
Processes and Threads

1

Learning Outcomes

•An understanding of fundamental concepts of
processes and threads
•We’ll cover implementation in a later lecture

2

Essential Goal of an OS

• Interleave the execution of several processes to maximize
processor utilization while providing reasonable response
time
• Allocate resources to processes
• Support interprocess communication and user creation and

management of processes

3

Demo: Some Parallel Processes

Let’s have a quick look at executing a few parallel processes
from my UNIX shell.

4

Processes and Threads

• Processes:
• Also called a task or job
• Memory image of an individual program
• “Owner” of resources allocated for program execution
• Encompasses one or more threads

• Threads:
• Unit of execution
• Can be traced
• list the sequence of instructions that execute

• Belongs to a process
• Executes within it.

5

Execution snapshot of
three single-threaded
processes (No Virtual
Memory)

Logical Execution Trace

Combined Traces

(Actual CPU Instructions)

What are the shaded
sections?

Summary: The Process Model

•Multiprogramming of four programs
•Conceptual model of 4 independent, sequential processes

(with a single thread each)
•Only one program active at any instant

9

Process and thread models of selected OSes

•Single process, single thread
•MSDOS, simple embedded system

•Single process, multiple threads
• OS/161 as distributed

•Multiple processes, single thread
• Traditional UNIX

•Multiple processes, multiple threads
•Modern Unix (Linux, Solaris), Windows

Note: Literature (incl. Textbooks) often do not cleanly
distinguish between processes and threads (for
historical reasons)

11

Process Creation

Principal events that cause process creation
1. System initialization

• Foreground processes (interactive programs)
• Background processes

• Email server, web server, print server, etc.
• Called a daemon (unix) or service (Windows)

2. Execution of a process creation system call by a running
process
• New login shell for an incoming ssh connection

3. User request to create a new process
4. Initiation of a batch job

Note: Technically, all these cases use the same system
mechanism to create new processes.

12

Process Termination

Conditions which terminate processes
1. Normal exit (voluntary)
2. Error exit (voluntary)
3. Fatal error (involuntary)
4. Killed by another process (involuntary)

13

Implementation of Processes

• A processes’ information is stored in a
process control block (PCB)
• The PCBs form a process table
• Reality can be more complex (hashing,

chaining, allocation bitmaps,…)

14

P0

P1

P2

P3

P4

P5

P6

P7

Implementation of Processes

Example fields of a process table entry
15

Process/Thread States

• Possible process/thread states
• running
• blocked
• ready

• Transitions between states shown

16

Some Transition Causing Events

Running → Ready
• Voluntary Yield()
• End of timeslice

Running → Blocked
• Waiting for input
• File, network,

• Waiting for a timer (alarm signal)
• Waiting for a resource to become available

17

Scheduler

• Sometimes also called the dispatcher
• The literature is also a little inconsistent on with terminology.

• Has to choose a Ready process to run
• How?
• It is inefficient to search through all processes

18

The Ready Queue

19

What about blocked processes?

•When an unblocking event occurs, we also wish to avoid
scanning all processes to select one to make Ready

20

Using Two Queues

21

Threads
The Thread Model

(a) Three processes each with one thread
(b) One process with three threads

23

The Thread Model – Separating execution from the
environment.

• Per-process items shared by all threads in a
process
• Per-thread items associated with each

thread

24

Threads Analogy

The Hamburger Restaurant

25

Single-Threaded Restaurant

26

Customer
Arrives

Take Order

Fries Cook

Assemble
Order

Fries Finish

Start Fries

Serve
Customer

Burger CooksBurger
Finished

Start Burger

Wait for
Customer

Blocking
operations delay
all activities

Multithreaded Restaurant

27

Customer
Arrives

Take Order

Fries Cook

Assemble
Order

Fries Finish

Start Fries

Serve
Customer

Burger CooksBurger
Finished

Start Burger

Wait for
Customer

Note: Ignoring synchronisation issues for now

Multithreaded Restaurant
with more worker threads

28

Customer
Arrives

Take Order

Assemble
Order

Serve
Customer

Wait for
Customer

Fries Cook

Fries Finish

Start Fries

Burger CooksBurger
Finished

Start Burger

Burger CooksBurger
Finished

Start Burger

Fries Cook

Fries Finish

Start Fries

Burger CooksBurger
Finished

Start Burger

Finite-State Machine Model
(Event-based model)

29

Customer
Arrives

Take Order

Fries Cook

Assemble
Order

Fries Finish

Start Fries

Serve
Customer

Burger Cooks

Burger
Finished

Start Burger

Wait for
Customer

Input
Events Non-Blocking

actions

External
activities

Observation: Computation State

Thread Model

• State implicitly stored on the
stack (local variables in the
function).

Finite State (Event) Model

• State explicitly managed by
program

30

Customer
Arrives

Take Order

Assemble
Order

Serve
Customer

Wait for
Customer

Fries Cook

Fries Finish

Start Fries

Burger CooksBurger
Finished

Start Burger

Burger CooksBurger
Finished

Start Burger

Fries Cook

Fries Finish

Start Fries

Burger CooksBurger
Finished

Start Burger

Customer
Arrives

Take Order

Fries Cook

Assemble
Order

Fries Finish

Start Fries

Serve
Customer

Burger Cooks

Burger
Finished

Start Burger

Wait for
Customer

The Thread Model

Each thread has its own stack

31

Thread Model

• Local variables are per thread
• Allocated on the stack

•Global variables are shared between all threads
• Allocated in data section
• Concurrency control is an issue

•Dynamically allocated memory (malloc) can be
global or local
• Program defined (the pointer can be global or local)

32

Thread Usage

A word processor with three threads

33

Thread Usage

A multithreaded Web server

34

Thread Usage

• Rough outline of code for previous slide
(a) Dispatcher thread
(b) Worker thread – can overlap disk I/O with execution of other threads

35

Thread Usage

Three ways to construct a server

36

Summarising “Why Threads?”

• Simpler to program than a state machine
• Less resources are associated with them than multiple

complete processes
• Cheaper to create and destroy
• Shares resources (especially memory) between them

• Performance: Threads waiting for I/O can be overlapped
with computing threads
• Note if all threads are compute bound, then there is no performance

improvement (on a uniprocessor)

• Threads can take advantage of the parallelism available on
machines with more than one CPU (multiprocessor)

37

	Processes and Threads
	Learning Outcomes
	Slide 3
	Slide 4
	Processes and Threads (2)
	Slide 6
	Slide 7
	Slide 8
	Summary: The Process Model
	Slide 10
	Process and thread models of selected OSes
	Process Creation
	Process Termination
	Implementation of Processes
	Implementation of Processes
	Process/Thread States
	Some Transition Causing Events
	Scheduler
	The Ready Queue
	What about blocked processes?
	Using Two Queues
	Slide 22
	Threads The Thread Model
	The Thread Model – Separating execution from the environment.
	Threads Analogy
	Single-Threaded Restaurant
	Multithreaded Restaurant
	Multithreaded Restaurant with more worker threads
	Finite-State Machine Model (Event-based model)
	Observation: Computation State
	The Thread Model
	Thread Model
	Thread Usage
	Thread Usage (2)
	Thread Usage (3)
	Thread Usage
	Summarising “Why Threads?”

