Concurrency and
Synchronisation

Learning Outcomes

*Understand concurrency is an issue in operating
systems and multithreaded applications

*Know the concept of a critical region.

¢ Understand how mutual exclusion of critical regions
can be used to solve concurrency issues

* Including how mutual exclusion can be implemented
correctly and efficiently.

*Be able to identify a producer consumer bounded
buffer problem.

Textbook

* Sections 2.3-2.3.7 & 2.5

Concurrency Example

count is a global variable shared between two threads, t is a local variable.
After increment and decrement complete, what is the value of count?

void increment () void decrement ()

{ {
int t; int t;

3 Fusw
Where is the concurrency? There is in-kernel concurrency even for single-threaded
processes
Process’s user-level stack and execution state
Process 1 Process 1 Process 1 Process N
| User Mode
| ! - N o ™
User
space
Thread Thread
Kernel
space Kernel Kernel
(a) (b)
* (a) Three processes each with one thread | SR 4 | emsl g e o 4
* (b) One process with three threads
Operating System
Kernel Mode
Unow Process’s in-kernel stack and execution state @ CREY

Critical Region

* We can control access to the shared resource by controlling
access to the code that accesses the resource.

= A critical region is a region of code where shared resources
are accessed.
* Variables, memory, files, etc...

* Uncoordinated entry to the critical region results in a race

Identifying critical regions

* Critical regions are regions of code that:
* Access a shared resource,

* and correctness relies on the shared resource not being concurrently
modified by another thread/process/entity.

condition void increment () void decrement ()
= Incorrect behaviour, deadlock, lost work,... { {
int t; int t;
t = count; t = count;
t=1t+1; t=1t-1;
count = t; count = t;
} }
7 Bunsw 8 B UNsW
Accessing Critical Regions Example critical regions
Asemters critical reglon A leaves critical region
struct node { void insert(struct *item)
Process A ——————— . } ; int data; (>
| I I | struct node *next; item->next = head;
1 | | | }_ head = item;
| , Battemptsto | B enters \ B leaves ’ }
, | enter critical X critical region X critical region struct node *head;
| 1 region | I struct node *remove(void)
1 I void init(void) {
Process B T 1 { struct node *t;
1 | | I = .
head = NULL; t = head;
Il 'Il B blocked 'Il 'Il 3 if (t !'= NULL) {
! 2 8 4 head = head->next;
}
Time ’ return t;
R X . . * Simple last-in-first-out queue }
Mutual exclusion using critical regions implemented as a linked list.
9 10 @UN,§W
Example Race Example critical regions
void insert(struct *item) void insert(struct *item)
{ . struct node { void insert(struct *item)
item->next = head; ;égg"znigmf head; int data; .
head = item; } ! struct node *next; Higm-=mat = (e
} 1 head = item;

11 UNSW

struct node *head; !

struct node *remove(void)

void init(void) {
{ struct node *t;
head = NULL; t = head;

} if (t !'= NULL) {
head = head->next;
}
return t;

* Critical sections }

12 B UNsw

Critical Regions Solutions

* We seek a solution to coordinate access to critical regions.
* Also called critical sections

* Conditions required of any solution to the critical region
problem
1. Mutual Exclusion:
* No two processes simultaneously in critical region
2. No assumptions made about speeds or numbers of CPUs
3. Progress
* No process running outside its critical region may block another process
4. Non-Starvation
* No process waits forever to enter its critical region

A solution?

* A lock variable
* If lock == 1,
* somebody is in the critical section and we must wait
* If lock == 0,
* nobody is in the critical section and we are free to enter

13 [UNSW 14 FUNSW
A solution? A problematic execution sequence
while(TRUE) { while(TRUE) { while(TRUE) { while(TRUE) {
while(lock == 1) while(lock == 1) while(lock == 1)
lock = 1; lock = 1; while(lock == 1)
critical(); critical(); ;
lock = 0 lock = 0 lock = 1; ﬁ
L) . . lock = 1;
non critical(); non critical(); critical();
} } critical();
lock = 0
non_critical(); lock = 0
} non_critical();
}
15 B UNSW 16 UNSW
) Mutual Exclusion by Taking Turns
Observation
. . . while (TRUE) { while (TRUE) {
* Unfortunately, it is usually easier to show something does while (tum != 0) /% loop */ ; while (tumn 1= 1) /% loop */ ;
not work, than it is to prove that it does work. critical_region(); critical_region();
* Easier to provide a counter example turn = 17 ’ turn = 6 '

« Ideally, we'd like to prove, or at least informally demonstrate, that
our solutions work.

* Some of our problematic sequences are quite unlikely
* e.g. Timer interrupt arrives exactly after we read the lock variable.

* Testing for concurrency errors is really tricky.

noncritical _region();

(a)

noncritical _region();

(b)

Proposed solution to critical region problem

(a) Process 0. (b) Process 1.

18 o UNSW

Mutual Exclusion by Taking Turns

*Works due to strict alternation
* Each process takes turns

*Cons
* Busy waiting
* Process must wait its turn even while the other process is
doing something else.
* With many processes, must wait for everyone to have a turn
* Does not guarantee progress if a process no longer needs a turn.
* Poor solution when processes require the critical section at
differing rates

Mutual Exclusion by Disabling Interrupts

* Before entering a critical region, disable interrupts
* After leaving the critical region, enable interrupts

while(TRUE) { while(TRUE) {
disable interrupts(); disable_interrupts();
critical(); critical();
enable interrupts(); enable interrupts();

non critical(); non critical();

} }

Mutual Exclusion by Disabling Interrupts

*Pros
* simple
*Cons
* Only available in the kernel
* Delays everybody else, even with no contention
* Slows interrupt response time
* Does not work on a multiprocessor

Hardware Support for mutual exclusion

* Test and set instruction
* Test memory cell X and set memory cell X
* Can be used to implement lock variables correctly
* It loads the value of the lock
e If lock == 0,
* set the lock to 1
* return the result O - we acquire the lock

* If lock ==
* return 1 - another thread/process has the lock

* Hardware guarantees that the instruction executes

atomically.
* Atomically: As an indivisible unit.

Mutual Exclusion with Test-and-Set

enter_region:
TSL REGISTER,LOCK | copy lock to register and set lock to 1

CMP REGISTER,#0 | was lock zero?
JNE enter_region | if it was non zero, lock was set, so loop

RET | return to caller; critical region entered

leave _region:
MOVE LOCK,#0 | store a 0 in lock
RET | return to caller

Entering and leaving a critical region using the
TSL instruction

Test-and-Set

*Pros
* Simple (easy to show it’s correct)
* Available at user-level
* To any number of processors
* To implement any number of lock variables

*Cons

* Busy waits (also termed a spin lock)

¢ Consumes CPU
* Starvation is possible when a process leaves its critical section and
more than one process is waiting.

Variants of Test-and-Set

More general operations than test-and-set are provided by
modern processors

* Compare-and-Swap
* Check the contents of X is Y, and if so write Z

* Load-Link, Store-Exclusive

* The store fails if the linked memory address has been
accessed

* Atomic Arithmetic

* e.g. Atomic Increment by 1.

25 B UNSW

Tackling the Busy-Wait Problem

* Sleep / Wakeup
* The idea
* When process is waiting for an event, it calls sleep (a system call) to block,
instead of busy waiting.
* When the event happens, the event generator (another process) calls
wakeup to unblock the sleeping process.
* Waking a ready/running process has no effect.

The Producer-Consumer Problem

* Also called the bounded buffer problem

* A producer produces data items and stores the items
in a buffer

* A consumer takes the items out of the buffer and
consumes them.

Producer

Issues

* We must keep an accurate count of items in buffer
* Producer
* should sleep when the buffer is full,
* and wakeup when there is empty space in the buffer
* The consumer can call wakeup when it consumes the first entry of the full buffer
¢ Consumer
« should sleep when the buffer is empty
 and wake up when there are items available
* Producer can call wakeup when it adds the first item to the buffer

-
)X ‘ X ‘ X Producer
—
Consumer
B
B @UNSW Consumer 28 @UNSW
Pseudo-code for producer and consumer Problems
int count = 0; con() { int count = 0; con() {
#define N 4 /* buf size */ while(TRUE) { #define N 4 /* buf size */ while(TRUE) {
prod() { if (count == @) prod() { if (count == @)
while(TRUE) { sleep(con); while(TRUE) { sleep(con);
item = produce() remove_item(); item = produce() remove_item();
if (count == N) count--; if (count == N) count--;
sleep(prod); if (count == N-1) sleep(prod count == N-1)
insert_item(); wakeup (prod); insert_item(); orod) :
count++; count++;
. } . } Concurrent uncontrolled
if (count == 1) if (count == 1) access to the buffer
} }
wakeup(con); wakeup(con);
} }
} }

29 @ UNSW

30 FUNsw

Problems

int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {
item = produce()
if (count == N)
sleep(prod);

insert_item
count++;
if (count == 1)

con() {
while(TRUE) {
if (count == 0)
sleep(con);
remove_item();
count--;
if (count == N-1)

Concurrent uncontrolled

Proposed Solution

* Lets use a locking primitive based on test-and-set to protect
the concurrent access

} access to the counter
wakeup(con);
}
}
a1 Bunsw 22 Busw
Proposed solution? Problematic execution sequence
con() {
int count = 0; f:s:::il:(m
lock_t buf_lock;
#define N 4 /* buf size */ con() { prod() {

prod() {

while(TRUE) {
item = produce()
if (count == N)

sleep(prod);

acquire_lock(buf_lock)
insert_item();
count++;

while(TRUE) {

if (count == 0)
sleep(con);

acquire_lock(buf_lock)
remove_item();
count--;
release_lock(buf_lock);
if (count == N-1)

while(TRUE) {
item = produce()
if (count == N)

sleep(prod);

acquire_lock(buf_lock)
insert_item();
count++;
release_lock(buf_lock)
if (count == 1)

wakeup without a
matching sleep is lost

sleep(con) ;
acquire_lock(buf_lock)

release_lock(buf_lock) wakeup(prod) ; wakeup(con) ; remove_iten()
count--;
if (count == 1) 3 release_lock(buf_lock);
wakeup(con); } if (count == N-1)
wakeup (prod) ;
})
} 3
33 UNSW 34 S UNSW
Problem

* The test for some condition
and actually going to sleep
needs to be atomic

* The following does not
work:

acquire_lock(buf_lock)

if (count == N)
sleep();

release_lock(buf_lock)

The lock is held while asleep
= count will never change

acquire_lock(buf_lock)

if (count == 1)
wakeup();

release_lock(buf_lock)

35 UNSW

Today

* Concurrency.

* Critical sections and mutual exclusion.
* Test-and-set operations and locks.

* The producer/consumer problem.

= More on that later, when we return to
concurrency management.

36 UNSW

