
Processes and Threads
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Learning Outcomes

•An understanding of fundamental concepts of 
processes and threads
•We’ll cover implementation in a later lecture
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Essential Goal of an OS

• Interleave the execution of several processes to maximize 
processor utilization while providing reasonable response 
time
• Allocate resources to processes
• Support interprocess communication and user creation and 

management of processes
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Demo: Some Parallel Processes

Let’s have a quick look at executing a few parallel processes 
from my UNIX shell.
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Processes and Threads

• Processes:
• Also called a task or job
• Memory image of an individual program
• “Owner” of resources allocated for program execution
• Encompasses one or more threads 

• Threads:
• Unit of execution
• Can be traced
• list the sequence of instructions that execute

• Belongs to a process
• Executes within it.
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Execution snapshot of 
three single-threaded 
processes (No Virtual 
Memory)



Logical Execution Trace



Combined Traces

(Actual CPU Instructions)

What are the shaded 
sections?



Summary: The Process Model

•Multiprogramming of four programs
•Conceptual model of 4 independent, sequential processes 

(with a single thread each)
•Only one program active at any instant
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Process and thread models of selected OSes

•Single process, single thread
•MSDOS, simple embedded system

•Single process, multiple threads 
• OS/161 as distributed

•Multiple processes, single thread
• Traditional UNIX

•Multiple processes, multiple threads
•Modern Unix (Linux, Solaris), Windows

Note: Literature (incl. Textbooks) often do not cleanly 
distinguish between processes and threads (for 
historical reasons)
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Process Creation

Principal events that cause process creation
1. System initialization

• Foreground processes (interactive programs)
• Background processes 

• Email server, web server, print server, etc.
• Called a daemon (unix) or service (Windows)

2. Execution of a process creation system call by a running 
process
• New login shell for an incoming ssh connection

3. User request to create a new process
4. Initiation of a batch job

Note: Technically, all these cases use the same system 
mechanism to create new processes. 
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Process Termination

Conditions which terminate processes
1. Normal exit (voluntary)
2. Error exit (voluntary)
3. Fatal error (involuntary)
4. Killed by another process (involuntary)
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Implementation of Processes 

• A processes’ information is stored in a 
process control block (PCB)
• The PCBs form a process table
• Reality can be more complex (hashing, 

chaining, allocation bitmaps,…)
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Implementation of Processes

Example fields of a process table entry
15



Process/Thread States

• Possible process/thread states
• running
• blocked
• ready

• Transitions between states shown
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Some Transition Causing Events

Running → Ready
• Voluntary Yield()
• End of timeslice

Running → Blocked
• Waiting for input
• File, network, 

• Waiting for a timer (alarm signal)
• Waiting for a resource to become available
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Scheduler

• Sometimes also called the dispatcher
• The literature is also a little inconsistent on with terminology.

• Has to choose a Ready process to run
• How?
•  It is inefficient to search through all processes
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The Ready Queue
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What about blocked processes?

•When an unblocking event occurs, we also wish to avoid 
scanning all processes to select one to make Ready 
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Using Two Queues
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Threads
The Thread Model

(a) Three processes each with one thread
(b) One process with three threads
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The Thread Model – Separating execution from the 
environment.

• Per-process items shared by all threads in a 
process
• Per-thread items associated with each 

thread
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Threads Analogy

The Hamburger Restaurant
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Single-Threaded Restaurant
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Multithreaded Restaurant

27

Customer
Arrives

Take Order

Fries Cook

Assemble
Order

Fries Finish

Start Fries

Serve
Customer

Burger CooksBurger
Finished

Start Burger

Wait for
Customer

Note: Ignoring synchronisation issues for now



Multithreaded Restaurant
with more worker threads
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Finite-State Machine Model
(Event-based model)
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Observation: Computation State 

Thread Model

• State implicitly stored on the 
stack (local variables in the 
function).

Finite State (Event) Model

• State explicitly managed by 
program
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The Thread Model

Each thread has its own stack
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Thread Model

• Local variables are per thread
• Allocated on the stack

•Global variables are shared between all threads
• Allocated in data section
• Concurrency control is an issue

•Dynamically allocated memory (malloc) can be 
global or local
• Program defined (the pointer can be global or local)
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Thread Usage

A word processor with three threads
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Thread Usage

A multithreaded Web server

34



Thread Usage

• Rough outline of code for previous slide
(a) Dispatcher thread
(b) Worker thread – can overlap disk I/O with execution of other threads
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Thread Usage 

Three ways to construct a server
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Summarising “Why Threads?”

• Simpler to program than a state machine
• Less resources are associated with them than multiple 

complete processes
• Cheaper to create and destroy
• Shares resources (especially memory) between them

• Performance: Threads waiting for I/O can be overlapped 
with computing threads
• Note if all threads are compute bound, then there is no performance 

improvement (on a uniprocessor)

• Threads can take advantage of the parallelism available on 
machines with more than one CPU (multiprocessor)

37


	Processes and Threads
	Learning Outcomes
	Slide 3
	Slide 4
	Processes and Threads (2)
	Slide 6
	Slide 7
	Slide 8
	Summary: The Process Model
	Slide 10
	Process and thread models of selected OSes
	Process Creation
	Process Termination
	Implementation of Processes
	Implementation of Processes
	Process/Thread States
	Some Transition Causing Events
	Scheduler
	The Ready Queue
	What about blocked processes?
	Using Two Queues
	Slide 22
	Threads The Thread Model
	The Thread Model – Separating execution from the environment.
	Threads Analogy
	Single-Threaded Restaurant
	Multithreaded Restaurant
	Multithreaded Restaurant with more worker threads
	Finite-State Machine Model (Event-based model)
	Observation: Computation State
	The Thread Model
	Thread Model
	Thread Usage
	Thread Usage (2)
	Thread Usage (3)
	Thread Usage
	Summarising “Why Threads?”

