
Concurrency and 
Synchronisation
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Learning Outcomes

• Understand concurrency is an issue in operating 
systems and multithreaded applications

• Know the concept of a critical region.
• Understand how mutual exclusion of critical regions 

can be used to solve concurrency issues
• Including how mutual exclusion can be implemented 

correctly and efficiently.
• Be able to identify a producer consumer bounded 

buffer problem.
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Textbook

• Sections 2.3 - 2.3.7 & 2.5
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Concurrency Example

void increment ()

{

int t;

t = count;

t = t + 1;

count = t;

}

void decrement ()

{

int t;

t = count;

t = t - 1;

count = t;

}

count is a global variable shared between two threads, t is a local variable.
After increment and decrement complete, what is the value of count?

We have a 
race 

condition

Where is the concurrency?

• (a) Three processes each with one thread
• (b) One process with three threads

There is in-kernel concurrency even for single-threaded 
processes

Kernel Mode

User Mode

Process A Process B Process C

Process’s user-level stack and execution state

Process’s in-kernel stack and execution state

Operating System



Critical Region

• We can control access to the shared resource by controlling 
access to the code that accesses the resource.

 A critical region is a region of code where shared resources 
are accessed.

• Variables, memory, files, etc…

• Uncoordinated entry to the critical region results in a race 
condition
 Incorrect behaviour, deadlock, lost work,…
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Identifying critical regions

• Critical regions are regions of code that:
• Access a shared resource,
• and correctness relies on the shared resource not being concurrently 

modified by another thread/process/entity.
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void increment ()

{

int t;

t = count;

t = t + 1;

count = t;

}

void decrement ()

{

int t;

t = count;

t = t - 1;

count = t;

}

Accessing Critical Regions

Mutual exclusion using critical regions
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Example critical regions

struct node {
int data;
struct node *next;

};
struct node *head;

void init(void)
{
head = NULL;

}

• Simple last-in-first-out queue 
implemented as a linked list.

void insert(struct *item)

{

item->next = head;

head = item;

}

struct node *remove(void)

{

struct node *t;

t = head;

if (t != NULL) {

head = head->next;

}

return t;

}
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Example Race

void insert(struct *item)
{
item->next = head;
head = item;

}
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void insert(struct *item)
{

item->next = head;
head = item;

}

Example critical regions

struct node {
int data;
struct node *next;

};
struct node *head;

void init(void)
{
head = NULL;

}

• Critical sections

void insert(struct *item)

{

item->next = head;

head = item;

}

struct node *remove(void)

{

struct node *t;

t = head;

if (t != NULL) {

head = head->next;

}

return t;

}
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Critical Regions Solutions

• We seek a solution to coordinate access to critical regions.
• Also called critical sections

• Conditions required of any solution to the critical region 
problem

1. Mutual Exclusion:
• No two processes simultaneously in critical region

2. No assumptions made about speeds or numbers of CPUs
3. Progress

• No process running outside its critical region may block another process
4. Non-Starvation

• No process waits forever to enter its critical region

A solution?

• A lock variable
• If lock == 1, 

• somebody is in the critical section and we must wait
• If lock == 0, 

• nobody is in the critical section and we are free to enter
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A solution?

while(TRUE) {

while(lock == 1)

  ;

lock = 1;

critical();

lock = 0

non_critical();

}

while(TRUE) {

while(lock == 1)

  ;

lock = 1;

critical();

lock = 0

non_critical();

}
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A problematic execution sequence

while(TRUE) {

while(lock == 1)

  ;

lock = 1;

critical();

lock = 0

non_critical();

}

while(TRUE) {

while(lock == 1)

  ;

lock = 1;

critical();

lock = 0

non_critical();

}
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Observation

• Unfortunately, it is usually easier to show something does 
not work, than it is to prove that it does work.

• Easier to provide a counter example
• Ideally, we’d like to prove, or at least informally demonstrate, that 

our solutions work.

• Some of our problematic sequences are quite unlikely
• e.g. Timer interrupt arrives exactly after we read the lock variable.

• Testing for concurrency errors is really tricky.
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Mutual Exclusion by Taking Turns

Proposed solution to critical region problem
(a) Process 0.        (b) Process 1.
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Mutual Exclusion by Taking Turns

• Works due to strict alternation
• Each process takes turns

• Cons
• Busy waiting
• Process must wait its turn even while the other process is 

doing something else.
• With many processes, must wait for everyone to have a turn

• Does not guarantee progress if a process no longer needs a turn.
• Poor solution when processes require the critical section at 

differing rates

19

Mutual Exclusion by Disabling Interrupts

while(TRUE) {

disable_interrupts();

critical();

enable_interrupts();

non_critical();

}

while(TRUE) {

disable_interrupts();

critical();

enable_interrupts();

non_critical();

}
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• Before entering a critical region, disable interrupts
• After leaving the critical region, enable interrupts

Mutual Exclusion by Disabling Interrupts

• Pros
•  simple

• Cons
• Only available in the kernel
• Delays everybody else, even with no contention

• Slows interrupt response time
• Does not work on a multiprocessor
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Hardware Support for mutual exclusion

• Test and set instruction
• Test memory cell X and set memory cell X
• Can be used to implement lock variables correctly

• It loads the value of the lock
• If lock == 0, 

• set the lock to 1
• return the result 0 – we acquire the lock

• If lock == 1
• return 1 – another thread/process has the lock 

• Hardware guarantees that the instruction executes 
atomically.

• Atomically: As an indivisible unit.
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Mutual Exclusion with Test-and-Set

Entering and leaving a critical region using the 
TSL instruction
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Test-and-Set

• Pros
• Simple (easy to show it’s correct)
• Available at user-level 

• To any number of processors
• To implement any number of lock variables

• Cons
• Busy waits (also termed a spin lock)

• Consumes CPU
• Starvation is possible when a process leaves its critical section and 

more than one process is waiting.
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Variants of Test-and-Set

More general operations than test-and-set are provided by 
modern processors

• Compare-and-Swap
• Check the contents of X is Y, and if so write Z

• Load-Link, Store-Exclusive

• The store fails if the linked memory address has been 
accessed

• Atomic Arithmetic

• e.g. Atomic Increment by 1.
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Tackling the Busy-Wait Problem

• Sleep / Wakeup
• The idea

• When process is waiting for an event, it calls sleep (a system call) to block, 
instead of busy waiting.

• When the event happens, the event generator (another process) calls 
wakeup to unblock the sleeping process.

• Waking a ready/running process has no effect.
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The Producer-Consumer Problem

• Also called the bounded buffer problem
• A producer produces data items and stores the items 

in a buffer
• A consumer takes the items out of the buffer and 

consumes them.
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X X X

Producer

Consumer

Issues

• We must keep an accurate count of items in buffer
• Producer 

• should sleep when the buffer is full,
• and wakeup when there is empty space in the buffer

• The consumer can call wakeup when it consumes the first entry of the full buffer
• Consumer 

• should sleep when the buffer is empty
• and wake up when there are items available

• Producer can call wakeup when it adds the first item to the buffer
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X X X

Producer

Consumer

Pseudo-code for producer and consumer

int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep(prod);

insert_item();

count++;

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0) 

sleep(con);

remove_item();

count--;

if (count == N-1)

wakeup(prod);

}

}
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Problems

int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep(prod);

insert_item();

count++;

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0) 

sleep(con);

remove_item();

count--;

if (count == N-1)

wakeup(prod);

}

}
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Concurrent uncontrolled 
access to the buffer



Problems

int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep(prod);

insert_item();

count++;

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0) 

sleep(con);

remove_item();

count--;

if (count == N-1)

wakeup(prod);

}

}

31

Concurrent uncontrolled 
access to the counter

Proposed Solution

• Lets use a locking primitive based on test-and-set to protect 
the concurrent access
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Proposed solution?

int count = 0; 

lock_t buf_lock;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep(prod);

acquire_lock(buf_lock)

insert_item();

count++;

release_lock(buf_lock)

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0) 

sleep(con);

acquire_lock(buf_lock)

remove_item();

count--;

release_lock(buf_lock);

if (count == N-1)

wakeup(prod);

}

}
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Problematic execution sequence

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep(prod);

acquire_lock(buf_lock)

insert_item();

count++;

release_lock(buf_lock)

if (count == 1)

wakeup(con);

con() {

while(TRUE) {

if (count == 0) 

sleep(con);

acquire_lock(buf_lock)

remove_item();

count--;

release_lock(buf_lock);

if (count == N-1)

wakeup(prod);

}

}
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wakeup without a 
matching sleep is lost

Problem

• The test for some condition 
and actually going to sleep 
needs to be atomic

• The following does not 
work:

acquire_lock(buf_lock)

if (count == N)

sleep();

release_lock(buf_lock)

The lock is held while asleep 
 count will never change

acquire_lock(buf_lock)

if (count == 1)

wakeup();

release_lock(buf_lock)
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Today

• Concurrency.
• Critical sections and mutual exclusion.
• Test-and-set operations and locks.
• The producer/consumer problem.

– More on that later, when we return to 
concurrency management.
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