 1) [

* Pick one fork at a time
*How to prevent deadlock

void philosopher(int i)

40 @ UNSW

Dining Philosophers

#define N 5 /* number of philosophers */

/* i: philosopher number, from 0 to 4 */

while (TRUE) {

think(); /* philosopher is thinking */

take_fork(i); /* take left fork */

take_fork((i+1) % N); /* take right fork; % is modulo operator */
eat(); /* yum-yum, spaghetti */

put_ fork(i); /* put left fork back on the table */

put_fork((i+1) % N); /* put right fork back on the table */
A nonsolution to the dining philosophers problem

42 @ UNSW

Dining Philosophers

void take_forks(int i) /* i: philosopher number, from 0 to N-1 */
down(&mutex); /* enter critical region */

state[i] = HUNGRY; /* record fact that philosopher i is hungry */
test(i); /* try to acquire 2 forks */

up(&mutex); /* exit critical region */

down(&s[i]); /* block if forks were not acquired */

}

void put_forks(i) /* iz philosopher number, from 0 to N-1 */

down(&mutex); /* enter critical region */
state[i] = THINKING; /* philosopher has finished eating */
test(LEFT); /* see if left neighbor can now eat */
test(RIGHT); /* see if right neighbor can now eat */
up(&mutex); /* exit critical region */
}
void test(i) /* i philosopher number, from 0 to N-1 */
if (state[i] == HUNGRY && state[LEFT] I= EATING && state[RIGHT] I= EATING) {
state[i] = EATING;
up(&sfil);
}

Solution to dining philosophers problem (par 2) SW

The Readers and Writers Problem

* Models access to a database
* E.g. airline reservation system
* Can have more than one concurrent reader
* To check schedules and reservations
* Writers must have exclusive access
* To book a ticket or update a schedule

The Sleeping Barber Problem

“+7

44

The Readers and Writers Problem

typedef int semaphore;

semapho
semaphor
intrc=0;

void reade

while (TRUE) {

/* use your imagination */
re mutex = 1; /+ controls access to 'rc’ */

re db =1 /+ controls access to the database */

/» # of processes reading or wanting to */

ler(void)

/* repeat forever */
down(&mutex); /* get exclusive access to 'rc’ */
rc=rc+1; /* one reader more now */

if (rc == 1) down(&db); /i this s the first reader ... */

up(&mutex); /* release exclusive access to 'rc’ */
read_data_base(); /*access the data +/
down(&mutex); /* get exclusive access 1o ¢’ */
rc=rc-1; /+ one reader fewer now */

if (e == 0) up(&db); /if this is the last reader ... */
up(&mutex); /* release exclusive access to 'rc’ +/

use_data_read(); /* noncritical region */

void writer(void)

while (TRUE) {

}

/* repeat forever */

/* noncritical region */
down(8db); /* get exclusive access +/
write_data_base(); /* update the data */
up(&db); /* release exclusive access */

think_up_data();

A solution to the readers and writers problepp

The Sleeping Barber Problem

#define CHAIRS 5
typedef int semaphore:

semaphore customers = 0;
semaphore barbers
semaphore mute:
int waiting = 0;

void barber(void)

while (TRUE) {
down(&customers);
down(&mutex);
waiting = waiting — 1;
up(&barbers);
up(&mutex);
cut_bair\

void cu|
{

down(amuex).

if (waiting < CHAIRS) {
waiting = waiting + 1;
up(&customers)
up(&mutex);
down(&barbers);
get_haircut();

Jelse {
up(&mutex);

I+ # chairs for waiting customers */
I+ use your imagination */

I+ # of customers waiting for service */
I+ # of barbers waiting for customers */

/+ for mutual exclusion */

I+ customers are waiting (not being cut) */

I+ go to sleep if # of customers is 0 +/
I+ acquire access to ‘waiting’ +/

/% decrement count of waiting customers */
/+ one barber is now ready to cut hair */

I+ release ‘waiting */

[+ cut hair (outside critical regian) +/

See the textbook

T enter Criuca region =
I+ if there are no free chairs, leave */

I+ increment count of waiting customers +/
I+ wake up barber if necessary */

I+ release access to ‘waiting’ */

I+ goto sleep if # of free barbers is 0 +/

I+ be seated and be serviced */

/* shop is full; do not wait */

Solution to sleeping barber problerzy @

UNSW

INSW

UNSW

FYI

* Counting semaphores versus binary semaphores:
* In a counting semaphore, count can take arbitrary integer values
* In a binary semaphore, count can only be 0 or 1
* Can be easier to implement
* Counting semaphores can be implemented in terms of binary
semaphores (how?)

* Strong semaphores versus weak semaphores:
* In a strong semaphore, the queue adheres to the FIFO policy
* In a weak semaphore, any process may be taken from the queue

* Strong semaphores can be implemented in terms of weak semaphores
(how?)

49 @ UNSW

Making Single-Threaded Code Multithreaded

Thread 1 Thread 2

Access (errno set)

~— Time

!

Open (errno overwritten)

§

i

Errno inspected

Conflicts between threads over the use of a global variable

s1 B UNSW

Peterson’s Solution

* For the curious

* Avoids strict alternation
* see the textbook
* or Internet

53 B UNSW

Concurrency on a shared data structure

4 abc | out=4 |
6 prog.n
7 [n=7 |

.

Two processes want to access shared memory at same time

50 @ UNSW

A Producer-Consumer Solution Using OS/161 CVs

int count = 0;
#define N 4 /* buf size */

prod() { con() {
while(TRUE) { while(TRUE) {
item = produce() lock_acquire(1)
lock_aquire(1) while (count == 0)
while (count == N) cv_wait(empty, 1);
cv_wait(full, 1); item = remove_item();
insert_item(item); count--;
count++; if (count == N-1)
if (count == 1) cv_signal(full, 1);
cv_signal(empty, 1); lock_release(1);
lock_release(1) consume(item);
} }
} }

s2 B UNsW

