
1

1

Scheduling

Learning Outcomes

• Understand the role of the scheduler, and
how its behaviour influences the
performance of the system.

• Know the difference between I/O-bound
and CPU-bound tasks, and how they
relate to scheduling.

2

3

What is Scheduling?

– On a multi-programmed system
• We may have more than one Ready process

– On a batch system
• We may have many jobs waiting to be run

– On a multi-user system
• We may have many users concurrently using the

system

• The scheduler decides who to run next.
– The process of choosing is called scheduling.

4

Is scheduling important?

• It is not in certain scenarios
– If you have no choice

• Early systems
– Usually batching
– Scheduling algorithm simple

» Run next on tape or next on punch tape

– Only one thing to run
• Simple PCs

– Only ran a word processor, etc….

• Simple Embedded Systems
– TV remote control, washing machine, etc….

5

Is scheduling important?

• It is in most realistic scenarios
– Multitasking/Multi-user System

• Example
– Email daemon takes 2 seconds to process an email
– User clicks button on application.

• Scenario 1
– Run daemon, then application

» System appears really sluggish to the user

• Scenario 2
– Run application, then daemon

» Application appears really responsive, small email delay is
unnoticed

• Scheduling decisions can have a dramatic effect on the
perceived performance of the system
– Can also affect correctness of a system with deadlines

6

Application Behaviour

• Bursts of CPU usage alternate with periods of I/O
wait

1 2

3 4

5 6

2

7

Application Behaviour

a) CPU-Bound process
• Spends most of its computing

• Time to completion largely determined by received CPU time

8

Application Behaviour

b) I/O-Bound process
– Spend most of its time waiting for I/O to complete

• Small bursts of CPU to process I/O and request next I/O

– Time to completion largely determined by I/O request time

9

Observation

• We need a mix of CPU-bound and I/O-bound processes
to keep both CPU and I/O systems busy

• Process can go from CPU- to I/O-bound (or vice versa)
in different phases of execution

10

Key Insight

• Choosing to run an I/O-bound process delays a CPU-bound
process by very little

• Choosing to run a CPU-bound process prior to an I/O-bound
process delays the next I/O request significantly

– No overlap of I/O waiting with computation

– Results in device (disk) not as busy as possible

 Generally, favour I/O-bound processes over CPU-bound processes

11

When is scheduling performed?
– A new process

• Run the parent or the child?

– A process exits
• Who runs next?

– A process waits for I/O
• Who runs next?

– A process blocks on a lock
• Who runs next? The lock holder?

– An I/O interrupt occurs
• Who do we resume, the interrupted process or the process that was

waiting?

– On a timer interrupt? (See next slide)

• Generally, a scheduling decision is required when a
process (or thread) can no longer continue, or when an
activity results in more than one ready process.

12

Preemptive versus Non-preemptive
Scheduling

• Non-preemptive
– Once a thread is in the running state, it continues until it

completes, blocks on I/O, or voluntarily yields the CPU
– A single process can monopolised the entire system

• Preemptive Scheduling
– Current thread can be interrupted by OS and moved to ready

state.
– Usually after a timer interrupt and process has exceeded its

maximum run time
• Can also be as a result of higher priority process that has become

ready (after I/O interrupt).

– Ensures fairer service as single thread can’t monopolise the
system

• Requires a timer interrupt

7 8

9 10

11 12

3

13

Categories of Scheduling Algorithms
• The choice of scheduling algorithm depends on the

goals of the application (or the operating system)
– No one algorithm suits all environments

• We can roughly categorise scheduling algorithms as
follows
– Batch Systems

• No users directly waiting, can optimise for overall machine
performance

– Interactive Systems
• Users directly waiting for their results, can optimise for users

perceived performance

– Realtime Systems
• Jobs have deadlines, must schedule such that all jobs (predictably)

meet their deadlines.

14

Goals of Scheduling Algorithms

• All Algorithms
– Fairness

• Give each process a fair share of the CPU

– Policy Enforcement
• What ever policy chosen, the scheduler should

ensure it is carried out

– Balance/Efficiency
• Try to keep all parts of the system busy

15

Goals of Scheduling Algorithms
• Interactive Algorithms

– Minimise response time
• Response time is the time difference between issuing a

command and getting the result
– E.g selecting a menu, and getting the result of that selection

• Response time is important to the user’s perception of the
performance of the system.

– Provide Proportionality
• Proportionality is the user expectation that short jobs will

have a short response time, and long jobs can have a long
response time.

• Generally, favour short jobs

16

Goals of Scheduling Algorithms
• Real-time Algorithms

– Must meet deadlines
• Each job/task has a deadline.
• A missed deadline can result in data loss or

catastrophic failure
– Aircraft control system missed deadline to apply brakes

– Provide Predictability
• For some apps, an occasional missed deadline is

okay
– E.g. DVD decoder

• Predictable behaviour allows smooth DVD
decoding with only rare skips

17

Interactive Scheduling

18

Round Robin Scheduling

• Each process is given a timeslice to run in
• When the timeslice expires, the next

process preempts the current process,
and runs for its timeslice, and so on
– The preempted process is placed at the end

of the queue

• Implemented with
– A ready queue
– A regular timer interrupt

13 14

15 16

17 18

4

19

Example

• 5 Process
– Process 1 arrives

slightly before process
2, etc…

– All are immediately
runnable

– Execution times
indicated by scale on
x-axis

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

20

Round Robin Schedule

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

Timeslice = 1 unit

21

Round Robin Schedule

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

Timeslice = 3 units

22

Round Robin
• Pros

– Fair, easy to implement

• Con
– Assumes everybody is equal

• Issue: What should the timeslice be?
– Too short

• Waste a lot of time switching between processes
• Example: timeslice of 4ms with 1 ms context switch = 20% round

robin overhead

– Too long
• System is not responsive
• Example: timeslice of 100ms

– If 10 people hit “enter” key simultaneously, the last guy to run will only
see progress after 1 second.

• Degenerates into FCFS if timeslice longer than burst length

23

Priorities

• Each Process (or thread) is associated with a
priority

• Provides basic mechanism to influence a
scheduler decision:
– Scheduler will always chooses a thread of higher

priority over lower priority

• Priorities can be defined internally or externally
– Internal: e.g. I/O bound or CPU bound

– External: e.g. based on importance to the user

24

Example

• 5 Jobs
– Job number equals

priority

– Priority 1 > priority 5

– Release and execution
times as shown

• Priority-driven
preemptively
scheduled

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

19 20

21 22

23 24

5

25

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

26

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

27

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

28

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

29

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

30

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

25 26

27 28

29 30

6

31

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

32

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

33

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

34

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

35

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

36

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

31 32

33 34

35 36

7

37

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

38

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

39

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

40

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

41

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

42

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

37 38

39 40

41 42

8

43

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

44

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

45

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

46

Priorities

• Usually implemented by multiple priority queues, with
round robin on each queue

• Con
– Low priorities can starve

• Need to adapt priorities periodically
– Based on ageing or execution history

47

Traditional UNIX Scheduler

• Two-level scheduler
– High-level scheduler

schedules processes
between memory and
disk

– Low-level scheduler is
CPU scheduler

• Based on a multi-
level queue structure
with round robin at
each level

48

Traditional UNIX Scheduler

• The highest priority (lower
number) is scheduled

• Priorities are re-calculated once
per second, and re-inserted in
appropriate queue

– Avoid starvation of low priority
threads

– Penalise CPU-bound threads

43 44

45 46

47 48

9

49

Traditional UNIX Scheduler

• Priority = CPU_usage +nice +base
– CPU_usage = number of clock ticks

• Decays over time to avoid
permanently penalising the process

– Nice is a value given to the process
by a user to permanently boost or
reduce its priority

• Reduce priority of background jobs

– Base is a set of hardwired, negative
values used to boost priority of I/O
bound system activities

• Swapper, disk I/O, Character I/O

50

Multiprocessor Scheduling

• Given X processes (or threads) and Y
CPUs,
– how do we allocate them to the CPUs

51COMP3231 04s1

A Single Shared Ready Queue

• When a CPU goes idle, it take the highest
priority process from the shared ready queue

52

Single Shared Ready Queue

• Pros
– Simple
– Automatic load balancing

• Cons
– Lock contention on the ready queue can be a

major bottleneck
• Due to frequent scheduling or many CPUs or both

– Not all CPUs are equal
• The last CPU a process ran on is likely to have

more related entries in the cache.

53

Affinity Scheduling

• Basic Idea
– Try hard to run a process on the CPU it ran

on last time

• One approach: Multiple Queue
Multiprocessor Scheduling

54

Multiple Queue SMP Scheduling

• Each CPU has its own ready queue
• Coarse-grained algorithm assigns processes to CPUs

– Defines their affinity, and roughly balances the load

• The bottom-level fine-grained scheduler:
– Is the frequently invoked scheduler (e.g. on blocking on I/O, a

lock, or exhausting a timeslice)
– Runs on each CPU and selects from its own ready queue

• Ensures affinity

– If nothing is available from the local ready queue, it runs a
process from another CPUs ready queue rather than go idle

• Termed “Work stealing”

49 50

51 52

53 54

10

55

Multiple Queue SMP Scheduling

• Pros
– No lock contention on per-CPU ready queues

in the (hopefully) common case

– Load balancing to avoid idle queues

– Automatic affinity to a single CPU for more
cache friendly behaviour

55

