
1

Variations of Process Abstractions

• “Solaris Zones: Operating System Support for 
Consolidating Commercial Workloads”

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

1

Problem

Within many IT organizations, driving up system utilization (and saving 
money in the process) has become a priority. In the lean economic times 
following the post dot-com downturn, many IT managers are electing to 
adopt server consolidation as a way of life. They are trying to improve on 
typical data center server utilizations of 15-30%
• Context:

• Hardware supported virtualization was still restricted to specialized servers
• Intel VT-x release 2005

• Software virtualization had significant overheads
• Memory footprint of multiple operating systems
• Lack of sharing
• Performance penalty for emulating I/O

Relevance continues today with cloud computing.

2

Practical Barriers

• Server-class applications written assuming a machine to 
itself
• Clashing network ports
• Clashing user IDs
• Hard-coded log/config file locations

• One application should not interfere with another

3

Security Issues

•Runs as ‘root’
• How to run two mutually distrusting applications?

•Administration requires root
• What about mutually distrusting administrators?

•Root for one application environment should be less 
than root for the machine

4

Solaris Zones

•A baked in solution
• Part of the operating system

• “Applications can be run within zones with no 
changes, and with no significant performance 
impact for either the performance of the 
application or the base operating system”
•Virtualises user-kernel boundary (not the hardware 

platform)

5

Interface Levels

6

1 2

3 4

5 6



2

Overview

7

Design Requirements

• Each zone can provide a rich (and different) set of 
customized services, and to the outside world, it appears 
that multiple distinct systems are available. 

• Each zone has a distinct root password and its own 
administrator.

8

Design Requirements

• Basic process isolation; 
• A process in one non-global zone cannot locate, examine, or signal a 

process in another zone. 

• Each zone is given access to at least one logical network 
interface;
• applications running in distinct zones cannot observe the network 

traffic of the other zones even though their respective streams of 
packets travel through the same physical interface. 

• Finally, each zone is provided a disjoint portion of the file 
system hierarchy, to which it is confined.

9

Design Requirements

•The global zone encloses the three non-global 
zones and has visibility into and control over them.
•Practically speaking, the global zone is not different 

from a traditional UNIX system;
• root generally remains omnipotent and omniscient. 
• The global zone always exists, and acts as the ‘‘default’’ 

zone in which all processes are run if no non-global zones 
have been setup

10

To address these design principles, we divided the zones architecture into five principal 
components.

• A state model that describes the lifecycle of the zone, and the actions that comprise the 
transitions.

• A configuration engine, used by administrators to describe the future zone to the system. 
This allows the administrator to describe the ‘platform,’’ or those parameters of the zone 
that are controlled by the global administrator, in a persistent fashion.

• Installation support, which allows the files that make up the zone installation to be 
deployed into the zone path. This subsystem also enables patch deployment and upgrades 
from one operating system release to another.

• The application environment, the ‘‘sandbox’’ in which processes run. For example, in Figure 
3 each zone’s application environment is represented by the large shaded box.

• The virtual platform, comprised of the set of platform resources dedicated to the zone.

11

Specifics

• Process Model
• Per-zone namespace with no visibility between non-global zones
• Root in the global zone can see all

• Accounting
• Legacy accounting formats made it tricky, modified accounting to be 

intra-zone.

• Networking
• Global zone multi-homed server
• Each IP associated with a specific zone

12

7 8

9 10

11 12



3

Specific

• Filesystem
• Use loopback filesystem to mount part of global filesystem 

namespace
• High degree sharing

• Device
• Generally discouraged

• Device semantics and security consequences generally unclear 
• Compare /dev/null to /dev/kmem

• /dev/log an exception

13

Resource Management

• CPU
• Global fair scheduler can schedule zones
• Scheduler within a zone can further share

• Memory still to come 

14

Performance

• Timesharing workload overhead related to loopback file system

15

Drawbridge

• Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben 
Olinsky, and Galen C. Hunt. 2011. Rethinking the library OS 
from the top down. In Proceedings of the sixteenth 
international conference on Architectural support for 
programming languages and operating systems (ASPLOS 
XVI).

16

Library OS

•OS refactored to run in the 
context of the application
• From the application perspective it 

looks like an OS (Windows in this 
case)

•The underlying OS API is smaller
• Easier to get correct
• Easier to make secure

17

Pico process

• An isolated process with different system 
call interface to normal processes
• A security monitor in this case
• Could be something else?

18

13 14

15 16

17 18



4

Windows Subsystem for Linux (WSL1)

19

19


