Virtual Memory

Learning Outcomes

* An understanding of page-based virtual
memory in depth.

— Including the R3000’s support for virtual
memory.

Memory Management Unit
(or TLB)

The CPU sends virtual

CPU addresses to the MMU
package /
CPU 1>
/ Memory N r Disk
ot management emory controller
unit

T T.

The MMU sends physical
addresses to the memory

The position and function of the MMU

01 THE UNIVERSITY OF 3
S NEW SOUTH WALES

Virtual Address
Space

Page-based VM

* Virtual Memory
— Divided into equal-
sized pages
— A mapping is a
translation between
* A page and a frame
« A page and invalid
— Mappings defined at
runtime
« They can change

— Address space can
have holes

— Process does not
have to be
contiguous in
physical memory

* Physical Memory
— Divided into
equal-sized
frames

O =N WPr~ O

Physical Address
Space s

O =-~DNWPHSO1ILO N OO
O - NWHO1 ON

!

Virtual Address

pace
Kernel /

Stack

Shared
Libraries

BSS N
(heap)

Data F
Text ﬁ
(Code),

T THE NIVERSIT
BEE NEW SOUTH WALES

K] Typical Address

T
S

|

Space Layout

Stack region is at top,
and can grow down

« Heap has free space to
grow up

« Textis typically read-only

 Kernelis in a reserved,
protected, shared region

* 0-th page typically not
used, why?

Virtual Address Prggrammer’s perspective:
Space - logically present |

System'’s perspective: Not

mapped, data on disk

* A process may
be only partially
resident

— Allows OS to
store individual
pages on disk

— Saves memory
for infrequently
used data & code

* What happens if
we aCCess Non-
resident
memory?

P

Physical Address
Space 6

Proc 1 Address Proc 2 Address
Space | Space
Currently I

running\

X|<|N

Physical
Address Spage

U

T| |Y

z| |J
Disk

ol |IXIMg

Page Faults

« Referencing an invalid page triggers a page fault
« An exception handled by the OS

« Broadly, two standard page fault types

— lllegal Address (protection error)
« Signal or kill the process

— Page not resident
« Get an empty frame
« Load page from disk

« Update page (translation) table (enter frame #, set valid bit, etc.)
« Restart the faulting instruction

Virtual Addres

Space

« Page table for
resident part of
address space

o—~~NwWwh?

=\ \ =\ -\ I N =\

O =-~DNWPHO1ILO N OO

»|—R

6
Page

Table 0
I4
6

5 3
4

E| 3 1
2

1 Physical |7

0 Address Space |

O =N WA O

N WPH,O1O N OO

©
o

Shared Pages

 Private code and data -+ Shared code

— Each process has own — Single copy of code
copy of code and data shared between all

— Code and data can processes executing it
appear anywhere in — Code must not be self
the address space modifying

— Code must appear at
same address in all
processes

L] THE UNIVERSITY OF 10

Proc 1 Address

Space

U
T
S

Two (or more)
processes

running the

same program

and sharing
the text section

Page

%@N\, -

t- Table

Physical
Address Spage

Z | X

X|<|N

= Z

Proc 2 Address
Space

Page

Table 11

N

N

Page Table Structure

» Page table is (logically) an array of
frame numbers

— Index by page number

» Each page-table entry (PTE) also has
other bits

Caching
disabled Modified Present/absent

P /

% | Page frame number

N\

Referenced Protection
Page

B

¥ NEW SOUTH WALES

N

B8 THE UNIVERSITY OF Table 12

PTE Attributes (bits)

Present/Absent bit

— Also called valid bit, it indicates a valid mapping for the page

Modified bit

— Also called dirty bit, it indicates the page may have been
modified in memory

Reference bit
— Indicates the page has been accessed

Protection bits

— Read permission, Write permission, Execute permission
— Or combinations of the above

Caching bit

— Use to indicate processor should bypass the cache when
accessing memory

« Example: to access device registers or memory

T THE UNIVERSITY OF 13
i NEW SOUTH WALES

Address Translation

* Every (virtual) memory address issued by
the CPU must be translated to physical
memory

— Every load and every store instruction
— Every instruction fetch

* Need Translation Hardware

* In a page-based system, translation
involves replacing the page number with a
__ frame number

SEL] THE UNIVERSITY OF 14
NEW SOUTH WALES

Virtual Memory Summary

virtual and physical mem chopped up in pages/frames

- 1 5H-hit Memory address—-
bk 1|1|o[oje|o|efolofe|1]o|1|1]e| 2abie
. = |
* programs use virtual esniane_ | [T
addresses -4
« virtual to physical mapping .
by MMU 2
-first check if page present b
(present/absent bit) :
-if yes: address in page table form ;
MSBs in physical address 4 .
=3 1] 110 +——
-if no: bring in the page from disk [2
o
- .
] 0o ooofopoofopofofofofofo|o)o) 1|0 ooy ofofaf1{of1{1|d Irggius[ter
%, —II-\JI_EI\E/VUSNOI\L/J'EFRHSI\—/I_VYA&E - M0-hit virtual pags - 12-bit offsat
> 32-bit virtual address

Page Tables

 Assume we have
— 32-bit virtual address (4 Gbyte address space)
— 4 KByte page size

— How many page table entries do we need for one
process?

16

Page Tables

 Assume we have
— 64-Dbit virtual address (humungous address space)
— 4 KByte page size

— How many page table entries do we need for one
process?

* Problem:
— Page table is very large

— Access has to be fast, lookup for every memory
reference
— Where do we store the page table?
» Registers?
* Main memory?

17

Page Tables

« Page tables are implemented as data structures in main
memory

* Most processes do not use the full 4GB address space
— e.g.,, 0.1 -1 MB text, 0.1 — 10 MB data, 0.1 MB stack
 We need a compact representation that does not waste
space
— But is still very fast to search
* Three basic schemes
— Use data structures that adapt to sparsity

— Use data structures which only represent resident pages
— Use VM techniques for page tables (details left to extended OS)

THE UNIVERSITY OF 18

Two-level Page
Table

2nd —level
page tables
representing
unmapped
pages are not
allocated

— Null in the
top-level
page table

Bits

10

10

12

PT1

PT2

Offset

(@)

1023

O=MNWk~kOOIO

Top-level
page table

JJ

1023

O - MNWrkoo

LeluUliuTticvel

page tables

2J

(C

/AN NN NN A A

o \\“‘

)
£C

p3)

{C

(AN E NN NN AN A

FIYIYYY

p3)

(g3

JAJ i iiingy

PYYIYvYy

Page
table for
[the top
4M of
memory

IEERERRES

To
pages

Two-level Translation

l

Frame # Offset

!

Virtual Address

100 bits | 10 bits | 12 bits

Rt page
tuable ptr

Page
Frame

1
(e

- m
d4-khvte page

Root page table l:ll'-l-; IL'u;_n_la_un-; JH\
. e (2 TS
icontains 1024 PTEs) 1124 PTLEs)

Program Paging Mechanism Main Memory

Example Translations

T
L] THE UNIVERSITY OF
RS NEW SOUTH WALES

21

22

Summarising Two-level Page
Tables

« Translating a 32-bit virtual
address into a 32-bit offset

10-bits 10-bits 12-bits

physical 2t

« Recall: @
— the level 1 page table
node has 219 entries Two-level

o 21944 = 4 KiB node
— the level 2 page table node

page
table

have 210 entries
e 210 4+ 4 = 4 KiB node v
frame# offset
20-bits 12-bits
S THE UNIVERSITY OF 23

Index bits determine node sizes

« Translating a 32-bit virtual

address into a 32-bit oftset
. 8-bits 12-bits 12-bits
physical —
« Changing the indexing: @
— the level 1 page table
node has 28 entries Two-level
page
° 28 x4 =1 KiB nOde table
— the level 2 page table node
have 214 entries
o 21244 =16 KiB node @ N
frame# offset
20-bits 12-bits
- THE UNIVERSITY OF 24

Supporting 64-bit Virtual to

Physical Translation
* Translating a 64-bit

offset

virtual address into a 64-

blt phyS|Ca|??? 26-bits @ 26-bits 12;bits
* Support 64-bits?:
— the level 1 page table Two-level
node has 24 entries page
« 226+ 8 =512 MiB node table?
— the level 2 page table node
have 214 entries @
e 22 %8 =512 MiB node N
frame# offset
52-bits 12-bits
EF- THE UNIVERSITY OF 25

Bl NEW SOUTH WALES

Multi-level Page Tables

« Translating a 64-bit virtual address
into a 64-bit physical (Intel/AMD pre-
lce Lake)

Only support 48-bit addresses
Top 16-bits unused

the level 1 page table node has 2°
entries

e 2% 8 =4KiB node
the level 2 page table node have 2°
entries

e 2% 8 =4KiB node
the level 3 page table node have 2°
entries

e 2% 8 =4KiB node
the level 4 page table node have 2°
entries

o 2%x8=4KiBnode

offset
16-bits 9-bits 9-bi 9-bits 9-bits 12-bits
Four-level
page
table!!
frame# offset
12-bits 40-bits 12-bits
26

Intel 4-Level Page Tables

Linear Address
47 39 38 30 29 2120 12 11 0
| PML4 | Directory Ptr | Directory Table Offset
I ,ir ,
9
/ 9 il 12 4-KByte Page
Physical Addr
> PTE ——
Page-Directory- —| PDE with PS=0 40
Pointer Table 40 Page Table
Page-Directory
9
_»PDPTE [/] 40
A9
-
A 40
PML4E

..
E
CR3

Figure 4-8. Linear-Address Translation to 3 4-KByte Page using 4-Level Paging

-]
=0 THE UNIVERSITY OF
B NEW SOUTH WALES

Alternative: Inverted Page Table

PID VPN offset

- J
Y

ﬁ Index| PID| VPN |ctrl| next

Hash Anchor Table
(HAT)

oOUhWN O
/
/
J/

IPT: entry for each physical frame

Alternative: Inverted Page Table

PID VPN offset

0 Ox5
ﬁ Index| PID| VPN |ctrl| next
Hash Anchor Table 0
(HAT) 1
@ >~1 | Ox1A 0x40C
»
0x40C| 0O 0x5 0x0
5 0x40D \\
\ ppn offset

0x40C

Inverted Page Table (IPT)

* “Inverted page table” is an array of page
numbers sorted (indexed) by frame number (it's
a frame table).

* Algorithm
— Compute hash of page number
— Extract index from hash table
— Use this to index into inverted page table
— Match the PID and page number in the IPT entry

— |f match, use the index value as frame # for
translation

— If no match, get next candidate IPT entry from chain
field

— If NULL chain entry = page fault

L] THE UNIVERSITY OF 30

Properties of IPTs

* IPT grows with size of RAM, NOT virtual address space

* Frame table is needed anyway (for page replacement,
more later)

* Need a separate data structure for non-resident pages

« Saves a vast amount of space (especially on 64-bit
systems)

« Usedin some IBM and HP workstations

L THE UNIVERSITY OF 31

Given n processes

* how many page tables will the system
have for

— ‘normal’ page tables
— inverted page tables?

Another look at sharing...

=
L] THE UNIVERSITY OF
S8l NEW SOUTH WALES

Proc 1 Address Proc2 Address

)dCe

Physical
Address Spage

Two (or more)
processes
running the

same program
and sharing

the text section

=a
B THE UNIVERSITY OF
S5 NEW SOUTH WALES

34

Improving the IPT: Hashed
Page Table

* Retain fast lookup of IPT
— A single memory reference in best case

* Retain page table sized based on physical
memory size (not virtual)

— Enable efficient frame sharing
— Support more than one mapping for same frame

« Key addition: adding frame number to HPT entry

=2
%- THE UNIVERSITY OF 35

Hashed Page Table

PID VPN offset

HPT: Frame number stored in table

Hashed Page Table

PID VPN offset

0 0x5

THE UNIVERSITY OF
@il NEW SOUTH WALES

?O'I-BOOI\)A

PID| VPN PFN | ctrl| next
0 0x5 Ox42 0x0 \>
1 Ox1A |0x13 Ox3
ppn offset
Ox42

Sharing Example

PID VPN offset

0 0x5

1 THE UNIVERSITY OF
i NEW SOUTH WALES

?O'I-BOOI\)A

PID| VPN PFEN | ctrl | next
1 0x5 Ox42 0x0 '\>
0 0x5 0x42 0x3
ppn offset
0x42

=
ol |

Sizing the Hashed Page Table

 HPT sized based on physical memory size
* With sharing

— Each frame can have more than one PTE

— More sharing increases number of slots used
* Increases collision likelihood

« However, we can tune HPT size based on:

* Physical memory size
» Expected sharing
« Hash collision avoidance.

— HPT a power of 2 multiple of number of physical
memory frame

THE UNIVERSITY OF 39

¥ NEW SOUTH WALES

VM Implementation Issue

 Performance?

— Each virtual memory reference can cause two
physical memory accesses
* One to fetch the page table entry
« One to fetch/store the data
= Intolerable performance impact!!

e Solution:

— High-speed cache for page table entries (PTES)
« Called a translation look-aside buffer (TLB)
« Contains recently used page table entries
» Associative, high-speed memory, similar to cache memory
« May be under OS control (unlike memory cache)

= THE UNIVERSITY OF 40
@ NEW SOUTH WALES

1l TLB operation

devicel!ll

) Secondary
Main Memory Memory

) R

Virtual Address

Page # | Offset
Translation
Lookaside Buffer
—#
—
——— TLB hit _ I
P OfMfset
._' o
——m!
Data Load
, structure page
PagefTable . i 2
IN mMain
memao —
TLEB miss y _/\
———»
¥ v

Frame # (ffset

Real Address \/\

Page tault

Translation Lookaside Buffer

* Given a virtual address, processor examines the
TLB

 |If matching PTE found (7LB hit), the address is
translated

* Otherwise (TLB miss), the page number is used
to index the process’s page table
— If PT contains a valid entry, reload TLB and restart

— Otherwise, (page fault) check if page is on disk
 If on disk, swap it in
« Otherwise, allocate a new page or raise an exception

=N THE UNIVERSITY OF 42

@0 NEw SOUTH WALES

TLB properties

« Page table is (logically) an array of frame
numbers

« TLB holds a (recently used) subset of PT entries

— Each TLB entry must be identified (tagged) with the
page # it translates

— Access is by associative lookup:
« All TLB entries’ tags are concurrently compared to the page #
« TLB is associative (or content-addressable) memory

page #F | frame # |V | W

THE UNIVERSITY O i

TLB properties

« TLB may or may not be under direct OS control
— Hardware-loaded TLB

e On miss, hardware performs PT lookup and reloads TLB
« Example: x86, ARM

— Software-loaded TLB

* On miss, hardware generates a TLB miss exception, and
exception handler reloads TLB

« Example: MIPS, Itanium (optionally)
« TLB size: typically 64-128 entries

« Can have separate TLBs for instruction fetch
and data access

 TLBs can also be used with inverted page tables
(and others)

TBL] THE UNIVERSITY OF 44

TLB and context switching

 TLB is a shared piece of hardware
 Normal page tables are per-process (address space)

 TLB entries are process-specific

— On context switch need to flush the TLB (invalidate all
entries)

* high context-switching overhead (Intel x86)

— or tag entries with address-space ID (ASID)
 called a fagged TLB
« used (in some form) on all modern architectures
« TLB entry: ASID, page #, frame #, valid and write-protect bits

L THE UNIVERSITY OF 45

] .Y!-.!z:
[|

<

TLB effect

« Without TLB

— Average number of physical memory
references per virtual reference

=2
« With TLB (assume 99% hit ratio)

— Average number of physical memory
references per virtual reference
=.99"1+0.01*2
=1.01

THE UNIVERSITY OF
NEW SOUTH WALES

46

Recap - Simplified Components of
Virtual Address Spaces VM Sysll:errlageTablesforB

(3 processes) / processes o Table

L

Frame Pool

CPU

TLB

— Physical Memory

T THE UNIVERSITY OF 47
il NEW SOUTH WALES

Recap - Simplified Components of
VM System

Virtual Address Spaces
(3 processes)

-]
SEL| THE UNIVERSITY OF
@5 NEW SOUTH WALES

CPU

TLB

Inverted Page

/ Table

Frame Pool

Physical Memory

48

Recap - Simplified Components of

Virtual Address Spaces V M SySte m

(3 processes) Table
[

Hashed Page

Frame Table

e

%@@gfg«\ '[]
/\g\ec;\fo“
cPU / L
5 TLB
Frame Pool

Physical Memory

b s
W[

A e

49

MIPS R3000 TLB

3 65 0
VPN ASID 0

EntryHi Register (TLE key fields)

3 12 11 10 9 f I 0
PEN N D V G 0

Entrylo Register (TLE data fields)

« N = Not cacheable
* D = Dirty = Write protect

G = Global (ignore ASID
in lookup)

bl
B0 THE UNIVERSITY OF
% NEW SOUTH WALES

 V =valid bit
e 64 TLB entries

« Accessed via software through
Cooprocessor 0 registers

— EntryHi and EntryLo

50

Oxffffffff

R3000 Address

Space Layout .coo0000
* ksegO:

— 512 megabytes 0xA0000000

— Fixed translation window to
physical memory

« 0x80000000 - OxOfffffff virtual =
0x00000000 - Ox1fffffff physical

* TLB not used
— Cacheable
— Only kernel-mode accessible

— Usually where the kernel code
and data is placed

0x80000000

kKuseg

- Physical Memory

% e

0x00000000

OxFFFFFFFF

R3000 Address
Space Layout

0OxC000000C
* Kkuseg:
— 2 gigabytes 0xA0000000
— TLB translated (mapped)
— Cacheable (depending on ‘N’ bit)
— user-mode and kernel mode 0x80000000
accessible

— Page size is 4K

kKuseg

=2

1- THE UNIVERSITY OF

B NEW SOUTH WALES OXOOOOOOOO

OXFFFFFFFF

R3000 Address
Space Layout ~q00000c

— Switching processes
switches the translation OxA0000000
(page table) for kuseg

0x80000000

Proc 1 Proc 2
Kuseg kKuseg

0x00000000

Oxffffffff

R3000 Address

Space Layout c.coooc
* kseg1:

— 512 megabytes 0xA00000

— Fixed translation window to
physical memory

« 0xa0000000 - Oxbfffffff virtual =
0x00000000 - Ox1fffffff physical

 TLB not used
— NOT cacheable
— Only kernel-mode accessible

— Where devices are accessed (and
boot ROM)

=m Physical Memory

0x800Q0000

kKuseg

