
Concurrency and
Synchronisation

1

Learning Outcomes

• Understand concurrency is an issue in operating
systems and multithreaded applications

• Know the concept of a critical region.
• Understand how mutual exclusion of critical regions

can be used to solve concurrency issues
• Including how mutual exclusion can be implemented

correctly and efficiently.
• Be able to identify a producer consumer bounded

buffer problem.

2

Textbook

• Sections 2.3 - 2.3.7 & 2.5

3 4

Concurrency Example

void increment ()

{

int t;

t = count;

t = t + 1;

count = t;

}

void decrement ()

{

int t;

t = count;

t = t - 1;

count = t;

}

count is a global variable shared between two threads, t is a local variable.
After increment and decrement complete, what is the value of count?

We have a
race

condition

Where is the concurrency?

• (a) Three processes each with one thread
• (b) One process with three threads

There is in-kernel concurrency even for single-threaded
processes

Kernel Mode

User Mode

Process A Process B Process C

Process’s user-level stack and execution state

Process’s in-kernel stack and execution state

Operating System

Critical Region

• We can control access to the shared resource by controlling
access to the code that accesses the resource.

 A critical region is a region of code where shared resources
are accessed.

• Variables, memory, files, etc…

• Uncoordinated entry to the critical region results in a race
condition
 Incorrect behaviour, deadlock, lost work,…

7

Identifying critical regions

• Critical regions are regions of code that:
• Access a shared resource,
• and correctness relies on the shared resource not being concurrently

modified by another thread/process/entity.

8

void increment ()

{

int t;

t = count;

t = t + 1;

count = t;

}

void decrement ()

{

int t;

t = count;

t = t - 1;

count = t;

}

Accessing Critical Regions

Mutual exclusion using critical regions

9

Example critical regions

struct node {
int data;
struct node *next;

};
struct node *head;

void init(void)
{
head = NULL;

}

• Simple last-in-first-out queue
implemented as a linked list.

void insert(struct *item)

{

item->next = head;

head = item;

}

struct node *remove(void)

{

struct node *t;

t = head;

if (t != NULL) {

head = head->next;

}

return t;

}

10

Example Race

void insert(struct *item)
{
item->next = head;
head = item;

}

11

void insert(struct *item)
{

item->next = head;
head = item;

}

Example critical regions

struct node {
int data;
struct node *next;

};
struct node *head;

void init(void)
{
head = NULL;

}

• Critical sections

void insert(struct *item)

{

item->next = head;

head = item;

}

struct node *remove(void)

{

struct node *t;

t = head;

if (t != NULL) {

head = head->next;

}

return t;

}

12

13

Critical Regions Solutions

• We seek a solution to coordinate access to critical regions.
• Also called critical sections

• Conditions required of any solution to the critical region
problem

1. Mutual Exclusion:
• No two processes simultaneously in critical region

2. No assumptions made about speeds or numbers of CPUs
3. Progress

• No process running outside its critical region may block another process
4. Non-Starvation

• No process waits forever to enter its critical region

A solution?

• A lock variable
• If lock == 1,

• somebody is in the critical section and we must wait
• If lock == 0,

• nobody is in the critical section and we are free to enter

14

A solution?

while(TRUE) {

while(lock == 1)

 ;

lock = 1;

critical();

lock = 0

non_critical();

}

while(TRUE) {

while(lock == 1)

 ;

lock = 1;

critical();

lock = 0

non_critical();

}

15

A problematic execution sequence

while(TRUE) {

while(lock == 1)

 ;

lock = 1;

critical();

lock = 0

non_critical();

}

while(TRUE) {

while(lock == 1)

 ;

lock = 1;

critical();

lock = 0

non_critical();

}

16

Observation

• Unfortunately, it is usually easier to show something does
not work, than it is to prove that it does work.

• Easier to provide a counter example
• Ideally, we’d like to prove, or at least informally demonstrate, that

our solutions work.

• Some of our problematic sequences are quite unlikely
• e.g. Timer interrupt arrives exactly after we read the lock variable.

• Testing for concurrency errors is really tricky.

17

Mutual Exclusion by Taking Turns

Proposed solution to critical region problem
(a) Process 0. (b) Process 1.

18

Mutual Exclusion by Taking Turns

• Works due to strict alternation
• Each process takes turns

• Cons
• Busy waiting
• Process must wait its turn even while the other process is

doing something else.
• With many processes, must wait for everyone to have a turn

• Does not guarantee progress if a process no longer needs a turn.
• Poor solution when processes require the critical section at

differing rates

19

Mutual Exclusion by Disabling Interrupts

while(TRUE) {

disable_interrupts();

critical();

enable_interrupts();

non_critical();

}

while(TRUE) {

disable_interrupts();

critical();

enable_interrupts();

non_critical();

}

20

• Before entering a critical region, disable interrupts
• After leaving the critical region, enable interrupts

Mutual Exclusion by Disabling Interrupts

• Pros
• simple

• Cons
• Only available in the kernel
• Delays everybody else, even with no contention

• Slows interrupt response time
• Does not work on a multiprocessor

21

Hardware Support for mutual exclusion

• Test and set instruction
• Test memory cell X and set memory cell X
• Can be used to implement lock variables correctly

• It loads the value of the lock
• If lock == 0,

• set the lock to 1
• return the result 0 – we acquire the lock

• If lock == 1
• return 1 – another thread/process has the lock

• Hardware guarantees that the instruction executes
atomically.

• Atomically: As an indivisible unit.

22

Mutual Exclusion with Test-and-Set

Entering and leaving a critical region using the
TSL instruction

23

Test-and-Set

• Pros
• Simple (easy to show it’s correct)
• Available at user-level

• To any number of processors
• To implement any number of lock variables

• Cons
• Busy waits (also termed a spin lock)

• Consumes CPU
• Starvation is possible when a process leaves its critical section and

more than one process is waiting.

24

Variants of Test-and-Set

More general operations than test-and-set are provided by
modern processors

• Compare-and-Swap
• Check the contents of X is Y, and if so write Z

• Load-Link, Store-Exclusive

• The store fails if the linked memory address has been
accessed

• Atomic Arithmetic

• e.g. Atomic Increment by 1.

25

Tackling the Busy-Wait Problem

• Sleep / Wakeup
• The idea

• When process is waiting for an event, it calls sleep (a system call) to block,
instead of busy waiting.

• When the event happens, the event generator (another process) calls
wakeup to unblock the sleeping process.

• Waking a ready/running process has no effect.

26

The Producer-Consumer Problem

• Also called the bounded buffer problem
• A producer produces data items and stores the items

in a buffer
• A consumer takes the items out of the buffer and

consumes them.

27

X X X

Producer

Consumer

Issues

• We must keep an accurate count of items in buffer
• Producer

• should sleep when the buffer is full,
• and wakeup when there is empty space in the buffer

• The consumer can call wakeup when it consumes the first entry of the full buffer
• Consumer

• should sleep when the buffer is empty
• and wake up when there are items available

• Producer can call wakeup when it adds the first item to the buffer

28

X X X

Producer

Consumer

Pseudo-code for producer and consumer

int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep(prod);

insert_item();

count++;

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0)

sleep(con);

remove_item();

count--;

if (count == N-1)

wakeup(prod);

}

}

29

Problems

int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep(prod);

insert_item();

count++;

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0)

sleep(con);

remove_item();

count--;

if (count == N-1)

wakeup(prod);

}

}

30

Concurrent uncontrolled
access to the buffer

Problems

int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep(prod);

insert_item();

count++;

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0)

sleep(con);

remove_item();

count--;

if (count == N-1)

wakeup(prod);

}

}

31

Concurrent uncontrolled
access to the counter

Proposed Solution

• Lets use a locking primitive based on test-and-set to protect
the concurrent access

32

Proposed solution?

int count = 0;

lock_t buf_lock;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep(prod);

acquire_lock(buf_lock)

insert_item();

count++;

release_lock(buf_lock)

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0)

sleep(con);

acquire_lock(buf_lock)

remove_item();

count--;

release_lock(buf_lock);

if (count == N-1)

wakeup(prod);

}

}

33

Problematic execution sequence

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep(prod);

acquire_lock(buf_lock)

insert_item();

count++;

release_lock(buf_lock)

if (count == 1)

wakeup(con);

con() {

while(TRUE) {

if (count == 0)

sleep(con);

acquire_lock(buf_lock)

remove_item();

count--;

release_lock(buf_lock);

if (count == N-1)

wakeup(prod);

}

}

34

wakeup without a
matching sleep is lost

Problem

• The test for some condition
and actually going to sleep
needs to be atomic

• The following does not
work:

acquire_lock(buf_lock)

if (count == N)

sleep();

release_lock(buf_lock)

The lock is held while asleep
 count will never change

acquire_lock(buf_lock)

if (count == 1)

wakeup();

release_lock(buf_lock)

35

Today

• Concurrency.
• Critical sections and mutual exclusion.
• Test-and-set operations and locks.
• The producer/consumer problem.

– More on that later, when we return to
concurrency management.

36

