Learning Outcomes

*Understand concurrency is an issue in operating
systems and multithreaded applications

*Know the concept of a critical region.

*Understand how mutual exclusion of critical regions

Concu rrency and Synch ronisation can be used to solve concurrency issues
¢ Including how mutual exclusion can be implemented
correctly and efficiently.
*Be able to identify and solve a producer consumer
bounded buffer problem.

*Understand and apply standard synchronisation
primitives to solve synchronisation problems.

1 Fusw 2 Funsw
2
Textbook Concurrency Example
. ' is a global variable shared between two threads, t is a local variable.
*Sections 2.3-2.3.7& 2.5 After increment and decrement complete, what is the value of count?
void increment () void decrement ()

{ {
int t; i

Where is the concurrency? There is in-kernel concurrency even for single-
threaded processes

Process’s user-level stack and execution state
«

Process 1 Process 1 Process 1 Process

| User Mode

]| AR
g ¥
]

se{ [[o]]
(ar = (b) Z.

* (a) Three processes each with one thread \ﬂ/ _ ProcessB) Prodls C

* (b) One process with three threads

User
space

N—’

Operating System
Kernel Mode

UNSW Process’s in-kernel stack and execution state @ NeW

Critical Region

* We can control access to the shared resource by controlling
access to the code that accesses the resource.
= A critical region is a region of code where shared resources
are accessed.
* Variables, memory, files, etc...
* Uncoordinated entry to the critical region resultsin a race
condition

Identifying critical regions

* Critical regions are regions of code that:
* Access a shared resource,

« and correctness relies on the shared resource not being concurrently
modified by another thread/process/entity.

void increment ()

void decrement ()

= Incorrect behaviour, deadlock, lost work,... { {
int t; int t;
t = count; t = count;
t=1t+1; t=1t-1;
count = t; count = t;
} }
7 FUNsw s FUNsw
Accessing Critical Regions Example critical regions
Aenters critical reglon A leaves critical region
{ struct node { void insert(struct *item)
P A — 7 int data; {
rocess I L/ | struct node *next; item->next = head;
| | | | }; head = item;
: : B attempts to : B enters : B leaves struct node *head; }
enter critical critical region critical region
: : region ﬂ:(:/ void init(void) struct node *remove(void)
{ {
|]
Process B 7 head = NULL; struct node *t;
: \{/kﬁ ,—\<:/ ’: } t = head;
' ' B blocked ' ' if (t !'= NULL) {
T T Ts T, head = head->next;
* Simple last-in-first-out
% implemented as a linked return t;
Firme }
Mutual exclusion using critical regions @
s Fusw 10 FUsw
Example Race Example critical regions
void insert(struct *item) void insert(struct *item)
{ { / struct node { void insert(struct *item)
N _ R item->next = head; int data; {
1temf>n§xt = head; head = item; % struct node *next; item->next = head;
head = item; } + head = item;
} struct node *head; }
void init(void) struct node *remove(void)
{ {
head = NULL; struct node *t;
} t = head;
if (t != NULL) {
head = head->next;
« Critical sections }
return t;
}
12 UNSW

Critical Regions Solutions

* We seek a solution to coordinate access to critical regions.
* Also called critical sections

A solution?

* A lock variable

e Iflock==1,
« Conditions required of any solution to the critical region * somebody is in the critical section and we must wait
problem * Iflock==0,

1. Mutual Exclusion:

* No two processes simultaneously in critical region
2. No assumptions made about speeds or numbers of CPUs
3. Progress

« No process running outside its critical region may block another process

4. Bounded
* No process waits forever to enter its critical region

* nobody is in the critical section and we are free to enter

13 G UNSW 14 I UNSW
14
A solution? A problematic execution sequence
while(TRUE) { while(TRUE) { while (TRUE) {
while(lock == 1); while(lock == 1); while (TRUE) {
lock = 1; lock = 1; while (lock == 1);
critical(); critical(); while(lock == 1);
lock = @ lock = @ lock = 1;
itical(); non_critical(); lock = 1,
non_cri H _ 5 critical(); critical();
} } lock = 0
non_critical();
} lock = 0
non_critical();
}
15 G UNSW 16 5 UNSW
16
_ Mutual Exclusion by Taking Turns
Observation
- . . while (TRUE) { while (TRUE) {
* Unfortunately, it is usually easier to show something does while (tun I= 0) /% loop */ : while (turn != 1) /% loop */ ;
not work, than it is to prove that it does work. critical reg.ion() ’ critical reg'ion() ’
* Easier to provide a counter example turn = 17 ’ turn = 6 ’
« Ideally, we'd like to prove, or at least informally demonstrate, that noncriti(:,a[region(); noncriti(;al region();
our solutions work. } _Teg . } e 2
(a) (b)
Proposed solution to critical region problem
(a) Process 0. (b) Process 1.
7 B 18 S UNSW

18

Mutual Exclusion by Taking Turns

* Works due to strict alternation
* Each process takes turns

*Cons
* Busy waiting
* Process must wait its turn even while the other process is
doing something else.
* With many processes, must wait for everyone to have a turn
 Does not guarantee progress if a process no longer needs a turn.

* Poor solution when processes require the critical section at
differing rates

Mutual Exclusion by Disabling Interrupts

* Before entering a critical region, disable interrupts
* After leaving the critical region, enable interrupts

while(TRUE) {
disable_interrupts();
critical();
enable_interrupts();
non_critical();

while(TRUE) {
disable_interrupts();
critical();
enable_interrupts();
non_critical();

} }
19 G UNSW 20 FUNSW
19 20
Mutual Exclusion by Disabling Interrupts Hardware Support for mutual exclusion
*Pros *Test and set instruction
e simple * Can be used to implement lock variables correctly
«Cons J :: :oa;is thg value of the lock
. . « Iflock == 0,
* Only available in the kernel « set the lock to 1
« Delays everybody else, even with no contention « return the result 0 — we acquire the lock
« Slows interrupt response time * If lock ==
* Does not work on a multiprocessor « return 1 - another thread/process has the lock
* Hardware guarantees that the instruction executes
atomically.
* Atomically: As an indivisible unit.
21 G UNSW 2 FUuNsw
21 22
Mutual Exclusion with Test-and-Set
Test-and-Set
*Pros
* Simple (easy to show it’s correct)
enter_region: . _
TSL REGISTER,LOCK | copy lock to register and set lock to 1 * Available at user-level
CMP REGISTER,#0 | was lock zero? * To any number of processors
JNE enter_region | if it was non zero, lock was set, so loop * To implement any number of lock variables
RET | return to caller; critical region entered
*Cons
* Busy waits (also termed a spin lock)
leave _region: .C cPU
MOVE LOCK,#0 | store a 0 in lock onsumes
RET | return to caller « Starvation is possible when a process leaves its critical section and
more than one process is waiting.
Entering and leaving a critical region using the
TSL instruction
23 FuNsw 24 FUNSW
23 24

Tackling the Busy-Wait Problem

* Sleep / Wakeup
* The idea
* When process is waiting for an event, it calls sleep to block, instead of
busy waiting.
* The event happens, the event generator (another process) calls wakeup
to unblock the sleeping process.
« Waking a ready/running process has no effect.

in a buffer

consumes them.

The Producer-Consumer Problem

* Also called the bounded buffer problem
* A producer produces data items and stores the items

* A consumer takes the items out of the buffer and

Producer

Consumer

25 G UNSW 26 UNSW
25 26
Issues Pseudo-code for producer and consumer
* We must keep an accurate count of items in buffer
* Producer
* should sleep when the buffer is full, int count = 0; con() {
« and wakeup when there is empty space in the buffer #define N 4 /* buf size */ while (TRUE) {

* The consumer can call wakeup when it consumes the first entry of the full buffer prod() { if (count == 0)

* Consumer while (TRUE) { sleep(con) ;
« should sleep when the buffer is empty item = produce () remove item();
« and wake up when there are items available if (count == N) count—j;

* Producer can call wakeup when it adds the first item to the buffer sleep (prod) ; if (count == N-1)
insert item(); wakeup (prod) ;
count++; }

Producer if (count == 1) }
wakeup (con) ;
= }
C
ensumer 27 B UNSW 28 B UNSW
27 28
Problems Problems
int count = 0; con() { int count = 0; con() {
#define N 4 /* buf size */ while (TRUE) { #define N 4 /* buf size */ while (TRUE) {
prod() { if (count == 0) prod() { if (count == 0)
while (TRUE) { sleep(con) ; while (TRUE) { sleep(con) ;
item = produce() remove_item() ; item = produce () remove_item() ;
if (count == N) count--; if (count == N) count--;
sleep (prod),; > (count == N-1) sleep (prod) ; if (count == N-1)
insert_item() ; eup (prod) ; insert item() 2 wakeup (prod) ;
count++; } count++;

if (count == 1) } Concurrent uncontrolled if (count == 1) } Concurrent uncontrolled

access to the buffer access to the counter
wakeup (con) ; wakeup (con) ;
} }
} }
29 FuNsw 30 FUNSW
29 30

Proposed Solution

« Lets use a locking primitive based on test-and-set to protect
the concurrent access

Proposed solution?

int count = 0;
lock_t buf_lock;

#define N 4 /* buf size */ con() {
prod() { while (TRUE) {
while (TRUE) { if (count == 0)

item = produce () sleep(con) ;

if (count == N) acquire_lock (buf_lock)
sleep (prod) ; remove_item() ;

acquire_lock (buf_lock) count--;

insert_item(); release_lock (buf_lock) ;

count++; if (count == N-1)
release_lock (buf_lock) wakeup (prod) ;
if (count == 1) }
wakeup (con) ; }
}
}
31 [UNSW 32 FUNSW
31 32
Problematic execution sequence Problem
con() {
while (TRUE) {
if (count == 0)
prod() {
while (TRUE) {) . .
iten = produce () * The test for some condition ~ The lock is held while asleep
o oty and actually going to sleep = count will never change
acquire_lock (buf_lock) wakeup without a needs to be atomic
insert_item(); matching sleep is lost X
countir * The following does not
release_lock (buf_lock)
if (count == 1) work:
vakeup (con) ;
sleep(con) ; acquire_lock (buf_lock) acquire_lock (buf_lock)
acquire_lock (buf_lock)
remove_item() ; if (count == N) if (count == 1)
count--; sleep() ; wakeup () ;
release_lock (buf_lock) ;
if (count == N-1) release_lock (buf_lock) release_lock (buf_lock)
wakeus (prod)
}
}
33 [UNSW 34 B UNSW
33 34
Semaphores How do they work
« Dijkstra (1965) introduced two primitives that are more « If a resource is not available, the corresponding semaphore
powerful than simple sleep and wakeup alone. blocks any process waiting for the resource
* P(): proberen, from Dutch to test. + Blocked processes are put into a process queue maintained
* V(): verhogen, from Dutch to increment. by the semaphore (avoids busy waiting!)
« Also called wait & signal, down & up. L .
* When a process releases a resource, it signals this by means
of the semaphore
« Signalling resumes a blocked process if there is any
* Wait (P) and signal (V) operations cannot be interrupted
* Complex coordination can be implemented by multiple
semaphores
35 EIUNSW 36 B UNSW
35 36

Semaphore Implementation

* Define a semaphore as a record
typedef struct {
int count;

struct process *L;
} semaphore;

* Assume two simple operations:
« sleep suspends the process that invokes it.
» wakeup(P) resumes the execution of a blocked process P.

* Semaphore operations now defined as

wait(S):
S.count--;
if (S.count < 0) {

add this process to S.L;
sleep;

signal(S):
S.count++;
if (S.count <=0) {
remove a process P from S.L;
wakeup(P);

}

* Each primitive is atomic

 E.g. interrupts are disabled for each code fragment

37 B UNSW 38 [UNsw
37 38
Semapho.re a_s a General Semaphore Implementation of a Mutex
Synchronization Tool
* Execute B in P; only after A executed in P, * Mutex is short for Mutual Exclusion
* Use semaphore count initialized to 0 * Can also be called a lock
* Code: semaphore mutex;
P P mutex.count = 1; /* initialise mutex */
i j
wait (mutex); /* enter the critcal region */
A wait(flag)
signal(flag) B Blahblah() ;
signal (mutex); /* exit the critical region */
Notice that the initial count determines how many
waits can progress before blocking and requiring a
signal = mutex.count initialised as 1
39 BEUNSW a0 Funsw
39 40

Solving the producer-consumer problem
with semaphores

#define N = 4
semaphore mutex = 1;

/* count empty slots */
semaphore empty = N;

/* count full slots */
semaphore full = 0;

Solving the producer-consumer problem
with semaphores

prod() { con() {
while (TRUE) { while (TRUE) {
item = produce () wait (full);

wait (empty) ; wait (mutex) ;
wait (mutex)

insert _item();

remove_item() ;
signal (mutex) ;

signal (mutex) ; signal (empty) ;

signal (full) ;)

41

42

Summarising Semaphores

* Semaphores can be used to solve a variety of concurrency
problems

* However, programming with them can be error-prone
« E.g. must signal for every wait for mutexes

« Too many, or too few signals or waits, or signals and waits in the wrong
order, can have catastrophic results

Monitors

*To ease concurrent programming, Hoare (1974)
proposed monitors.
* A higher level synchronisation primitive
* Programming language construct

*Ildea
* A set of procedures, variables, data types are groupedin a
special kind of module, a monitor.
 Variables and data types only accessed from within the monitor
* Only one process/thread can be in the monitor at any one
time
* Mutual exclusion is implemented by the compiler (which should be
less error prone)

43 I UNSW 4s EuNsw
43 44
Monitor Monitors
monitor example
entry queue 5)
* When a thread calls Y mtneg‘e:: l[’l .
a monitor procedure condifioné;
that has a thread shared data rocedure producer();
already inside, it is p p ’ ’
queued and it sleeps
until the current
thread exits the .
monitor. end;
D . D procedure consumer();
- end;
operations end monitor;
P Example of a monitor
code 46 @ UNSW
45 46
Simple example How do we block waiting for an event?
* We need a mechanism to block waiting for an event (in
it N " . addition to ensuring mutual exclusion)
mc.>n:|. or counter { Note: “paper” language « e.g., for producer consumer problem when buffer is empty or full
int count; « Compiler guarantees only « Condition Variables
procedure inc() { one thread can be active in
count = count + 1; the monitor at any one time
} « Easy to see this provides
procedure dec() { mutual exclusion
count = count -1; * No race condition on count.
}
}
47 B UNSW a3 B UNSW
47 48

Condition Variable

* To allow a process to wait within the monitor, a condition variable
must be declared, as

condition x, y;

« Condition variable can only be used with the operations wait and
signal.
* The operation
x.wait();
* means that the process invoking this operation is suspended until another process invokes
* Another thread can enter the monitor while original is suspended
x.signal();

* The x.signal operation resumes exactly one suspended process. If no process is
suspended, then the signal operation has no effect.

49 i UNSW

Condition Variables

entry queue

shared data

=
)

initialization
code

iqueues associated with
X, y conditions

50

UNSW

49

50

monitor ProducerConsumer

Monitors

rocedure producer;
condition full, empty; p producer

int . ; begin
Infeger w“f”‘ . . while rrue do
procedure insert(item: integer); .
begin begin
i i .
N o item = produce_item;
'_f coum__ N ic“ wait(full); ProducerConsumer.inseri(item)
insert_itemfitem);
end
count := count + 1; end:
et if count = 1 then signal(empty) procedure consumer;
e . begin
:]um:tmn remove: integer; while irue do
it count = 0 then wat(empiy): begin
i ammi : el,1 wail (:Tmp y); item = ProducerConsumer.remove;
femove = remove _tlerm; consume _item(item)
count := count — 1; end
if count = N — 1 then signal(full) end:
end; '
count :=0);

end monitor;

* Qutline of producer-consumer problem with monitors

« only one monitor procedure active at one time
* buffer has N slots 51

0S/161 Provided Synchronisation
Primitives

* Locks

* Semaphores

* Condition Variables

52@

UNSW

51

52

Locks

* Functions to create and destroy locks

struct lock *lock create(const char *name);
void lock_destroy(struct lock *);
* Functions to acquire and release them

void lock_acquire(struct lock *);

void lock_release(struct lock *);

Example use of locks

int count; procedure inc() {
struct lock *count_lock
count = count + 1;

main() {
count = 0; }
count_lock = procedure dec() {

lock_create (“count

lock_acquire (count_lock) ;

lock_release(count_lock) ;

lock_acquire(count_lock) ;

lock”) ; count = count -1;

if (count lock == NULL) lock_release (count_lock) ;
panic(“I'm dead”); }

stuff();

}

54 (B

UNSW

53

54

Semaphores

struct semaphore *sem create(const char *name, int
initial_count);

void sem_destroy (struct semaphore *);
void P(struct semaphore *);
void V(struct semaphore *);

Example use of Semaphores

int count; procedure inc() {

struct semaphore P(count mutex) ;

*count_mutex; count = count + 1;

V(count_mutex) ;
main() { }
count = 0; procedure dec() {
count_mutex = P (count_mutex) ;
sem create (“count”, count = count -1;
if (count mutex == NULL)
panic(“I'm dead”) ;
stuff();

}

V(count_mutex) ;

}

56

Condition Variables

struct cv *cv_create(const char *name) ;

void cv_destroy (struct cv *);

void cv_wait(struct cv *cv, struct lock *lock);
* Releases the lock and blocks
* Upon resumption, it re-acquires the lock
* Note: we must recheck the condition we slept on

void cv_signal (struct cv *cv, struct lock *lock);
void cv_broadcast(struct cv *cv, struct lock *lock);
* Wakes one/all, does not release the lock
* First “waiter” scheduled after signaller releases the lock will re-
acquire the lock

Note: All three functions must hold the lock passed in.

Condition Variables and Bounded Buffers

Non-solution Solution

lock_acquire(c_lock) lock acquire(c_lock)
if (count == 0) while (count == 0)
sleep();

remove_item() ;

cv_wait(c_cv, c_lock);
remove item() ;
count--;
count--; lock_release (c_lock) ;
lock_release(c_lock)

’

58

Alternative Producer-Consumer Solution
Using 0S/161 CVs

int count = 0;
#define N 4 /* buf size */

prod() { con() {

while (TRUE) { while (TRUE) {
item = produce () lock_acquire (1)
lock_aquire (1) while (count == 0)
while (count == N) cv_wait (empty, 1) ;

cv_wait(full,l); item = remove_item() ;

insert_item(item); count--;
count++; cv_signal (full,l);
cv_signal (empty,1) ; lock_release(l);
lock_release(l) consume (item) ;

Dining Philosophers

* Philosophers eat/think

* Eating needs 2 forks
*Pick one fork at a time
*How to prevent deadlock

60 &

60

Dining Philosophers

#define N 5 /* number of philosophers */
#define LEFT (i+N-1)%N /* number of i's left neighbor */
#define RIGHT (i+1)%N /* number of i's right neighoor */

#define THINKING 0
#define HUNGRY 1
#define EATING 2
typedef int semaphore;

/* philosopher is thinking */

/* philosopher is trying to get forks */

/* philosopher is eating */

/= semaphores are a special kind of int */

Dining Philosophers

#define N 5 /* number of philosophers */
void philosopher(int i) /* i: philosopher number, from 0 to 4 */

while (TRUE) {

int state[N]; /* array to keep track of everyone’s state */ think(); /* philosopher is thinking */
semaphore mutex = 1; /* mutual exclusion for critical regions */ take_ fork(i); /* take left fork */
semaphore s[NJ; /x one semaphore per philosopher */ take_fork((i+1) % N); /* take right fork; % is modulo operator */
void philosopher(int i) /* i philosopher number, from 0 to N-1 */ eat(); /* yum-yum, spaghetti */
. put_fork(i); /* put left fork back on the table */
while (TRUE) { /= repeat forever */ put_fork((i+1) % N); /* put right fork back on the table */
think(); /* philosopher is thinking */ }
take_forks(i); /* acquire two forks or block */
eat(); /* yum-yum, spaghetti */ }
put_forks(i); /* put both forks back on table */
} . - .
} A nonsolution to the dining philosophers problem
Solution to dining philosophers problem (pagt 1) 62 B UNSW
62
Dining Philosophers
void take_forks(int i) /* i: philosopher number, from 0 to N-1 */
down(&mutex); /* enter critical region */
state[i] = HUNGRY; /* record fact that philosopher i is hungry */
test(i); /* try to acquire 2 forks */
up(&mutex); /* exit critical region */
down(&sli]); /* block if forks were not acquired */
}
void put_forks(i) /* i: philosopher number, from 0 to N-1 */
down(&mutex); /* enter critical region */
state[i] = THINKING; /* philosopher has finished eating */
test(LEFT); /* see if left neighbor can now eat */
test(RIGHT); /* see if right neighbor can now eat */
up(&mutex); /* exit critical region */
}
void test(i) /% i: philosopher number, from 0 to N—1 */
if (state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] = EATING) {
state[i] = EATING;
up(&siD:
}
}
Solution to dining philosophers problem (pagt 2) 60 B UNSW

64

The Readers and Writers Problem

* Models access to a database
« E.g. airline reservation system
* Can have more than one concurrent reader
* To check schedules and reservations
* Writers must have exclusive access
« To book a ticket or update a schedule

The Readers and Writers Problem

typedef int semaphore; /* use your imagination */

semaphore mutex = 1; /# controls access 10 'rc’ */

semaphore db = 1 / controls access to the database */
intre=0; /+ # of processes reading or wanting to */

void reader(void)

while (TRUE) { /* repeat forever */
down(&mutex); /* get exclusive access 10 'rc’ */
c=rc+1; /+ one reader more now */
if (rc == 1) down(&db); /+ if this is the first reader ... +/
up(&mutex): /* release exclusive access 10 'rc’ */
read_data_base(); /+ access the data */
down(&mutex): /* get exclusive access 10 'rc’ */
: /+ one reader fewer now +/
it (c==0) up(8&db); /xif this is the last reader ... */
up(&mutex); /# release exclusive access 10 'rc’ */
use_data_read() /# noncritical region */
) }
void writer(void)
while (TRUE) { I repeat forever */
think_up_data(); /# noncritical region */
down(&db); /= get exclusive access */
write_data_base() /* update the data */
up(&db). /= release exclusive access */

}

A solution to the readers and writers problem o

66

