Processes and Threads

1 [UNSW

Learning Outcomes

* An understanding of fundamental concepts of
processes and threads
* We'll cover implementation in a later lecture

YYYYYY

Essential Goal of an OS

* Interleave the execution of several processes to maximize
processor utilization while providing reasonable response
time

* Allocate resources to processes

* Support interprocess communication and user creation and
management of processes

Demo: Some Parallel Processes

Let’s have a quick look at executing a few parallel processes
from my UNIX shell.

YYYYYY

Processes and Threads

* Processes:
* Also called a task or job
* Memory image of an individual program
* “Owner” of resources allocated for program execution
* Encompasses one or more threads

* Threads:

* Unit of execution
* Can be traced
* list the sequence of instructions that execute

* Belongs to a process
e Executes within it.

YYYYYY

Execution snapshot of
three single-threaded
processes (No Virtual

Memory)

Address — Nain Memory

0
100

SUHN)

12000

Program Count

S000

Dispatcher

Process A

Process B

Process C

Figure 3.1 Snapshot of Example Execution (Figure 3
at Instruction Cycle 13

Logical Execution Trace

5000 8000 12000
5001 a001 12001
5002 a002 12002
5003 a003 12003
5004 12004
5005 12005
5006 120006
S007 12007
5008 12008
5009 12009
5010 12010
5011 12011
(a) Trace of Process A (h) Trace of Process B (c) Trace of Process C

000 = Starting address of program of Process A
H000 = Starting address of program of Process B
12000 = Starting address of program of Process C

Figure 3.2 Traces of Processes of Figure 3.1

1 5000 27 12004
25001 28 12005
3 a00z Titre out
4 003 28100
5 s004 101
Combined Traces 6 3003 | 31102
Titre out 32 103
. 7 100 3 104
(Actual CPU Instructions) s 101 10
o 102 35 5006
103 35007
11 104 37 5008
12 105 385009
13 2000 3 s010
What are the shaded 14 2001 an 5011
. 5 15 2002 Titre out
sections: 16 2003 A 100
------------------ IO recuest 42 101
17 100 4102
15 101 4 103
19 102 45 104
20103 46 105
21 104 47 12006
22 105 A4z 12007
23 12000 43 12008
24 12001 500 12009
25 12002 51 12010
2% 12003 52 12011

Titre out

100 = Startmg address of dispatcher program

shaded areas mdicate exemution of dispatcher process,
first and third cobumns court mstrction cyeles,
second and fourth cobartins shover address of mstrmction being exemated

Figure 33 Combined Trace of Processes of Figure 3.1

Summary: The Process Model

One program counter

N Four program counters
Process
A ;
E switch o D — —
R :
E R — —
o
G A ¢ B Y C ; DY B| =— —
— A — —
q
j . Time —=
(a) (b) ()

* Multiprogramming of four programs

* Conceptual model of 4 independent, sequential processes
(with a single thread each)

* Only one program active at any instant

One Process
one thread

Omne process
multiple threads

multiple processes
one thread per process

multiple processes
multiple threads per process

s = Instruction trace

Figure 4.1 Threads and Processes [ANDE97]

Process and thread models of selected OSes

* Single process, single thread
* MSDOS, simple embedded system

* Single process, multiple threads
* 0S/161 as distributed

* Multiple processes, single thread
* Traditional UNIX

* Multiple processes, multiple threads
* Modern Unix (Linux, Solaris), Windows

Note: Literature (incl. Textbooks) often do not cleanly
distinguish between processes and threads (for
historical reasons)

Process Creation

Principal events that cause process creation

1. System initialization
* Foreground processes (interactive programs)

* Background processes
* Email server, web server, print server, etc.
* Called a daemon (unix) or service (Windows)

2. Execution of a process creation system call by a running

process
* New login shell for an incoming ssh connection

3. User request to create a new process
4. Initiation of a batch job

Note: Technically, all these cases use the same system
mechanism to create new processes.

Process Termination

Conditions which terminate processes

1.

2.
3.
4

Normal exit (voluntary)

Error exit (voluntary)

Fatal error (involuntary)

Killed by another process (involuntary)

YYYYYY

Implementation of Processes

* A processes’ information is stored in a
process control block (PCB)

* The PCBs form a process table

* Reality can be more complex (hashing,
chaining, allocation bitmaps,...)

Implementation of Processes

Process management
Registers

Program counter
Program status word
Stack pointer

Process state

Priority

Scheduling parameters
Process ID

Parent process
Process group

Signals

Time when process started
CPU time used
Children’s CPU time
Time of next alarm

Memory management
Pointer to text segment
Pointer to data segment
Pointer to stack segment

File management
Root directory
Working directory
File descriptors
User ID

Group ID

Example fields of a process table entry

15 5 UNSW

Process/Thread States

1. Process blocks for input

2. Scheduler picks another process
3. Scheduler picks this process

4. Input becomes available

* Possible process/thread states
* running
* blocked
* ready

* Transitions between states shown

Some Transition Causing Events

Running — Ready
* Voluntary Yield ()
* End of timeslice

Running — Blocked
* Waiting for input
* File, network,
e Waiting for a timer (alarm signal)
* Waiting for a resource to become available

YYYYYY

Scheduler

* Sometimes also called the dispatcher
* The literature is also a little inconsistent on with terminology.

* Has to choose a Ready process to run
* How?
* |tis inefficient to search through all processes

YYYYYY

The Ready Queue

Enter Dispatch Exit
l o -

Pause

(b) Queulng dlagram

19 5 UNSW

What about blocked processes?

* When an unblocking event occurs, we also wish to avoid
scanning all processes to select one to make Ready

YYYYYY

Using Two Queues

Admit

Ready Queue

‘ -

Event
Occurs

Release

DI:E-;paEIIEII s
Processor

=}

Timeout

Elocked Queune

_|

Event Walt
-—

(a) Single blocked queue

Ready Queue ——1 Release

e LI LTt

Timeout

Event 1 (Jueue :
Event 1 - Event 1 Walt
Occurs

Event 2 Queune

Event 2 o Event 2 Wall
Occurs

¥
| 4
¥

Event n Quene

Event n Event n Walt
-—
Oceurs

(b) Multiple blocked queues

Threads
The Thread Model

Process 1 Process 1 Process 1
\\ | |
User y
space
Thread
Kernel
space Kernel

(a)

(a) Three processes each with one thread
(b) One process with three threads

Process

|

Thread

Kernel

(b)

=

23 B UNDW

The Thread Model - Separating execution from the
environment.

Per process items Per thread items
Address space Program counter
Global variables Registers

Open files Stack

Child processes State

Pending alarms

Signals and signal handlers

Accounting information

Process

Y

* Per-process items shared by all threads in a

process § g;
* Per-thread items associated with each
thread Thread

Kernel

Threads Analogy

The Hamburger Restaurant

25

Single-Threaded Restaurant

Custormer Take Order
Arrives
Blocking
operations delay
Customer e oy
all activities

Assemble
Order Burger
Finished

Burger Cooks

Multithreaded Restaurant

Customer
Arrives

Fries Cook

Wait for

Customer Take Order

Fries Finish

Assemble

Order

Burger
Note: Ignoring synchronisation issues for now Finished

Multithreaded Restaurant
with more worker threads

Customer
Arrives

Wait for
Customer

Take Order

Assemble

Order

ries Féish ries Ffnish

. Ok Ok
.

Rurger

Bu B
Finisht r Cooks Fini
Rurger
Bu

F|n|sh S Burg r Cooks

Finite-State Machine Model
(Event-based model)

Input
Events Non-Blocking

actions

Take Order

Assemble
Order

o External
Fries Cook Burger Cooks Customer activities

Observation: Computation State

Thread Model

* State implicitly stored on the
stack (local variables in the
function).

Finite State (Event) Model

* State explicitly managed by
program

The Thread Model

Thread 1's
stack

Thread 2

Thread 1 Thread 3

/

/

_—~ Process

Thread 3's stack

H4

Kernel

Each thread has its own stack

Thread Model

* Local variables are per thread
* Allocated on the stack

e Global variables are shared between all threads
* Allocated in data section
* Concurrency control is an issue

* Dynamically allocated memory (malloc) can be
global or local
* Program defined (the pointer can be global or local)

Thread Usage

Fonr scare and seven
yews age, our fathers
bmought farth upon this
continent a new nation
canceived in liberty,
and dedicated 1o the
proposition that all
men awe created equal.

How we are engaged
in a great civil war
testing whether that

nation, or any nation
sa conceived and so
dedicated, can long
endure. We me met an
a great battlefield of
that war.

We have come 10
dedicate a portion of
that field as a final
resting place for those
wha heie gave their

lives that this nation
might live. 1 s
altogether fitting and
proper that we should
do this.

But, ina largersemss,
we cannot dedicate, we
cannot consecrats we
cannot hallow this
gound The bmve
men, living and dead,

wha struggled here
have consecrated it, far
above our poor power|
1o add or detract. The
world will little nate,
mor long remember,
what we say here, but
it can never forget
what they did here

1t is for 15 the living,
wther, to be dedicated

hee to the unfinished
wotk which they who
fonght here have thus
far so nobly advanced
1t is mther for us to be
hete dedicated to the
great sk remaining
befor ws, that from
these hanared dead we
take increased devotion
1o that canse for which

they gave the last full
measure of devotion,
that we here highly
resolve that these dead
shall not have died in
vain that this nation,
under God, shall have
a new birth of fieedom
and thar government of
the people by the
peaple, for the peaple

'

L

L

Keyboard

Kernel

A word processor with three th

reads

D

isk

B

UNSW

SYDNEY

Thread Usage

Web server process

Dispatcher thread

- *2ﬁ l Worker thread Usii

ﬁg é 2 > space

Web page cache
Kernel
Kernel space
Network
connection
A multithreaded Web server
34 [UNSW

Thread Usage

while (TRUE) { while (TRUE) {
get_next_request(&buf); wait_for_work(&buf)
handoff_work(&buf); look _for_page_in_cache(&buf, &page);
} if (page _not_in_cache(&page)

read_page_from_disk(&buf, &page);

return_page(&page);
}
(a) (b)

* Rough outline of code for previous slide
(a) Dispatcher thread

(b) Worker thread - can overlap disk 1/0 with execution of other threads

Thread Usage

Model

Characteristics

Threads

Parallelism, blocking system calls

Single-threaded process

No parallelism, blocking system calls

Finite-state machine

Parallelism, nonblocking system calls, interrupts

Three ways to construct a server

YYYYYY

Summarising “Why Threads?”

* Simpler to program than a state machine

* Less resources are associated with them than multiple
complete processes
* Cheaper to create and destroy
* Shares resources (especially memory) between them

* Performance: Threads waiting for I/O can be overlapped
with computing threads

* Note if all threads are compute bound, then there is no performance
improvement (on a uniprocessor)

* Threads can take advantage of the parallelism available on
machines with more than one CPU (multiprocessor)

	Processes and Threads
	Learning Outcomes
	Slide 3
	Slide 4
	Processes and Threads (2)
	Slide 6
	Slide 7
	Slide 8
	Summary: The Process Model
	Slide 10
	Process and thread models of selected OSes
	Process Creation
	Process Termination
	Implementation of Processes
	Implementation of Processes
	Process/Thread States
	Some Transition Causing Events
	Scheduler
	The Ready Queue
	What about blocked processes?
	Using Two Queues
	Slide 22
	Threads The Thread Model
	The Thread Model – Separating execution from the environment.
	Threads Analogy
	Single-Threaded Restaurant
	Multithreaded Restaurant
	Multithreaded Restaurant with more worker threads
	Finite-State Machine Model (Event-based model)
	Observation: Computation State
	The Thread Model
	Thread Model
	Thread Usage
	Thread Usage (2)
	Thread Usage (3)
	Thread Usage
	Summarising “Why Threads?”

