
USENIX Association

Proceedings of the
FREENIX Track:

2002 USENIX Annual Technical
Conference

Monterey, California, USA
June 10-15, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



An Implementation of Scheduler Activations on the NetBSD Operating
System

Nathan J. Williams
Wasabi Systems, Inc.

nathanw@wasabisystems.com

Abstract

This paper presents the design and implementation of
a two-level thread scheduling system on NetBSD. This
system provides a foundation for efficient and flexible
threads on both uniprocessor and multiprocessor ma-
chines. The work is based on the scheduler activations
kernel interface proposed by Anderson et al. [1] for user-
level control of parallelism in the presence of multipro-
gramming and multiprocessing.

1 Introduction

Thread programming has become a popular and im-
portant part of application development. Some pro-
grams want to improve performance by exploiting con-
currency; others find threads a natural way to decom-
pose their application structure. However, the two major
types of thread implementation available – user threads
and kernel threads – both have significant drawbacks in
overhead and concurrency that can limit the performance
of applications.

A potential solution to this problem exists in the form
of a hybrid, two-level thread system known as sched-
uler activations that divides the work between the ker-
nel and the user levels. Such a system has the potential
to achieve the high performance of user threads while
retaining the concurrency of kernel threads.

The purpose of this paper is to describe the design and
implementation of such a two-level system and associ-
ated thread library in NetBSD, show that the speed of
thread operations is competitive with user thread imple-
mentations, and demonstrate that it can be implemented
without hurting the performance of unrelated parts of the
system.

First, as motivation, Section 2 describes traditional
thread implementations. Scheduler activations are ex-
plained in the context of two-level thread implementa-
tions, and then described in detail. Section 4 gives the
interface that the scheduler activations system presents
to programs, and Section 5 follows with details about the
kernel implementation behind the interface. The thread
library built on this interface is described in Section 6,
and the performance of the system and the thread library
is examined and compared to other libraries in Section 7.
Finally, Section 8 concludes and considers directions for
future work.

2 Thread Systems

Historically, there have been two major types of thread
implementations on Unix-like systems, with the essen-
tial differences being the participation of the kernel in
the thread management. Each type has significant draw-
backs, and much work has gone into finding a compro-
mise or third way.

The first type of thread system is implemented purely at
user-level. In this system, all thread operations manip-
ulate state that is private to the process, and the kernel
is unaware of the presence of the threads. This type of
thread system is often known as “N:1” thread system be-
cause the thread implementation maps all of the N appli-
cation threads onto a single kernel resource.

Examples of this type of thread system include the GNU
PTH thread library [6], FSU Pthreads, PTL2 [7], Proven-
zano’s “MIT pthreads” library [8], and the original DCE
threads package that formed so much of the basis for
the POSIX thread effort [4]. Some large software pack-
ages contain their own thread system, especially those
that were originally written to support platforms with-
out native thread support (such as the “green threads” in
Sun’s original Java implementation). All of the *BSDs



currently have one of these user-level packages as their
primary thread system.

User-level threads can be implemented without kernel
support, which is useful for platforms without native
thread support, or applications where only a particu-
lar subset of thread operations is needed. The GNU
PTH library, for example, does not support preemptive
time-slicing among threads, and is simpler because of it.
Thread creation, synchronization, and context switching
can all be implemented with a cost comparable to an or-
dinary function call.

However, operations that conceptually block a single
thread (blocking system calls such as read(), or page
faults) instead block the entire process, since the ker-
nel is oblivious to the presence of threads. This makes it
difficult to use user-level threads to exploit concurrency
or provide good interactive response. Many user-level
thread packages partially work around this problem by
intercepting system calls made by the application and
replacing them with non-blocking variants and a call to
the thread scheduler. These workarounds are not entirely
effective and add complexity to the system.

Additionally, a purely user-level thread package can not
make use of multiple CPUs in a system. The kernel is
only aware of one entity that can be scheduled to run –
the process – and hence only allocates a single processor.
As a result, user-level thread packages are unsuitable for
applications that are natural fits for shared-memory mul-
tiprocessors, such as large numerical simulations.

At the other end of the thread implementation spectrum,
the operating system kernel is aware of the threaded
nature of the application and the existence of each ap-
plication thread. This model is known as the “1:1”
model, since there is a direct correspondence between
user threads and kernel resources. The kernel is re-
sponsible for most thread management tasks: creation,
scheduling, synchronization, and disposal. These kernel
entities share many of the resources traditionally associ-
ated with a process, such as address space and file de-
scriptors, but each have their own running state or saved
context.

This approach provides the kernel with awareness of the
concurrency that exists within an application. Several
benefits are realized over the user-thread model: one
thread blocking does not impede the progress of another,
and multiprocessor parallelism can be exploited. But
there are problems here as well. One is that the over-
head of thread operations is high: since they are man-
aged by the kernel, operations must be performed by re-

questing services of the kernel (usually via system call),
which is a relatively slow operation. 1. Also, each thread
consumes kernel memory, which is usually more scarce
than user process memory. Thus, while kernel threads
provide better concurrency than user threads, they are
more expensive in time and space. They are relatively
easy to implement, given operating system support for
kernel execution entities that share resources (such as
the clone() system call under Linux, the sproc()
system call under IRIX, or the lwp create() sys-
tem call in Solaris). Many operating systems, including
Linux, IRIX, and Windows NT, use this model of thread
system.

Since there are advantages and disadvantages of both the
N:1 and 1:1 thread implementation models, it is natural
to attempt to combine them to achieve a balance of the
costs and benefits of each. These hybrids are collectively
known as “N:M” systems, since they map some number
N of application threads onto a (usually smaller) num-
ber M of kernel entities. They are also known as “two-
level” thread systems, since there are two parties, the
kernel and the user parts of the thread system, involved
in thread operations and scheduling. There are quite a
variety of different implementations of N:M thread sys-
tems, with different performance characteristics. N:M
thread systems are more complicated than either of the
other models, and can be more difficult to develop, de-
bug, and use effectively. Both AIX and Solaris use N:M
thread systems by default. 2

In a N:M thread system, a key question is how to man-
age the mapping of user threads to kernel entities. One
possibility is to associate groups of threads with single
kernel entities; this permits concurrency across groups
but not within groups, reaching a balance between the
concurrency of N:1 and 1:1 systems.

The scheduler activations model put forward by Ander-
son et al. is a way of managing the N:M mapping while
maintaining as much concurrency as a 1:1 thread system.
In this model, the kernel provides the application with
the abstraction of virtual processors: a guarantee to run
a certain number of application threads simultaneously
on CPUs. Kernel events that would affect the number
of running threads are communicated directly to the ap-
plication in a way that maintains the number of virtual
processors. The message to the application informs it

1The DG/UX operating system prototyped an implementation that
took advantage of the software state saving of their RISC processor to
permit fast access to simple kernel operations. This technique has not
been widely adopted.

2Sun Solaris now also ships with a 1:1 thread library; application
developers are encouraged to evaluate both thread libraries for use by
their application.



of the state that has changed and the context of the user
threads that were involved, and lets the user-level sched-
uler decide how to proceed with the resources available.

This system has several advantages: like other M:N sys-
tems, kernel resource usages is kept small in compari-
son to the number of user-level threads; voluntary thread
switching is cheap, similar to user-level threads, and like
1:1 systems, an application’s concurrency is fully main-
tained. Scheduler activations have been implemented
for research purposes in Taos [1], Mach 3.0 [2], and
BSD/OS [9], and adopted commercially in Digital Unix
[5] (now Compaq Tru64 Unix).

The scheduler activations system shares with other M:N
systems all of the problems of increased complexity over
1:1 systems. Additionally, there is concern that the prob-
lems addressed by scheduler activations are not impor-
tant problems in the space of threaded applications. For
example, making thread context switches cheap is of lit-
tle value if thread-to-thread switching is infrequent, or if
thread switching occurs as a side effect of heavyweight
I/O operations.

Implementing scheduler activations for NetBSD is at-
tractive for two major reasons. First, NetBSD needs a
native thread system which is preemptive and has the
ability to exploit multiprocessor computer systems. Sec-
ond, this work makes a scheduler activations interface
and implementation available in an open-source operat-
ing system for continued research into the utility and vi-
ability of this intuitively appealing model.

3 Scheduler Activations

As described by Anderson et al., the scheduler activa-
tions kernel provides the application with a set of virtual
processors, and then the application has complete con-
trol over what threads to run on each of the virtual pro-
cessors. The number of virtual processors in the set is
controlled by the kernel, in response to the competing
demands of different processes in the system. For ex-
ample, an application may express to the kernel that it
has enough work to keep four processors busy, while a
single-threaded application is also trying to run; the ker-
nel could allocate three processors to the set of virtual
processors for the first application, and give the fourth
processor to the single-threaded program.

In order for the application to be able to consistently use
these virtual processors, it must know when threads have

blocked, stopped, or restarted. For user-level operations
that cause threads to block, such as sleeping for a mu-
tex or waiting on a condition variable, the thread that
is blocking hands control to the thread library, which
can schedule another thread to run in the usual manner.
However, kernel-level events can also block threads: the
read() and select() system calls, for example, or
taking a fault on a page of memory that is on disk. When
such an event occurs, the number of processors execut-
ing application code decreases. The scheduler activa-
tions kernel needs to tell the application what has hap-
pened and give it another virtual processor. The mecha-
nism that does this is known as an upcall.

To perform an upcall, the kernel allocates a new virtual
processor for the application and begins running a piece
of application code in this new execution context. The
application code is known as the upcall handler, and it is
invoked similarly to a traditional signal handler. The up-
call handler is passed information that identifies the vir-
tual processor that stopped running and the reason that it
stopped. The upcall handler can then perform any user-
level thread bookkeeping and then switch to a runnable
thread from the application’s thread queue.

Eventually the thread that blocked in the kernel will un-
block and be ready to return to the application. If the
thread were to directly return, it would violate two con-
straints of scheduler activations: the number of virtual
processors would increase, and the application would be
unaware that the state of the thread had changed. There-
fore, this event is also communicated with an upcall. In
order to maintain the number of virtual processors, the
thread currently executing on one of the application’s
processors is preempted. The upcall is then run in the
context of that virtual processor, carrying notifications
of both the first thread returning from the kernel and
the second thread being preempted. The upcall handler,
knowing all of this, can then decide which thread to run
next, based on its own processing needs. Typically, this
would choose the highest priority thread, which should
be one of the two involved in the upcall notification.

There are other scheduling-related events that are com-
municated by upcall. A change in the size of the virtual
processor set must be communicated to the application
so that it can either reschedule the thread running on a
removed processor, or schedule code to run on the new
processor. Traditional POSIX signals, which would nor-
mally cause a control-flow change in the application, are
communicated by upcall. Additionally, a mechanism is
provided for an application to invoke an upcall on an-
other processor, in order to bring that processor back
under control of the thread engine (in case thread en-



gine code running on processor 1 decides that a different,
higher-priority thread should start running on processor
2).

4 Kernel Interface

The application interface to the scheduler activa-
tions system consists of system calls. First, the
sa register() call tells the kernel what en-
try point to use for a scheduler activations up-
call, much like registering a signal handler. Next,
sa setconcurrency() informs the kernel of the
level of concurrency available in the application, and
thus the maximum number of processors that may be
profitably allocated to it. The sa enable() call starts
the system by invoking an upcall on the current proces-
sor. While the application is running, the sa yield()
and sa preempt() calls allow an application to man-
age itself by giving up processors and interrupting other
processors in the application with an upcall.

4.1 Upcalls

Upcalls are the interface used by the scheduler activa-
tions system in the kernel to inform an application of a
scheduling-related event. An application that makes use
of scheduler activations registers a procedure to handle
the upcall, much like registering a signal handler. When
an event occurs, the kernel will take a processor allo-
cated to the application (possibly preempting another
part of the application), switch to user level, and call the
registered procedure.

The signature of an upcall is:

void sa_upcall(int type,
struct sa_t *sas[],
int events,
int interrupted,
void *arg);

The type argument indicates the event which triggered
the upcall. The types and their meanings are described
below.

The sas field points to an array of pointers to struct
sa t which describe the activations involved in this
event. The first element of this array, sas[0], points

to the sa t of the running activation. The next ele-
ments of the array (sas[1] through sas[events])
describe the activations directly involved in an event.
The value of events may be zero, in which case none
of the array elements are used for this purpose. The
remaining elements of the array (sas[events+1]
throughsas[events+interrupted]) describe the
activations that were stopped in order to deliver this up-
call; that is, the “innocent bystanders”. The value of
interrupted may be zero, in which case none of the
elements are used for this purpose.

Upcalls are expected to switch to executing application
code; hence, they do not return.

The set of events that generates upcalls is as follows:

� SA UPCALL NEWPROC This upcall notifies the
process of a new processor allocation. The first
upcall to a program, triggered by sa enable(),
will be of this type.

� SA UPCALL PREEMPTED This upcall notifies the
process of a reduction in its processor allocation.
There may be multiple “event” activations if the al-
location was reduced by several processors.

� SA UPCALL BLOCKED This upcall notifies the
process that an activation has blocked in the kernel.
The sa context field of the event should not be
continued until a SA UPCALL UNBLOCKED event
has been delivered for the same activation.

� SA UPCALL UNBLOCKED This upcall notifies the
process that an activation which previously blocked
(and for which a SA UPCALL BLOCKED upcall
was delivered) is now ready to be continued.

� SA UPCALL SIGNAL This upcall is used to de-
liver a POSIX-style signal to the process. If the
signal is a synchronous trap, then event is 1, and
sas[1] points to the activation which triggered
the trap. For asynchronous signals, event is 0.
The arg parameter points to a siginfo t struc-
ture that describes the signal being delivered.

� SA UPCALL USER This upcall is delivered
when requested by the process itself with
sa preempt(). The sas[1] activation
will be the activation specified in the call.

If the last processor allocated to a process is preempted,
then the application can not be informed of this immedi-
ately. When it is again allocated a processor, an upcall is



used to inform the application of the previous preemp-
tion and the new allocation, so that the user-level sched-
uler can reconsider the application’s needs.

The low level upcall mechanism is similar to signal de-
livery. A piece of code, known as the upcall trampoline,
is copied to user space at the start of program execution.
To invoke an upcall in the application, the kernel copies
out the upcall arguments into user memory and registers,
switches to user level with the arguments to the upcall
and the address of the upcall entry point available, and
starts running at the trampoline code, which calls the up-
call routine.

4.2 Stacks

Upcall code, like any application code written in C,
needs a stack for storage of local variables, return ad-
dresses, and so on. Using the stack of a preempted thread
is not always possible, as there is no preempted thread
in the case of new processor allocations. Also, using
the stack of a preempted thread makes thread manage-
ment more difficult, because that thread can not be made
runnable again until the upcall code is exiting, or an-
other processor might start running it and overwrite the
upcall handler’s stack area. Therefore, upcalls must be
allocated their own set of stacks. The sa stacks()
system call gives the kernel a set of addresses and sizes
that can be used as stacks for upcalls. Since the kernel
does not keep track of when an upcall handler has fin-
ished running, the application must keep track of which
stacks have been used for upcalls, and periodically call
sa stacks() to recycle stacks that have been used
and make them available again. By batching these stacks
together, the cost of the sa stacks() system call is
amortized across a number of upcalls.

4.3 Signals

The POSIX thread specification has a relatively compli-
cated signal model, with distinctions drawn between sig-
nals directed at a particular thread and signals directed at
the process in general, per-thread signal blocking masks
but process-level signal actions, and interfaces to wait
for particular signals at both the process and thread level.
The method of handling signals under scheduler acti-
vations must permit a thread package to implement the
POSIX signal model.

Since the kernel does not know about specific threads, it

can not maintain per-thread signal masks and affect per-
thread signal delivery. Instead, signals are handed to the
application via the upcall mechanism, with the arg pa-
rameter pointing to a struct siginfo t. The user
thread library can use this to invoke the signal handler
in an appropriate thread context. In order to do this,
though, the user thread code must intercept the appli-
cation’s calls to sigaction() and maintain the table
of signal handlers itself.

5 Kernel Implementation

This section describes the changes needed to implement
scheduler activations in the NetBSD kernel, including
the separation of traditional process context from ex-
ecution context, the mechanics of adapting the kernel
execution mechanics to maintaining the invariants of
scheduler activations, and the separation of machine-
dependent and machine-independent code in the imple-
mentation.

5.1 LWPs

Most of the systems where scheduler activations has
been implemented to date (Taos, Mach, and the Mach-
inspired Digital Unix) have kernels where a user pro-
cess is built out of a set of kernel entities that each rep-
resent an execution context. This fits well with sched-
uler activations, where a single process can have several
running and blocked execution contexts. Unfortunately,
the NetBSD kernel, like the rest of the BSD family, has
a monolithic process structure that includes execution
context.

The implementation of scheduler activations on
BSD/OS by Seltzer and Small [9] dealt with this
problem by using entire process structures for execution
context. This had substantial problems. First, the
amount of kernel memory that is used for each activa-
tion is larger than necessary. Second, using multiple
processes for a single application causes a great deal
of semantic difficulty for traditional process-based
interfaces to the kernel. Applications like ps and top
will show multiple processes, each apparently taking up
the same amount of memory, which often confuses users
attempting to understand the resource usage of their
system. Sending POSIX signals is an action defined on
process IDs, but targeting a process which is a sub-part
of an application conflicts with the POSIX threads



SSLEEP SSTOP

SONPROC

SRUN

SIDL SDEAD SZOMB

Figure 1: Original NetBSD Process States

SIDL SDEAD SZOMBSACTIVE

SSTOP

LSSLEEP LSSTOP

LSONPROC

LSRUN

LSIDL LSDEAD LSZOMB

LSSUSP

Figure 2: New NetBSD Process and LWP States

specification that an entire application should respond
to signals, and that any thread may handle an incoming
signal. 3 Finally, complexity must be introduced in the
kernel to synchronize per-process data structures such
as file descriptor lists, resource limits, and credentials.

Therefore, the first stage in implementing scheduler ac-
tivations was separating process context from execution
context in NetBSD. This was a slow but largely mechan-
ical undertaking. The parts of the classic BSD struct
proc that related to execution context were relocated to
a new structure, struct lwp (LWP for “light-weight
process”, following Solaris and others). This included
scheduling counters and priority, the run state and sleep
fields, the kernel stack, and space for execution-context-
specific machine-dependent fields. The process state
values were reduced to those that represent the state of
an entire process, and the execution-related process state
values were changed to LWP state values.

Following this was an audit of every use of a variable
of type struct proc within the kernel to determine
whether it was being used for its process context or exe-
cution context. Execution context turned out to be the

3The LinuxThreads pthread implementation, while not based on
scheduler activations, uses entire processes as threads and has all of
these problems. “Why doesn’t kill work on my threaded applica-
tion?” is a frequently heard question in Linux and thread programming
forums.

prevalent use of such variables, especially the global
variable curproc. The conversion process consisted
of replacing variables like “struct proc *p” with
“struct lwp *l”, and changing any code that actu-
ally referred to the process-level state to access it indi-
rectly via a pointer in struct lwp. The scheduler was
converted to handle scheduling LWPs rather than pro-
cesses; the fork() system call was changed to create
new LWPs for new processes, and the kernel “reaper”
subsystem was adjusted to remove dead LWPs as well
as dead processes.

Once this conversion was complete, the next stage was to
permit the existence and concurrent execution of several
LWPs within a single process. While the scheduler ac-
tivations system will not have LWPs in a single process
time sliced against each other, doing so was a good way
of testing the LWP infrastructure, and may also be use-
ful for binary compatibility with systems that use mul-
tiple LWPs per process. For the interface, several So-
laris LWP functions were adopted: lwp create(),
lwp self(), lwp exit(), lwp suspend(),

and lwp continue().

Two areas of the kernel were significantly affected by
this: signal delivery and process exit. Previously, sig-
nal delivery was a straightforward switch on the state of
the process. Now, with multiple LWPs and a large com-
bination of possible states, the signal delivery code must
iterate over the LWPs in order to find one that can accept
the signal. Signals with actions that affect the state of all
LWPs, such as SIGSTOP and SIGCONT, must also it-
erate over the LWPs and stop or continue each one as
appropriate.

Process exit is complicated by the need to clean up all
LWPs, not just the one that invokes exit(). The first LWP
to attempt to exit must wait for all other LWPs to clean
themselves up before cleaning up the process context.
The kernel lwp wait() primitive requires some help
to do this, especially in the presence of other LWPs that
may be in similar sleep loops in the kernel. They must
be coerced to quit their sleep loops while permitting the
exiting lwp to continue in its loop. This is done by mak-
ing tsleep() exit when a process is trying to exit (as noted
by the P WEXIT flag in struct proc), but providing
a flag PNOEXITERR that makes the exiting LWP’s wait
loop ignore P WEXIT.

The machine-dependent parts of the NetBSD ker-
nel each require some porting work to make them
work with LWPs. Some of this is straightfor-
ward: implementing the machine-dependent back ends
for the getcontext() and setcontext system



calls and changing some flags from P FLAGNAME to
L FLAGNAME. More involved is splitting the machine-
dependent parts of the old struct proc into the new
struct proc and struct lwp. For example, on
the i386, the TSS selector needs to be LWP-specific, but
the pointer to the system call entry point needs to be
proc-specific. On some architectures, such as the Pow-
erPC, the machine-dependent part of struct proc
becomes empty.

Finally, some delicate work is required in the code that
implements the process context switch, which is usu-
ally written in assembler. The existing cpu switch()
function, which picks another process to run from the
run queue, must be modified to return a flag indicating
whether or not it switched to another process. This is
used by the scheduler activations code to determine if
a preemption upcall needs to be sent. A variant of this
routine called cpu preempt() must be implemented,
which takes a new LWP to switch to, instead of picking
one from the run queue. This is used by the scheduler
activations code to continue executing within the same
process when one LWP is blocked.

5.2 Scheduler Activations

The kernel implementation of the actual scheduler acti-
vations system is centered on a routine, sa upcall(),
which registers the need for an upcall to be delivered
to a process, but does not actually modify the user state.
This routine is used, for example, by system calls that di-
rectly generate upcalls, such as sa preempt() and
sa enable().

The most interesting work occurs when a process run-
ning with scheduler activations enabled is in the kernel
and calls the tsleep() function, which is intended to
block the execution context and let the operating system
select another process to run. Under the scheduler acti-
vations philosophy, this is the moment to send an upcall
to the process on a new virtual processor so that it can
continue running; this is handled by having tsleep()
call a function called sa switch() instead of the con-
ventional mi switch(). The mechanics of this are
complicated by resource allocation issues; allocating a
new activation LWP could block on a memory shortage,
and since blocking means calling tsleep() again, re-
cursion inside tsleep would result. To avoid this prob-
lem, a spare LWP is pre-allocated and cached when
scheduler activations are enabled, and each such LWP
allocates another as its first action when it runs, thus en-
suring that no double-sleep recursion occurs.

The sa switch() code sets the LWP to return with
a “blocked” upcall, and switches to it. The new LWP
exits the kernel and starts execution in the application’s
registered upcall handler.

When the LWP that had called tsleep() is woken
up, it wakes up in the middle of sa switch(). The
switch code sets the current LWP to return with an
“unblocked” upcall, potentially including the previously
running LWP as an “interrupted” activation if it belongs
to the same process.

The other important upcall is the “preempted” upcall.
The scheduling code in NetBSD periodically calls a
routine to select a new process, if another one ex-
ists of the same or higher priority. That routine calls
sa upcall() if it preempts a scheduler activations
LWP.

The upcall delivery is done just before crossing the pro-
tection boundary back into user space. The arguments
are copied out by machine-dependent code, and the pro-
cess’s trap frame is adjusted to cause it to run the upcall-
handling code rather than what was previously active.

5.3 Machine dependence

The architecture-dependent code needed to support
scheduler activations in NetBSD amounts to about
4000 lines of changed code per architecture. The
bulk of that is the mechanical replacement of struct
proc references with struct lwp references. About
500 lines of new code is necessary to implement
getcontext() and setcontext, the machine-
dependent upcall code, and the cpu preempt() func-
tion. To date, the work to make an architecture sup-
port scheduler activations has been done by the author
on two architectures, and by other people on five others.
None of the volunteers who did this porting work re-
ported any significant problems in the interface between
machine-dependent and machine-independent scheduler
activations code.

6 Thread Implementation

The principal motivation for the scheduler activations
system is to support user-level concurrency, and threads
are currently the dominant interface for expressing con-
currency in imperative languages. Therefore, part of this



project is the implementation of an application thread
library that utilizes the scheduler activations interface.
The library is intended to become the supported POSIX-
compatible (“pthreads”) library for NetBSD.

The thread library uses the scheduler activations inter-
face described previously to implement POSIX threads.
The threads are completely preemptable; the kernel may
interrupt a thread and transfer control to the upcall han-
dler at any time. In practice, this occurs most often
when a system call blocks a thread or returns from hav-
ing been blocked, or after another process on the system
has preempted the threaded process and then returned.
On a uniprocessor system, for example, logging in re-
motely via ssh and running a threaded process that pro-
duces terminal output causes frequent preemptions of
the threaded process, as the kernel frequently allocates
time to the sshd process to send terminal output back to
the user. Periodic timers are used to generate regular up-
calls to implement round-robin scheduling, if requested
by the application.

The complete preemptability of scheduler activations
threads is a problem in that it violates the atomicity of
critical sections of code. For example, the thread library
maintains a run queue; if an upcall happens while the run
queue is being operated on, havoc will result, as the up-
call handler will itself want to manipulate the run queue,
but it will be in an invalid state. When spin locks are
used to protect critical sections, this problem can lead
to deadlock, if the upcall handler attempts to acquire the
same lock that was in use by the interrupted thread.

Both the original scheduler activations work and the
Mach implementation faced this problem, and both
adopted a strategy of recovery, rather than prevention.
That is, rather than violate the semantics of scheduler
activations by providing a mechanism to prevent inter-
ruption during a critical section, they devised ways to
detect when a critical section had been interrupted, and
recover from that situation. 4 In both implementations,
the upcall handler examines the state of each interrupted
thread to determine if it was running in a critical section.
Each such thread is permitted to run its critical section to
completion before the upcall handler enters any critical
section of its own.

The implementation of critical-section recovery in this
thread library closely follows the Mach implementa-
tion. Critical sections are protected with spin locks, and

4Adding to the terminological confusion, some Sun Solaris
documentation refers to the schedctl start() and sched-
ctl stop() functions, which temporarily inhibit preemption of a
LWP, as “scheduler activations”.

the spin lock acquisition routine increments a spin lock
counter in the acquiring thread’s descriptor. When an
upcall occurs, the upcall handler checks the spin lock
count of all interrupted threads. If it finds an interrupted
thread that holds spin locks, it sets a flag in the descrip-
tor indicating that the thread is being continued to finish
its critical section, and then switches into the context of
that thread. When the critical section finishes, the spin
lock release routine sees the continuation flag set in the
descriptor and context switches back to the upcall han-
dler, which can then proceed, knowing that no critical
sections are left unfinished. This mechanism also con-
tinues the execution of any upcalls that are themselves
preempted, and that may have been continuing other pre-
empted critical sections.

While this system is effective in preventing problems
with preempted critical sections, the need to manipu-
late and examine the thread’s descriptor in every spin
lock operation undesirably adds overhead in the com-
mon case, where a critical section is not preempted. An
area for future exploration would be a mechanism more
similar to that of Anderson’s original implementation,
which uses knowledge of which program addresses are
critical sections to shift all of the costs of preemption re-
covery to the uncommon case of a critical section being
preempted.

The thread implementation also has a machine-
dependent component, although it is much smaller than
the kernel component. Short routines that switch from
one thread to another (saving and restoring necessary
register context), and variants of these routines that are
needed for the preemption detection described above,
are needed for each CPU type supported by NetBSD.

7 Performance Analysis

There are two goals of examining the performance of the
scheduler activations system. The first is determining
whether the added complexity of having scheduler acti-
vations in the kernel hurts the performance of ordinary
applications. The second is comparing the performance
of the resulting thread system with existing thread sys-
tems to demonstrate the merits of the scheduler activa-
tions approach.

The first measurements were done with the HBench-OS
package from Harvard University [3]. HBench-OS fo-
cuses on getting many individual measurements to ex-
plore the performance of a system in detail. Five of the



tests measure system call latency; the results from the
NetBSD kernel before and after the implementation of
scheduler activations are shown here, as measured on a
500 MHz Digital Alpha 21164 system.

before SA after SA
getpid 0.631 0.601
getrusage 4.053 4.332
timeofday 1.627 1.911
sbrk 0.722 0.687
sigaction 1.345 1.315

The results are mixed; some tests are faster than before;
others are slower. The larger set of HBench-OS tests test
process-switch latency for a variety of process memory
footprints and number of processes being switched; that
set showed similarly mixed results. So while the perfor-
mance of the system changed slightly, it did not conclu-
sively get faster or slower. This result makes the work as
a whole more attractive to the NetBSD commuinty, since
it does not require accepting a performance trade-off in
order to get a better thread system.

For measuring thread operation costs, three different
micro-operations were measured: The time to create,
start, and destroy a thread that does nothing; the time to
lock and unlock a mutex (under varying degrees of con-
tention), and the time to switch context between exiting
threads.

The operations were measured on an Apple iBook,
with a 500MHz G3 processor with 256k of L2 cache.
The tests were conducted with the scheduler activations
thread library on NetBSD, the GNU PTH library on
NetBSD, and LinuxThreads on Linuxppc 2.4.19.

SA PTH Linux
Thread 15�s 96�s 90�s

Mutex 0:4�s 0:3�s 0:6�s

Context 225�s 166�s 82�s

LinuxThreads exhibited roughly linear scaling of lock
time with the number of threads contending for the lock;
neither the SA library nor PTH had noticeable increases
in lock time, demonstrating interesting differences in the
scheduler involved. The PTH null thread creation time
is also surprisingly large, for a pure user-space thread li-
brary that should have low overhead. Linux does quite
well at the context-switch test, and it will be worth in-
vestigating how to get that speed in NetBSD.

In all three benchmarks, The scheduler activations
threads demonstrated that basic operations are competi-
tive with both pure user threads and 1:1 kernel threads.

8 Conclusions and future work

This paper has presented the design and implementa-
tion of a two-level thread scheduling system based on
the scheduler activations model, including the kernel in-
terface, kernel implementation, and user implementa-
tion. Measurements were taken that demonstrate both
competitive thread performance and no sacrifice in non-
threaded application performance. The implementation
is sufficiently well-divided between machine-dependent
and machine-independent parts that porting to another
architecture is only a few days’ work. As was initially
hypothesized, scheduler activations is a viable model
for a thread system for NetBSD. The existence of a
scheduler activations implementation in a portable, open
source operating system will enable further research into
the properties of this appealing system.

This project continues to evolve, but several future goals
are clear: integration with the main NetBSD source
tree; cooperation with the fledgling support for symmet-
ric multiprocessing in NetBSD; implementation of bet-
ter critical section preemption as described, implementa-
tion of optional POSIX threads features such as realtime
scheduling, and as always, performance tuning.

Availability

The kernel and user code described here is avail-
able under a BSD license from the NetBSD Project’s
source servers 5, currently on the CVS branch called
nathanw sa. Machine-dependent code has been writ-
ten for the Alpha, ARM, i386, MIPS, Motorola 68k,
PowerPC, and VAX architectures, with more on the way.
Integration into the trunk of NetBSD-current is expected
after the release of NetBSD 1.6.

Acknowledgments

Thanks to Frans Kaashoek of the MIT Laboratory for
Computer Science for supervising early stages of this
project, and to Wasabi Systems for sponsoring contin-
ued development. Thanks to Klaus Klein for providing a
Single Unix Specification-compliant implementation of
ucontext t and its associated system calls. Thanks

5Please see http://www.netbsd.org/Documentation/current/ for
ways of getting NetBSD



to Bill Sommerfeld and Jason Thorpe for review of the
interface and many useful suggestions throughout the
work on this project. Finally, thanks to Chris Small and
Margo Seltzer for their implementation of scheduler ac-
tivations on BSD/OS; I am indebted to them for their
demonstration of feasibility.

References

[1] Thomas E. Anderson, Brian N. Bershad, Edward D. La-
zowska, and Henry M. Levy. Scheduler activations: Ef-
fective kernel support for the user-level management of
parallelism. In Proc. 19th ACM Symposium on Operating
System Principles, pages 95–109, 1991.

[2] Paul Barton-Davis, Dylan McNamee, Raj Vaswani, and
Edward D. Lazowska. Adding scheduler activations to
Mach 3.0. Technical Report 3, Department of Computer
Science and Engineering, University of Washington, Au-
gust 1992.

[3] A. Brown and M. Seltzer. Operating system benchmarking
in the wake of lmbench: A case study of the performance
of NetBSD on the Intel x86 architecture. In Proceedings of
the 1997 ACM SIGETRICS Conference on Measurement
and Modeling of Computer Systems, pages 214–224, 1997.

[4] David R. Butenhof. Programming with POSIX Threads.
Addison-Wesley, 1997. ISBN 0-201-63392-2.

[5] Digital Equipment Corporatiom. Guide to DECthreads.
Digital Equipment Corporation, 1996. Part number AA-
Q2DPD-TK.

[6] Ralf S. Engelschall. Gnu portable threads.
http://www.gnu.org/software/pth/pth.html.

[7] Portable threads library.
http://www.media.osaka-cu.ac.jp/ k-abe/PTL/.

[8] Christopher Provenzano. Portable thread library.
ftp://sipb.mit.edu/pub/pthreads/.

[9] Christopher Small and Margo Seltzer. Scheduler acviva-
tions on BSD: Sharing thread management between kernel
and application. Technical Report 31, Harvard University,
1995.


